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DEFORMATIONS OF A HYPERBOLIC 3-MANIFOLD NOT

AFFECTING ITS TOTALLY GEODESIC BOUNDARY

BY MICHIHIKO FUJII

Introduction.

By a hyperbolic manifold, we will mean a Riemannian manifold with con-
stant sectional curvature—1. In this paper, we study complete oriented hyperbolic
3-manifolds with totally geodesic boundary (possibly with cone type singularities
along some closed geodesies) and deformations of hyperbolic structures on such
3-manifolds. A smooth totally geodesic boundary of such a 3-manifold becomes
a hyperbolic surface.

Let g be an integer greater than or equal to 2 and Mg be the moduli space
of closed Riemann surfaces of genus g. Let Sg be the subset of Mg consisting
of those hyperbolic surfaces which are boundary components of compact oriented
hyperbolic 3-manifolds with totally geodesic boundary. It is well known that
Sg is a countable subset of Mg. Moreover, we can show that Sg is dense in
Mg, by making use of the theory of hyperbolic Dehn surgery due to Thurston
[5] and a theorem of Brooks [1], which states that closed hyperbolic surfaces
that can be filled by circle packings (see § 1 for terminology) form a dense
subset of Mg. This fact can be proved roughly as follows. First of all, follow-
ing a method of Brooks [1] (see § 1 for its precise description), for each closed
hyperbolic surface filled by a circle packing, we can construct a complete
hyperbolic 3-manifold with torus cusps such that each boundary component of
it is isomorphic to the given hyperbolic surface. Then, by deforming the
hyperbolic structure of the 3-manifold by means of the hyperbolic Dehn surgery
at every toral end of the 3-manifold, we obtain a compact hyperbolic 3-manifold
with totally geodesic boundary such that each boundary component is arbitrarily
close to the initial closed hyperbolic surface in the moduli space Mg. Thus, by
combining the above construction with Brooks' theorem, we can show the
required fact (I owe this argument to T. Soma).

Now the argument above suggests a relationship between the set Sg and
Dehn surgery. In particular it naturally raises a question of whether there is
a difference between the initial closed hyperbolic surface filled by the circle
packing and the hyperbolic surface of the boundary component of the Dehn
surgered compact hyperbolic 3-manifold or not. In our previous paper [2], we
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gave an example of a complete hyperbolic 3-manifold with one torus cusp whose
boundary is totally geodesic and is isomorphic to a closed hyperbolic surface
which can be filled by a circle packing such that a boundary of a surgered
hyperbolic 3-manifold is different from the initial hyperbolic surface. (Note that
our construction of this 3-manifold is different from that of Brooks which is
mentioned in § 1 of this paper.) Having this example, it seems to be natural
to expect that the surface obtained after the deformation, in general, is different
from the initial surface (cf. Kapovich [3] for a general discussion of this
phenomenon).

In this paper however, in contrast to the above, we will show the existence
of an opposite case, using the hyperbolic surface which is the boundary of the
hyperbolic 3-manifold given in [2] and mentioned above, under the situation
where we permit the surgered hyperbolic 3-manifold to have cone type singu-
larities. Namely, we give a concrete example of a hyperbolic 3-manifold M
with torus cusps and totally geodesic boundary (although the 3-manifold M is
different from the example in [2], each boundary component of M is isomorphic
to the boundary hyperbolic surface of the example in [2]) which has the follow-
ing property: the hyperbolic structure of the totally geodesic boundary remains
to be constant under a deformation of the hyperbolic structure which makes
cone type singularities on the toral ends.

Our original hyperbolic 3-manifold M will be constructed by using the
method of Brooks mentioned above: given any closed hyperbolic surface on
which a circle packing exists, we can construct a hyperbolic 3-manifold with
some torus cusps and totally geodesic boundary consisting of four components
such that each of its boundary components is isometric to the given hyperbolic
surface. By applying this construction to the closed hyperbolic surface men-
tioned above on which we can write a concrete circle packing consisting of
two isometric circles, we obtain the hyperbolic 3-manifold M (see § 1). Then
the deformation is explicitly accomplished by adequately enlarging the radii of
circles of the packing and making cone type singularities on all toral ends of
M with the same varying angles (see § 2). At every total end, the coefficients
of the hyperbolic Dehn surgery of our deformation have the forms (p, 0)(p£ΞR)
with respect to an appropriate choice of generators of the fundamental group
of the toral end, so that the deformed hyperbolic 3-manifolds can be completed
to yield hyperbolic 3-orbifolds with cone type singularities along the toral ends
(see [5]). This deformation is easy to be seen and quite clear. Also, it seems
to be possible to generalize the construction above to the case where there are
given hyperbolic surfaces filled by circle packings each of which consists of
several isometric circles rather than just two, by applying the method of Brooks
to the given hyperbolic surfaces.

Neumann-Reid [4] also constructed concrete examples of hyperbolic 3-
manifolds, each having one torus cusp and totally geodesic boundary, which
admit deformations which do not affect the boundaries. Their method is dif-
ferent from ours. More precisely, they take certain finite cyclic coverings of
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a complete hyperbolic 3-orbifold having a torus cusp and a totally geodesic
boundary whose hyperbolic structure is rigid, namely whose Teichmύller space
is trivial. Then, by using the triviality of the Teichmϋller space, they showed
that hyperbolic 3-manifolds, which is the total spaces of the cyclic coverings,
admit deformations leaving the boundaries invariant. The hyperbolic Dehn
surgery coefficients of the deformations of these examples of Neumann-Reid
have the forms (p, q)'s where each (p, q) is a coprime pair of integers, so that
the deformed hyperbolic 3-manifolds can be compactified to yield smooth closed
hyperbolic 3-manifolds by the Dehn surgery (see [5]).

1. A hyperbolic 3-manifold M with totally geodesic boundary and torus
cusps.

In this paper we use the Poincare model of the hyperbolic 3-space Hs.
Namely, let be the space {x=(xu x2} xs)^R3; \x\<l\ endowed with the
Riemannian metric ds given by ds=2\dx\/l—\x\2 and let H2(aH3) be the
subspace {x=(xu x2, xs)(=Hs x*—ty. Denote by Soo the sphere at infinity of H\
In this paper, we use notations HI and Si to indicate the spaces {x=(xu #2, x%)
e / P ; x3^0} and {x—{xu x2, x3)eSco; xs>0\ respectively (see Fig. 1). Let us
denote by pr the orthogonal projection from H2 onto 5 ί along geodesies each
of which starts from H2 in the orthogonal direction (see Fig. 2).

Let 31 be a hyperbolic surface without cusps uniformized by H2 so that
Sl—H2IΔ, for some Fuchsian group Δ. A configuration of circles on Si is a
collection of simple closed curves on 31 which bound disks, such that the lifts
of these curves to H2 are Euclidean circles. A configuration on 31 is said to

Fig. 1.
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Fig. 2.

be a circle packing if the interiors of disks are all disjoint and the region com-
plementary to the interiors of the disks consists only of curvilinear triangles.
Now suppose, in general, that there are given three circles which are either
mutually tangent to one another (Fig. 3a) or have a hyperbolic triangle region
between them (Fig. 3b). Then there exists a unique circle which meets each
of the three circles perpendicularly. Let us call this the perpendicular circle
for the triple of circles.

Fig. 3(α) Fig. 3{b)

In this section, following the method of Brooks [1], we construct a hyper-
bolic 3-manifold with totally geodesic boundary and torus cusps using a circle
packing of a hyperbolic surface. First consider two copies of a regular dode-
cagon in H2 with interior angles 2τr/3. Identify the edges as in Fig. 4. Then
we obtain a closed hyperbolic surface S of genus 2. Let Γ be the correspond-
ing Fuchsian group (i. e. S—H2/Γ). As indicated in Fig. 4, the fundamental
domain for Γ is packed by two circles C\ C2 and H2 is packed by a configura-
tion of circles made of the Aorbit of C1 and C2. Denote this circle packing
of H2 by C. Now draw the union of all perpendicular circles £P for all the
triples of the circle packing C of H2.
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Fig. 4. Glue together the numbered sides of two pieces of a
regular 12-gon with angles 2ττ/3 so that the numbers are matched.

Map all of the circles of C and £P to Si by the orthogonal projection pr.
Let C and £>' be the images of C and £P respectively, i. e., Cf—pr{C)y &f=pr{&).
The configuration C in Si can be identified with C in /72 by the orthogonal
projection pr. Then we can regard Fig. 4 as a picture of C in Si, provided
that Sί is identified with the interior of the outer circle in this figure.

Let N be the space obtained by removing from H% the regions interior to
all hemispheres lying over all the circles of Cr and £P'. The 3-dimensional
space N is a geodesic polyhedron with ideal vertices and has two boundary
components du d2. One is H2(=dι). The other one d2 comes from the bound-
aries of the hemispheres above, so that it consists of infinitely many ideal
dodecagons and ideal triangles which meet each other at right angles along all
edges of polygons (see Fig. 6).

Let Γ act on H3 as a Kleinian group with the limit set of Γ equal to dH2.
Now note that Γ acts on Si via Mobius transformations and the configurations
C and 3»' are invariant by the action of Γ. Let N be the quotient space N/Γ.
Let dx=H2/Γ and d2=d2/Γ. Then dN^KJd*. Since the hyperbolic surface
H2/Γ(—S) is obtained as in Fig. 4 and Γ acts on d2 in the same way as on
H2, the boundary component d2 of V̂ is illustrated as in Fig. 7. Now we can
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a circle of C' orP'

the hemisphere

Fig. 5. A hemisphere lying over a circle of C or

Fig. 6. This is a picture of d2 orthogonally projected to Si.
The points o are ideal vertices.

check that d2 consists of two ideal dodecagons and eight ideal triangles and
has twelve ends. A section O of each end of N by cutting at a horosphere
centered at the infinity point of the end forms a rectangle in R2 and the end
is isomorphic to [0, oo)χ# (see Fig. 8).
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Fig. 7. Each piece is made of one ideal dodecagon and twelve
triangles with two ideal vertices. All dihedral angles between the
triangles and the dodecagon are π/2. The vertices o are ideal ones.
All numbered sides of triangles have the same length. The interior
angles of each triangle are 0, 0 and 2π/3. The boundary component 32

can be obtained by gluing together the numbered sides of the triangles
so that the numbers are matched.

Fig. 8. Each end of TV.

Let L be the double of N along the eight ideal triangles of d2. Since each
ideal dodecagon intersects adjacent ideal triangles at right angle and do not
meet the other ideal dodecagon in N, there exist two boundary components in
L each of which is a twelve-punctured hyperbolic surface. Besides the two
boundary components, L has two other boundary components each of which is
isomorphic to the hyperbolic surface S.
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Let M be the double of L along the twelve-punctured spheres of dL. The
boundary dM of M consists of four components each of which is totally geodesic
and isomorphic to S. Since each end of N is isomorphic to [0, oo)χ# and each
end of M is the double of the double of the corresponding end of N, M is a
hyperbolic 3-manifold with twelve torus cusps (see Fig. 9). This is the desired
manifold.

&

y take the double of Θ along the vertical sides

identify

identify

identify

\
take the double of (2 along the vertical sides

identify

identify φ

identify

identify

lidentify identify

identify

Fig. 9. This is a picture showing that each end of M is a torus
cusp. We see it by cutting each end along a horosphere.

2. A deformation of the hyperbolic structure on M.

In this section, we explicitly deform the hyperbolic structure on M, which
was constructed in § 1, by enlarging the radii of the circles of £ in § 1 to
obtain the following:

THEOREM. Let M be the hyperbolic 3-manifold with four totally geodesic
boundary components and twelve torus cusps as was constructed in § 1. Let -a be
any real number satisfying 0 < a<π/6. Then there is a deformation of the
hyperbolic structure on M with cone type singularities of angle 4a at the twelve
torus ends keeping the moduli of the totally geodesic boundary components of M
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constant.

Proof. By a Mόbius transformation g, we translate the configuration C of
circles which was given in § 1, so as a center of some circle of C to be the
origin (0, 0, 0) in H2. Consider a 1-parameter family Cι

a (0<a<π/β) of con-
centric circles centered at the origin in H2 (see Fig. 10). Let Cl be the re-
flected image of C\ by a reflection along one of the edges of the regular
dodecagon with interior angles 2π/3. For a while, assume that 0 < α < π / β .
Two circles g~ιCι

a, g~ιC2

a cover the fundamental domain of Γ with overlapping
each other. Consider the 7^-orbit of these circles. Then we have a configura-
tion of infinite many circles Ίfg~ιCι

a, γg~ιCl{γ^ΞΓ) on H2. Denote this con-
figuration by Ca.

Fig. 10. Parameter a gives the corresponding angle.

Now we apply, after a slight modification, the procedure which was used
for constructing the hyperbolic 3-manifold M in § 1 to the configuration Ca of
circles. Each triple of the configuration Ca has a hyperbolic triangle region
between them. Draw the union of all perpendicular circles £Pα for all triple
of the configuration Ca of circles. Now map all of the circles of Ca and £Pα

to St by the orthogonal projection pr. Let C'a and &'a be the images of Ca

and £Ba respectively, i.e., C'a=pr(Ca) and &'a=pr(&a).
Let Na be the space obtained by removing from Hi the regions interior
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to all hemispheres lying over all the circles of C'a and &'a. The 3-dimensional
space Na is an infinite-sided geodesic polyhedron. The boundary of Na consists
of two components d", 3f. One is H2(=daι). The other one Sf is made of in-

Fig. 11. This is a picture of d% orthogonally projected to St.

an edge of <9" lying between two adjacent 24-gons

the hypeφlane

the regular dodecagon

Fig. 12.



DEFORMATIONS OF A HYPERBOLIC 3-MANIFOLD 451

finitely many regular triangles with interior angles 2a and infinitely many
right-angled 24-gons (see Fig. 11). All edges of d% lying between the adjacent
24-gons have the same length. It can be seen that all such edges lie on hyper-
planes, each of which orthogonally intersects H2(aH3) along a geodesic in-
cluding a segment which is a part of the tessellation of H2 made of the regular
dodecagons (see Fig. 12). Also we can see that all such edges cut the triangles
on d% into three parts each of which is a triangle with interior angles a, a
and 2τr/3 (see Fig. 13).

the regular tπangle

with angle 2α

Fig. 13. A picture othogonally projected to St.

Let Na be the quotient space Na/Γ. Let dϊ=H2/Γ and da

2=da

2/Γ. Then
9JVα=3ίw9?. In the same way as we have obtained the picture of the boundary
component 92 of N in § 1, we have a picture of 9? as shown in Fig. 14. It can
be seen that 9? consists of two right-angled 24-gons and eight regular triangles
with angles 2a. Each dihedral angle between the triangle and the 24-gon is
π/2 and one between the 24-gon and another 24-gon is 2a.

Let La be the double of Na along the triangles on df. Two of boundary
components of La are hyperbolic 2-orbifolds bent along twenty-four geodesies
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, 17 2β 25 19 20 21

1 5 1 0 11 12 7
1 8 1 7

Fig. 14. Each piece is made of one right-angled 24-gon and twelve
triangles with interior angles a, a and 2ττ/3. All dihedral angles between
the triangles and the 24-gon are π/2. The boundary component 9? can be
obtained by identifying the numbered sides of the triangles so that the
numbers are matched.

with angle 2a. There are two other boundary components of dNa Each of
them is isomorphic to S.

Let Ma be the double of La along the hyperbolic 2-orbifolds. The boundary
dMa consists of disjoint four hyperbolic surfaces. Any of them is isomorphic
to S. Ma has twelve simple closed geodesies along each of which there are
cone type singularities with angle 4a:.

Now consider the case where a—0. If a goes to 0, the hyperbolic 3-orbifold
Ma converges to the hyperbolic 3-manifold M in Gromov's sense. Namely, we
can obtain Ma with the continuous deformation of the hyperbolic structure on
M at all torus cusps to make cone singularities of angle ia. This deformation
affects no boundary component of M, which is isomorphic to S. •

Finally, consider the case where a goes to π/6. If a goes to π/6, the
right-angled 24-gons on di converge to ideal dodecagons and the regular hyper-
bolic triangles with angles 2a shrink to points on the sphere at infinity Soo (see
Fig. 15). The shape of each triangle becomes closer to a Euclidean triangle.
The limit Euclidean triagle is a regular one with angles τr/3. Let us see the
phenomenon above on the hyperbolic 3-orbifold Ma. Then it can be seen that
in Ma there is a hyperbolic 2-orbifold with underlying surface S2 and three
cone points with the same angle 2a. Thus we obtain a family of the structures
of the hyperbolic 2-orbifolds parametrized by a, which begins with the com-
plete hyperbolic structures with cone angles zero and shrinks to points as a
goes to π/6. Thus Ma splits open into two parts at the limit Euclidean triangles
when a goes to π/6.
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Fig. 15.
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