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1. Introduction.

Let A=A(z) be a transcendental entire function and let w, w, be two
linearly independent entire solutions of the differential equation

(D w”+ Aw=0.

It is known that any non-zero solution of (1) is an entire function of infinite
order ([1]). Put
E=w,w,.

It then holds ([1], p. 354) that
(2) 4A=(E'/EY*—2E"/E—(c/E)?,

where ¢ is the Wronskian of w, and w,, which is a non-zero constant in this
case.

For an entire function f we denote the order of f by p(f), the lower order
of f by p(f) and the order of N(r, 1/f) by A(f).

S.B. Bank and I. Laine ([1], Theorem 2, (A)) proved from (2) that p(A)<
1/2 implies A(E)=+4oc. They also gave examples of (1) with two linearly in-
dependent entire solutions each having no zeros, in each case of which, p(A)
is either a positive integer or +co ([1], p. 356).

It is conjectured that if p(A) is finite and not a positive integer, then we
always have A(E)=+ (see [2], p. 164). In this direction J. Rossi ([12]) and
L.-C. Shen ([13]) proved some results which contains that p(A4)<1/2 implies
A(E)=+oco. Recently, C.-Z. Huang ([9]) proved the following result which
generalizes them.

THEOREM A. If p(A)<1, then either A(E)=+co or
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(AT HAE)TL2 (191, Theorem 1).

One of our main purpose of this paper is to give a result which contains
Theorem A. To prove it, we need a growth property of A(z) in the set

{z: [A(z)| >1}

and so we shall first give a result on the growth of entire functions along
asymptotic paths. We shall assume that the reader is familiar with the satndard
notation of the Nevanlinna theory of meromorphic functions ([5]).

2. Growth of entire functions along asymptotic paths.

A few years ago J. Rossi and A. Weitsman ([11]) proved the following.

THEOREM B. Let f(2) be a transcendental entire function. Suppose that for

some constant K the set
{z: | /(2| >K}

contains at least two components. Then there exists a path I' from 0 to oo such
that for zel’

(3) log| f(2)| >|z|ehizeh-bc@ ()< e(z)—0 as z—o0).

(We consider o(f)/(20(f)+k)=1/2 when p(f)=-+c and k is finite.)

Examples showing that Theorem B is sharp are given in [4]. Besides
this result we can find interesting results on the growth of entire and subhar-
monic functions along asymptotic paths ([3], [4], [10], [11], [14], [15] and
Chapter 8 in [8]).

The purpose of this section is to improve Theorem B and to give a sub-
harmonic analogue, which is an improvement of Theorem 1 in [4].

2-1. Lemmas.
We shall give some lemmas for later use. Let D be an unbounded regular
plane domain. We put

E(r)=1{0¢[0, 27): re*?eD}
and

+oo if {lzl=r}cD
(4) 0(r)={

the measure of F(r) otherwise.

It is clear that there is a positive number a such that 6(»)>0 for all »>a.

LEmMA 1. If

T dt

lignqinf (log r)“r:gu T(t):ﬂ

(1/2£pu< ),
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then there exists u>0 harmonic in D such that for all zeD
u(z)zlz|#*® (0<e(2)—0 as z—x)

([11], Lemma 1 and its correction).

LEMMA 2. Let g(z) be regular in D and continuous on the closure of D
such that
lg(z)| <1 (ze0D).

If there exists one point z, in D such that

lg(z0)] >1,
then

riz dt

log log M(r, g)gnga o oW

where M(r, g)=sup{l g(2)| : (|z|=r)ND} ([17], p. 117).

LEMMA 3. Let v(z) be a non-constant subharmonic function in |z| <.co. Then
there exists a path I' tending to co such that

w(z) —> F oo as z—> o0 on I’
({141, Theorem 1).
2-2. Theorem.

We shall give a result generalizing Theorem B.

THEOREM 1. Let f(z) be a transcendental entive function with u(f)<+oo.
Suppose that for some constant K the set

{z: 1 (2| >K}

contains at least N components D,, ---, Dy, where N=2. Then for each j (=1, -,
N) there exists a path I', tending to oo in D, such that on I,

(5) log| /()| > |2 #HICN It (0<e(2)0 as ze0).

Proof. 1t is clear that Dy, ---, Dy are mutually disjoint unbounded regular
domains in |z| <o and there exists an >0 such that for all »=a

{lzi=rtND,#¢ (=1, -+, N).
We here use 0,(r) for D, instead of 6(r) defined for D in (4). Then

8;(r)>0 (r=za)
and
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(6) %la,.(r)gzn.

From (6) we obtain the inequality

(7) ES 9,0 dt<2r log

=1

and by the Cauchy-Schwarz inequality we have

(® I 242 = = (s )

From (7) and (8) we have

y 1
(9) py <2.

{log (r/a)} Srtéig)

Applying Lemma 2 to f(z)/K in D, we obtain the following inequalities :

(10) log log M (27, f)gn:gr . HOW
from which we have

. Lt dt
11 lim inf (log 7) ﬂga—toj(t) <p(f)< +oo.

From (9) and (10) we have for each j (=1, -+, N)

N—1 1

flog (r/a)} " {log log M2r, /)+OM] =2

flog (r/a)} {117
and hence

N—1 1
o(f) +

lim inf (log r)*ﬂ’%
00 a 10

From (11) and (12) we have for each j (=1, ---, N)

e(f) 1
W-,\—]— _.Ilm lﬂf (log r)” ﬂg

Since o(f)/2p(f)+1—N)=1/2 in (13), there exists a positive harmonic function
u, in D, such that for all z=D,

(12) <2.

(13) su(f)<+oo.

6 (t) =

(14) uj(2)= | z| PP 1@eNF=N—e) ()< gy(2)—0 as z—o0)

by Lemma 1. We can find 2z, in D, for which
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[ fzpI >K
and choose a positive constant d so small that

log| f(z,)| >0u,(z;)+log K.
We then define

{ max {log (| f(2)|/K)—du(z), 0} (z=Djy)
Ugz)=

(z&Dj).

Since Uj;(z;)>0 and U;(z)=0 for z&D,, it is clear that U,z) is a non-constant
subharmonic function in |z|<o. Hence by Lemma 3 there exists a path I,
tending to oo such that

Uf(z) —> +o0 as z—> o on [,.
We may assume without loss of generality that
Ug(z2)>0 on T,
so that [, lies in D, and on [,
Uiz)=log| f(z)| —0u;(z)—log K>0.
Thus we have by (14)
log| f(2)| > |z| P @ehH+i=M=ein ()< gy (z)—0 as z—o0) on [,.

Remark 1. By a well-known Ahlfors’ theorem (see [6], p. 255), it is known
that N=1 when p(f)<1 and N =<2u(f) when 1< p(f)<+oo.
From (9) and (10) we obtain for r=a

N<2{loglog M (2r, /)+0O(1)}/log(r/a),
which reduces to N=<2u(f) when N=2.

Example 1. Let
f(@)=coshz¥?  (N=2,3, ).
Then,

N2 L N2
Mer, = TRCTERETID ooy pp— =Ny,

It is easily seen that for =0, 1, .-, N—1 and for 0<t<+ oo

! f(te(2k+1) rn[N)I él
and

log| f(te®* /N )| »>gNiz-eH)  (0<g(t)—0 as t—-o0).

Remark 2. This example shows that Theorem 1 is sharp.
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Example 2. Let f(z) be an entire function of finite lower order with N(=2)
distinct finite asymptotic values. Then, for a sufficiently large K the set

{z: 1 f/(@I>K}

has at least N components.
We can find a concrete example of f(z) with N distinct finite asymptotic
values in [8], p. 562.

2-3. Subharmonic analogue.
Let v(z) be a non-constant subharmonic function in |z| <oo. Put
B(r, v)= |S*Lprv(z),
p:lir;ljoup log B(r, v)/logr (the order of v),

p=lim inf log B (r, v)/logr (the lower order of v).

It is said that v(z) has at least N tracts in |z|< oo if and only if
{z: v(2)>K}

has at least N components for all sufficiently large K, where N is a positive
integer ([7], [8]). When N =2, the following result is given ([8], p. 593).

THEOREM C. Suppose that v(z) has at least N(=2) tracts in the finite plane.
Then there exist sectionally polygonal paths 7., -+, Tn from 0 to oo such that

D rinre=10, o}  (G#k),

2) 1, and 7,., bound a domain D, and D;N\7y=6¢ (¥n1=T1),

3) w(z) is bounded on the 7, and not bounded above in the D,.

Put
By(r, v)=sup{v(2): (|z|=r)N\D;}.

By 3) in Theorem C, there exists z;<D, for each j such that

Z)(Zj)>0
and for all sufficiently large »
By(r, v)>0.

Further there exists a positive number M such that

Vz)=v(z)—M
is negative on 7,\U--U7y.
riz  dt
LEMMA 4. log B(r, v)gﬂ:gl T oW
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where we use 0,(r) for D, instead of O(r) defined for D in (4).

We can prove this lemma by applying Theorem 8.3 ([8], p. 548) to V,,)=
max{V,, 0} if z&D,, =0 otherwise.

THEOREM 2. Suppose that v(z) has at least N(=2) tracts in the finite plane
and p<-+oo. Then there exists a path I', tending to oo in D, such that

v(z)> | z| PIRoHI-N)—ejc2) (0=¢;(z)—0 as z—0)
on I';(j=1, -+, N).
We can prove this theorem as in the case of Theorem 1 using Lemma 4
instead of Lemma 2. We note that N <2y as in Remark 1.
3. Application to the oscillation theory of w”+ Aw=0.

We shall first give some lemmas for later use. We use the same notation
as in the section 1.

LEMMA 5. If p(E)<+oo, for a given €>0 there exists a positive number
d=d(e) such that

|(E’/EY¥(re'®)—2E"/E)re'®)| <r*

for all r=r,>1 and all O& J(r), where the angular measure of J(r), m(J(r))<erm
([12], Lemma 1).

LEMMA 6. If AE)<p(E), then
wE)=p(E)=pu(A)=p(A)
and these numbers are equal to an integer or +oo.
Proof. From (2) we easily have
15) 2T(r, E)=2N(r, 1/E)+T(@r, A)+S(r, E).

Set
E(z)=1I(z)e"®

where II(z) is the Weierstrass product of the zeros of E and P(z) is an entire
function. Then, it is known that o(JI)=A(E) (see [5]).

a) The case p(E)=+oo. In this case, P(z) is transcendental and it is
easy to see that u(E)=-+oco. Let @ be any number such that A(E)<a<4co.
Then from (15) we have

(16) 2T o(r, E)=2Na(r, 1/ E)+T or, A)+Su(r, E),

where



THE GROWTH OF ENTIRE FUNCTIONS ON ASYMPTOTIC PATHS 435

T (7, E):S: It(éafldt is of lower order -+co,
No(7, I/E):,(::wldt is bounded,
Tutr, 9= TEA di<10r, Aa
and
sar, B=[" 20 B di=oar, B) o)
(see [16], Proposition 1 and Lemma 1), so that
too=liminf 08 Te B) _pp g lo8 Talr, 4) #(A).
T logr roo 1

We have p(A)=p(A)=-co.
b) The case p(E)<+oo. In this case, P(z) must be a polynomial and it
is easy to see that

17 H(E)=p(E)=the degree of P(z)
since A(E)< p(£). From (15) and (17) we have
p(A)y=p(A)=pu(L)=p(E)=an integer.

THEOREM 3. Suppose that p(A)< +oo and for a positive constant K not
smaller than 1/2 the set

{z: |A(2)] >K}
has at least N components. Then, either p(E)=-oco or

N 1
o) =2

Proof. Suppose that p(E)< +co. Let D, be a component of the set
{z: |E@@)|>1cl},

which is a non-empty unbounded set since E is transcendental by (2).

The set {z: | A(z)| >K} has at least N components, and since A(z) is
transcendental and Theorem 1 holds for N =2, for any positive integer p and
for K;=max{K, M, A)} the set

{z: log| A(z)| — p log|z| —log K, >0}

has at least N unbounded components. Let D, ---, Dy be those N unbounded
components. For =0, 1, ---, N, put
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Er=1{0<[0, 27): ret’ =Dy}

and
+oo if {|z|=r}cD,
0;’(7)‘—‘{

the measure of E;(r) otherwise.

Then there is a positive number a such that 8;(»)>0 for all r=a and for all
7. By Lemma 2 we have

18 loglog M(r, By=x|""—2L_ 1 oa
(18) og log M (7, )==”Sa ?53??4' @
and
iz dt
(19) log {log M (r, A)—plogr—logxl};ng 2o
« 10,0)
for j=1, ---, N.

For any fixed positive number e<1, let p be a positive integer such that
p>d, where d is the constant given in Lemma 5. We define for j=0, 1, ---, N

2r if 0,()=4o0
lj(t)={ .
0,(t) otherwise.

Then applying Lemma 5 to (2) we obtain the inequality

N
(20) Eol;(t)§(2+6)7f
for all »=b=max(a, r,) from which we have
N cr
(21) S (749 gr< 2+ em tog (/).
7=0Jb t
By the Cauchy-Schwarz inequality
16 (7 dt T diNe 7\
(22) Sb t dtSb (1) ;(Sb T) —(log b) ’
From (21) and (22) we obtain the inequality
23) 3, log@/b) o, .
7=0 ”Sr dt
b tl](t)
Define

By={r: 0,(r)=+oo} .
Then, B, is a sum of intervals. Let
1 if » belongs to B,
Xo(r)=

0 otherwise.
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If » belongs to B, and »=b, we have

0,r)=l;r)  for j=I1,, N
and
0.(r)+ - +O0nx(r<ex

from (20). Thus, if we set

Fy=Ar; 0,(r)<en},

then
N

24) BoC]\;)l F,.
Define

1 if » belongs to F,

¢i(r)= ]

0 otherwise

and put

M(r)=logM(r, A)—plogr—log K,
We then have from (24)

(25) S:@dtg Jé S:il%@dtg/ve log M(2r)+0(1)

since &7 '¢;()<m/0,(t) and so

7 i rodt
1
¢ Sb——t dt§7ng 0.y =108 M@n)+0()
by (19).
(i) The case N=2. In this case it is clear that for j=1, ---, N
0<8n<2r and 0,r=i(r) (r=b).
Since
rodt _(rodt 107 A
(26) ”S» 16,00 _”Sb 0@ 2 Sb ;4

from (18), (19), (23) and (25) we obtain for r=b

Nlog(r/b) log (r/b)

@7) log M (2r)4+0(1) + log log M (2r, E)+(Ne/2)log M (2r)+0(1

) <2+e.

Let {r,} be a sequence tending to +co such that

. loglogM(2r,, A)
lim log 27, =uA).

Put r=r, in (27) and let n tend to +o. We then obtain
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N 1
WA T B T Nep( Az =2

Tending e—0, we have

28) N 1

4 <
wA) (B =
(ii) The case N=1. Let

2.

Bi={r: 0,(r)=+c}.
Then, B, is a sum of intervals. Define
1 if » belongs to B,
Xy(r)= .
0 otherwise.
If » belongs to B, and r=b, we have

Oy(r)<en
by (20). Put
Fo={r: 0(r)<Zen}
and

1 if » belongs to F,
¢'o(7’):

0 otherwise.
We then have

(29) Sb x‘t(t) dt§gbr ‘/";(t) di<e log log M (2r, E)+0(1)

since B,CF,, e '¢y(1)<m/8,(t) and so

-1 T ¢0(t)
¢ Sb“t di<

v dt ]
=,,Sb S0} <loglog M (2r, E)+0(1)

by (18). Since

Sr dt Sr dt lgr X,

N T0.0 T mm 2 ¢ b

from (18), (19), (23) and (25) for N=1, (26) and (29), we have

log (r/b)
log M (2r)+¢loglog M (27, E)+0(1)

log (7/b)
log log M (2r, E)+(e/2) log M (2r)+0(1) =2+e.

(30)

+

Then as in the case of N =2 where we obtained (28) from (27), we obtain
the inequality
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1 1
wA e =

from (30).

CORLLARY. Under the same assumption as in Theorem 3,

1) If p(A)<p(A)=+oc, then A(E)=+oo.

2) When p(A)<+oo, if u(A)<p(A) or of A sof regular growth and p(A)
is not equal to an integer, then either A(E)=+ o or

31) o+ s
) If p(A)<1/2 or of p(A)=N/2 in case of N =2, then
AE)y=+4.
Proof. 1) We easily have
p(A)=p(E)

from (15) and since p(A)<p(A4)=+oc0 we have

AE)=p(E)=+c0
by Lemma 6.
2) In this case, we have

XE)=p(E)

by Lemma 6. We obtain (31) from Theorem 3.
3) Noting the fact that

“N=1if p(A)<l and N <2u(A) if 1< p(A)< +oo”

(see Remark 1), we easily obtain A(E)=+c when p(A)<1/2 or p(1)=N/2 mn
case N is odd from 2) of this corollary.

When N is even and positive, u(4)=N/2 implies p(E)=+o by Theorem
3. If A(E)< +co, then p(4)=p(E)=+c by Lemma 6. This is a contradiction.
A(E) must be equal to + oo.

Remark 3. The functions of Examples 1 and 2 in the section 2 satisfy the
conditions of Theorem 3 for N =2.
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