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ON THE ZEROS OF A HOMOGENEOUS

DIFFERENTIAL POLYNOMIAL

BY KAZUYA TOHGE

1. Introduction

Concerning a question of W. K. Hayman [2] (see also [3 : Problem 1.18],
[4]) E. Mues [5] discussed entire functions g in which the homogeneous dif-
ferential polynomial gΛ'g—ag'2 has no zeros. He proved that

g(z)=exp(az+β), a(Φθ), βcΞC

are the only transcendental entire functions with this property if aΦl. Giving
the following two counter-examples he also showed that the case where a — \
is indeed exceptional:

(a) g(z)=smz

and

(b) £(*)

provided that h(z) is an arbitrary entire function and Q(z) is an entire function
defined by

Q(z)=\' \l {h"(t)+exp(2h(t))}dtdζ.

In this paper we discuss the corresponding results to meromorphic functions
g when there somewhat exist both the poles of g and the zeros of the homo-
geneous differential polynomial g"g—agf<L. By a meromorphic function we mean
a function meromorphic in the complex plane C. We follow the notation and
terminology of [2] and [4]. We shall explain the special symbols whenever
we introduce them. In particular, if / is a meromorphic function, we shall
denote by S(r, f) any quantity

(1.0) S(r, f)=o{T(r, f)}

as r-»oo, possibly outside a set of r of finite linear measure. For the sake of
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ZEROS OF A HOMOGENEOUS DIFFERENTIAL POLYNOMIAL 399

simplicity we describe this matter as (1.0) holds as r-+oo, n.e.. For any com-
plex number a we denote by Wa(z) the homogeneous differential polynomial
g"(z)g{z)—ag'{zY in a given meromorphic function g{z).

For our purpose a basic role will be played by the following result of [6] :

THEOREM A. Let g(z) be a non-constant meromorphic function and define
Wa(z) by

(1.1) Wa(z)=g''(z)g(z)-ag'{z)2

for a^C. If Wa(z) does not vanish identially, then the inequality

(1.2)

+ Ca{N(r, 0, Wa)+N(r, g)}+Ua(r)

holds as r—>°o, except for two cases (i) and (ii) below. Here the constants Aa, Ba

and Ca depend only on the number a and satisfy

4 if aΦί, 1/2,

2 ,/ α = l,

1 if a = 1/2,

5 if aΦl, 1/2, 0,
2 if α = l,
4 if fl = l/2,
1 if α=0,

and also Ua(r) is a real-valued function on [0, oo) such that if we fix the number
α, then it satisfies

0 [log+r(r, ^ r,O,W.)+ΛΓ(r,£)}+togr],

»/ α -itl/2, 0,

»/ α=0,

as r—>oo

( i )

.0(1), i / o = l / 2

T/ie exceptions are:

(ii) when
α = l/2, ^ ) = ^ 2 + i 8 z + ? , ^/z^g a, β, γ^C and β2-4aγ-±0;
a = l, g(z)—CιeλιZJrC2e

X2*, where λu λ2t Clf C2^C and λιφλ2 and

As an auxiliary lemma we shall make use of a corollary of Theorem A

only once.

COROLLARY A. Besides the hypotheses of Theorem A, we assume that g(z)

is an entire function and that

m(r, Wa)=o{m(r, g)\
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as r—>oo, n.e.. Then Wa{z) must be a constant (Φΰ) and g(z) is at least one of
the following:

( i ) when a = l/2, g(z)=az2+βz+γ, where a, β, γiΞC with βz-4aγφ0;
(ii) when α = l, g(z)=C1e

λ'+C2e'it, where λ, Cu C 2 < Ξ C - { 0 } ; and
(iii) when aΦO, 1/2, g(z)=az+β, where a(Φθ), β^C.

First of all we shall separate the sections according to whether α = l or
not. In each section we consider some applications of this theorem. In the
next two sections we shall reform Theorem A for ai^l (Theorem 1) and im-
prove a result due to Mues (Corollary 1). Section 4 is devoted to a comparison
between the cases aψl and a —I (Theorem 2 and Corollary 2).

2. Preparation

We shall need to quote a lemma of Mues [5], which we reform as follows.

LEMMA. Suppose that f(z) is a non-constant meromorphic function such that
f(z)+bz does not vanish identically for a non-zero constant b. Then

(2.1) m(r, f{2)+b2)^{ΰ(r> j)+^r, f))+S{r9

as r^ςχ>t where N2{r, f) denotes the counting function with respect to the multiple
poles of f(z), each pole being counted only once.

In particular, S(r, /)=0{log+T(r, /)+logr} as r->oof n.e. if f(z) is trans-
cendental, and S(r, f)=o(l) as r-^oo // f(z) is rational.

Proof. Inequality (2.1) evidently holds if f{z) is a polynomial and not of
—bz. In fact then we obtain

as r—>°o. Suppose that f(z) is not a polynomial. By the same reason as the
above we need not consider the case

(2.2) ^

where z0, Cu C2<ΞC and d ^ O . By N0(r, 1//") we denote the counting function
with respect to the only distinct zeros of f"(z) not corresponding to zeros of
f'(z). Then the inequality

(2.3) N(r, f)^No(r, jf)+N{r, j;)+2N2(r, f)+S(r,

holds as r->«>. In fact, suppose that f{z) has at least a simple pole since
there is nothing to prove otherwise. As mentioned in [5] the function
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f'{z)f'"(z) 33 / f\z)\ 1
2 V f*(z)) 2f»{zf 2 V /"(*)

has at least a double zero at every simple pole of f(z) if it does not vanish
identically; otherwise, we deduce (2.2) excluded above, which satisfies (2.1) but
indeed fails to satisfy (2.3). Thus F{z):~ —ff(z)/f"(z) is now not a constant
and F'{z) is not constantly equal to 1/2. Moreover,

2{N(r, f)-N2(r, /)} g#(r,-ί F')

<N(r, F)+T(r, F)+m(r,
y

as r-*oo. Clearly all the poles of F(z) can occur at and only at the zeros of
f"(z) other than zeros of /'(*). Thus

Since F(z) has a necessarily simple zero when and only when either f'(z) has
a zero or f(z) has a pole,

N(r,±)=N(r,j;)+N(r,f).

Using F'/F=f/f'-f"/f we obtain m(r, F'/F)=S(r, /). Similarly m(r, 1/F)
=S(r, / ) . Therefore as r tends to infinity,

2{N(r, /)-/7,(r, f))<N(r, F)+m(r,j)+N(r,j)+m(r,y-)+Oa)

, f)+O{\),

from which (2.3) immediately follows.
Next, following Mues [5] and noting bφO we make use of Nevanlinna's

fundamental inequality

m (

as r—>oo, where S(r, f) is such a quantity as mentioned in the second part of
this Lemma (cf. Hayman [2: §2.1.1]). Thus
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=T(r, f")-N{r,j7)-m{r,γ)+S{r,

£N(r, f)+T(r, f')-N(r,~)-m(r,γ)+S{r,

=N(r, f)+m(r, γ)+N(r, γ)-N{r, ψ)-m(r, j -

+S(r, /)+O(l)

=N(r,γ)-N(r,~)+N{r, f)+S(r,γ)N(r,

as r->oo. This together with (2.3) gives further

(2 4) m (r 7ωW)^ v ( r ' ? M r τ)+N<r< jϊ)+N(r> γ)
r, f)+S(r,

ίv(r, γ)+N,(r, f)}-N(r)+S(r,

as r-»oo, where

N(r) := N(r, ~)^{r, I)-iV 0(r, ^ ) - t f ( r f

Let zo be a zero of /^(z) and mo(^l) its multiplicity. If //(z0)=0, /'(-ε) has
the point z0 as a zero of multiplicity rao+l. Then the contribution of z0 to
the function N(r) is of

mo + l-O-(m o +l)=O.
If otherwise, it is of

Let zι be a zero of f'(z) and m^^l) its multiplicity. If m^2, then
and zx is counted in N(r)

times. Also if mι=l, f"(zλ)ψ{) and the counting number is

0 + 1 - 0 - 1 = 0 .

Therefore the zeros of f'(z) contribute nothing toward N(r) and
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where in JV0(r, I//") only the zeros of f*(z) which are not of f'{z) are to be
considered together with their multiplicities. Hence the estimate (2.4) gives
(2.1) as desired. The second part is also verified by virtue of the Lemma on
logarithmic derivatives. We have thus proved lemma.

By using this result we can estimate m(r, grIg) and consequently
m(r,Wa''/Wa) in terms of N(r, 0, Wa) and N(r, g). Mues [5] applied his lemma
to the constant b—α — l and the function

It is possible in our discussion as well. In fact, both f'(z)=Wα(z)/g'(z)2 and
f(z)+bz=—g(z)/g'(z) do not vanish identically under the hypotheses of Theo-
rem A. Thus Inequality (2.1) holds. Every zero of f'(z) can occur possibly at
either a zero of Wα(z) or a pole of g(z), while a multiple pole of f(z) occurs
at a zero of g'(z). We shall investigate these points more carefully.

(a) With respect to α zero zQ of Wα{z): In order that f\z)=Wa(z)/g'(z)*-=
{g"(z)g(z)—ag'(z)2} I'g'(zf assumes the value 0 at z—zQy it needs that either
g'(zo)φQ, or g'(z) has a zero with multiplicity n(2^1) and Wa(z) also has a zero
with multiplicity at least 2rc + l there. The latter situation occurs only if g(z0)
—0. Thus for z near z0,

and

Putting m = n + l (^2), which is the multiplicity of the zero of g(z) at
Z—ZQ, we see that

as z—>zQ and that Wa{z) has a zero with multiplicity ^2n-\-l=2m—1 only if
a—{m—l)/ra and thus m = — l/(α —1).

(b) With respect to a pole zx of g{z): Let m(^l) be its multiplicity and
expand g{z) in a neighborhood of z—zι as follows;

\Z

Thus
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and therefore

as z-tZi. Hence f'(zι) is different from zero, unless a=(m+l)/m and thus ra=

(c) Ŵ "f/i respect to a zero z2 of gf(z): At this point f(z) can have a
multiple pole only if g(z2)ψQ and further g'(z) has a multiple zero at z—z2. It
is easy to see that Wa(z) assumes the value 0 at such a point z2.

Summarizing (a), (b), and (c) we get the following inequality:

N(r,γ)+N2{r, f)^N(r, 0, Wa)+Nιna^(r9 g),

where Nu(a-i)(r, g) denotes the counting function with respect to the distinct
poles having multiplicity l/(α —1) if it is a positive integer, while define iVi/u-n
(r, #)=() otherwise. Thus (2.1) together with this estimate gives

(2.5) m{r, J)rg2{JV(r, 0, Wa)+Nina-»ir, gft +S(r,

as r->oo. If gfIg is a transcendental function,

S(r, /)-O{log+T(r,

as r->oo, n. e., and if otherwise, S(r, /)=o(l) as r->oo as stated in Lemma.
Next we are concerned with ra(r, WV'/W'α). By Wr

α = / / (^/)2,

and thus

ml r, —— )<£, m\r, —p-)+ mlr, —-

If g'/g is transcendental,
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*T{r, f')+logr)

=0 {log+T(r, /Hlogr}

and

g'/g g

=m (r, ̂ )+O {log+τ(r, ^

as r->°°, n. e.. Then we obtain

(2.6) m(r, ̂ f-)^m(r, ^ ) + O {log+τ(r, ^

as r->oo, n. e., which is clearly valid even if g'/g is a rational function.
We are now ready to discuss the case aΦl.

3. Results for the case a T 1

Combining Theorem A with the observation in the previous section we
shall prove the following:

THEOREM 1. Let g{z) be a non-constant meromorphic function. Suppose that
the homogeneous differential polynomial Wa(z) defined by (1.1) does not vanish
identically for aesC— {1}. Then

(3.1) T(rX)£aaN(r, 0, Wa)+βaN(r, g)+V\{r)

as r—>co, where aa and βa are constants depending only on a and satisfying

(3.2) 0<aa<

22

(«4>
23 la =

m+1
for a positive integer m\

5 (otherwise),

and Va(r) ts a real-valued function defined on [0, oo) such that for any fixed a,

Va(r)=θ{log+τ(rX)+log+N(r, 0, Wa)
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a s r—>oo, n. e..

Proof. Firstly g(z) given in (i) of Theorem A clearly satisfies (3.1) by
virtue of the definition of Va(r). We may thus suppose that the inequality (1.2)
is given in the present case. Using (2.5) and (2.6) we obtain

r, 0, Wa)+NιUa_u{r, g)\

+ Ca{N(r, 0, Wa)+N{r, g)} +Ua(r)+θ\\og+τ(r, |

as r->oo, n. e.. By (2.6) and the trivial inequality T(r, g'/g)^N(r, g)

Ua(r)=θ\\og+τ(rX)+log+N(r, 0, ^ α

as r—>oo, n. e.. Thus

N(r, 0, Wa)+CaN{r, g)

β)tfi/£α-i>(r, g)+Va(r)

as r->oo, n. e., provided that Va(r) is such a function as claimed in this theorem,
If l/(α —1) is a positive integer, we set

and if otherwise, we set 0^βa : = Cα. Further we set 0^aa : = 2^ α

in each care of the value α. Then (3.2) immediately follows under the defini-
tion of the numbers Λa, Ba and Ca. This completes the proof of Theorem 1.

Remark. There is an analogy between Inequality (3.1) and the following:

(3.3) T(r, ^)<3{N(r, g)+N(r, 0, g)}

+4{JV(r, 0,

This is a consequence of Hayman's inequality (see [2: pp. 60-62])

T(r, f)£(2+j)N(r, 0,

with cv̂ O, which we apply with f(z):= g{z)/g'(z), c=l — a and 1=1, and use
the following estimate established above:

We may regard (3.1) as an improvement of (3.3) in view of suppressing the use
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of N{r, 0, g).

As an immediate consequence of this theorem we have

COROLLARY 1. Under the hypotheses of Theorem 1 suppose that there ts a
constant γa, 0^^ α <l/23 such that

(3.4) N{r, 0, Wa)+N(r, g)<7aτ(r, —)+s(r, - ) +O(log r)

holds as r—>co. Then

(3.5) g(z)=R(z)ePW ,

where R{z) is a rational function, ^ 0 , and P{z) is a polynomial with P(0)=0.
In particular, if

N(r, 0,Wa)+N(r, g)=s(rX),

then g(z) is at least one of the following:
( i ) when α = l/2, g(z)=az2+βz+γ with 4aγ-~β2^0 and a
(ii) when a —I, g(z)=az+β with a^O;
(iii) g(z)—βeaz with a-βφθ, for any a different from 1,

where a, β, y=C.

Proof. Inequality (3.1) together with (3.4) leads us to

(l-23ra)T(r, -)=s(r, ^ ) + O(log r)
\ gJ \ gί

as r~>oo, n. e.. Since 1—23?-α>0, it follows that

as r->oo, n. e., so that g/(z)/g(z) must be a rational function. This proves the
first part of this corollary.

Also in the second part g'(z)/g(z) is rational and thus

as r->oo, n. e.. Then we deduce that Wa(z) has no zero and R(z) is a polynomial
in (3.5). Following Mues [5: §5, p. 340] we can arrive at the conclusion.
Another way of verification is the following: Let us write Wa{z)—t
with a polynomial Q. Then by

Wa(z)__/g'(z)y .
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we obtain

It immediately follows that Q(z)—2P(z) is a constant. If #(2) is also a con-
stant, P(z) must be a linear polynomial in order that both sides of this equa-
tion may be reduced to a constant. This gives g(z) as in (iii) above. Also if
R(z) is a polynomial and not constant, P'(Z)ΞΞQ since the right-hand side of
this equation tends to 0 as z->o°. Then g{z)—R{z) and Wa(z) is a constant, so
that

m(r, Wa)=o{m(r, g)\

as r—>oo. By virtue of Corollary A we can show that then only (i) and (ii)
occur. We have thus proved Corollary 1.

Remarks Γ . When we suppose

N(r, 0, Wa)+N(r, g)=0

in this corollary, we have the result of Mues [5].
2°. When α=0, W0(z)=g"(z)g(z). In this case Inequality (3.3) gives a

better estimate than (3.1), since it now needs to consider the zeros of g. In
any case but a=l the similar result can be proved by using (3.3) if we include
N(r, 0, g) in the hypotheses. In particular, if

r, 0, g)+N(r, 0, Wa)+N(r, g)= s(r, ^ ) ,

then only (iii) occurs. Frank and Hennekemper [1] proved that this remains
valid if Wa(z) is some homogeneous differential polynomial of higher order,
which is defined by means of a Wronskian as well.

4. Results for the case a—\

It is the reason why our consideration in this section completely differs
from that in the previous two that the lemma proved in § 2 does not hold here
any longer.

Example 1. Consider the function

f(z)=-exp{-H(z)\,

where H(z) is a non-constant entire function. Then N2(r, / ) = 0 and

r, -—j=N(r, 0, H')^Lm(r, I

r, eH)+\ogr]
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as r->oo} n. e., while

logr—o{m(r, eH)}—o\m[r, -A\

as r->oo. Thus f(z) is a counter-example to the lemma for b—0.
We further set

and obtain

g(z)=C exp{jV(ζ)</ζ}, CGC-{0} .

This is an entire function having no zero and

It is easily shown that g(z) is a counter-example to Theorem 1 for a —I. If
we define H(z) by

for any entire function h, then

( J ^ ) } C 0 GC-(0},

which is a function with g{z)ΦQ, oo and W^Φ^O and thus a counter-example
to Corollary 1.

What can we show about g{z) by use of WΊ(z)? At first, Theorem A with
a — \ states that excepting (ii) we have

(4.1) T(r, ^-)<2\rn(r, ̂ -)+m(r, ^f)}+5{iV(r, 0, WJ+Nir, g)}

?+{N(r, 0,

as r—>co, n. e.. Because of

we obtain
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=m(r, ^-)

as r—>oo, n. e.. Inequality (4.1) together with this yields

(4.2) τ(r, ^-)fS5ίiV(r, 0, Wι)+N(r, g)} +4m(r, - J )

g + τ(r, ^-)+\og+{N(r, 0, Wι)+R(r,

as r->oo, n. e.. It is well-known that

= N ( r t 0, g)+N(r,

as r—>oo, n. e.. Thus this together with (4.2) proves the following

THEOREM 2. Let g{z) be a non-constant meromorphic function. Suppose
that the homogeneous differential polynomial Wι(z)—g^(z)g{z)—g/{zf does not
vanish identically. Then

(4.3) T(r, -gj-)^5{N(r} 0, W1)+R(r$ g)\

+O[log+Γ(r, £)+log+{^(r, 0,

as ^—^oo^ n.e.y unless g(z) is of the following:
( i ) g(z)=Cιβ^' + Cte

λ^9

where λlf C»GC(i = l, 2) and λιΦλ2, C^C2φQ.

If g(z) is of finite order in this theorem, we have a result analogous to
Corollary 1.

COROLLARY 2. Under the hypotheses of Theorem 2 suppose that g(z) has
finite order and satisfies

(4.4) JV(r, 0, Wx

as r->oo, /#r α constant γu 0 ^ T Ί < 1 / 5 . Then
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(4.5) g(z)=R(z)ep^,

where R(z) is a rational function, ^ 0 , and P(z) is a polynomial with P(0)=0,
except for ( i ) in Theorem 2.

In particular, if

8

then g(z) is at least one among ( i ) above and the following:
(ii) g(z)=(C2z+Cί)eλz, where Cu C2(Φθ), λ^C
(iii) g(z)=Cexp(az2+βz), where C(ΦO), a(Φθ),

Remark. The conclusion above also holds without the assumption that g(z)
should be of finite order, if we suppose

(4.6) N(r, 0, WJ+FJir, g)+~m(rf lL^γιτ(r, —

instead of (4.4). As mentioned below, there is no difference in the procedue
of their proofs but in this case we shall use (4.2) instead of (4.3).

Proof of Corollary 2. Suppose that a function g(z) is different from the
one given by ( i ) in Theorem 2. By (4.3) and (4.4) we obtain

(l-5ri)T(r,

as r—>CXD, n. e.. Since g(z) is of finite order, the right-hand side of this ine-
quality is reduced to S(r, g'/g)+O(logr) (, which is also deduced from (4.2)
and (4.6)). Because of 1—5^!>0, it thus follows

as r->oo, n. e., which shows that g'/g is a rational function and g has the
form (4.5). This proves the first part of the corollary.

In the second part we now see that g{z) is an entire function and Wx(z)
has no zero. Therefore R(z) is a polynomial in (4.5). In order that

is different from zero, the polynomial {(R'/R)'-\-P''}R2=R»R-Rf2+P»R2 must
be reduced to a non-zero constant d , say. If R(z) is not a constant, then
Pff(z)=0 follows by considering the behavior of

C,

at infinity. Moreover R(z) must be a linear polynomial but a constant. Then
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(ii) occurs. Also if R(z)=C(Φθ), then

P"(z)=^=2a, say, G C - ( 0 ( ,

and thus P{z)—az2-{-βz, β^C because of P(0)=0. This is g{z) as mentioned
in (iii). Since

g(z)=C1e
λ^+C2e

λ^f λt, C4e=C

is an entire function of order 1 if λχφλ2 and CrC2Φθ, and W1(z)=CίC2(λ1 —
X2)*eai+λ*)e, this is the last one of the functions as claimed in the second part
of this corollary. We have thus completed the proof.

Remark. We shall mention the counter-examples (a) and (b) in § 1 given
by Mues [5]. The function (a), g(z)=s\nz, is obtained by setting Ci=-τrC2=
1/(2/) and λι=—λ2=i in ( i ) above. When g(z) is an entire function and WΊ(z)
has never a zero, there is an entire function Q(z) such that

Further if g(z) as well as Wx(z) has no zero, then we may denote it by

£(*)=exp {<?(*)-λ(2)}

for an entire function h{z). It follows

The function (b) is thus obtained. This function has finite order only if h{z)
is a constant, so that Q(z) is a polynomial of degree 2. Then it gives (iii) of
Corollary 2.

The function g{z) in Example 1 as well as (b) has the property that g(z)ΦQ,
oo and Wι(z)Φθ. This g{z) however has infinite order and satisfies T(r, g'/g)
—m{r, g'7g). Hence a constant γί in (4.6) cannot be replaced by a number not
smaller than 4/5.

We can also give an example of entire functions g(z) such that it has an
infinite number of the zeros, while Wx(z) has never a zero (which has of course
infinite order):

Example 2. Define an entire function h(z) by the equation

(4.7) A . W = _ _ J L _ .

In fact, it is easy to show that all the zeros of cos2z are cancelled by those
of exp(τr/siii2)+l. Set

Then
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= exp {2 h(z)+πi sin z}.

Evidently g(z) has infinitely many zeros but

N(r, 0, g)=N(r, 0, cosz)=O {Iog+T(r, eh)} =O{log+T(r, g)\

as r—>°o, n. e., while WΊ(z) has the value 0 as an exceptional value. The order
(as well as the hyper-order) of g(z) is infinite, since so is that of h(z). By

(4.8) * 2 τ = A , W _ J E *
g{z) COS0

and

we see that for r—>°°, n. e.,

r, (-^-Y)<£T(r, —)+Λf(V, — )+0 |log+ τ(V, -^Λ+logr

£"' \ ί + / ί

and thus

Tfr, -^-)^τfr, f—YVτ(r, cos 2) - 0 jlog+ T(V, — Ί
\ 2 " / \ V P" / / I ^ g '

r, e^^O-STCr, cosz)-θ|log+r(^r, — )-flogr|.

It is well-known that

":« T(r, sin 2) ' '

(See for example, Hayman [2: p. 54, §2.9, Excercise (ii)].) Since cosz—(sinz)',

T(r, cosz)<(l+o(l))T(r, sinz)

as r-^00. Also Iogr=o{log+T(r, g'/g)} as r->oo. Thus

, ~g—)^T(r, eπιSinz)-3(l+o(l))T(r, sinz)g /

r, e

π ι S i n z )

as r—>oo, n. e.. This shows

N(r, 0, g)—N{r} 0, cosz)^ra(r, cosz) (since cosO=l)
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—m(r. —r 7-τ-z—
πi

=O{[og+T(r,

= 0{l0g+T(r,f)}

as r-*oo, n. e.. Although this function g(z) satisfies

N(r, 0, g)+N(r, 0, W1)+N(rf g)=θ\\og+τ(r, -£-)},

(particularly, N(r, 0, WΊ)+Λf(r, £)ΞΞO, ) the logarithmic derivative g'(z)/g(z) is
a transcendental function. This is another example which shows us the failure
of Corollary 2 without the assumption of g{z) to be of finite order. Further it
immediately follows

as r->°°, n. e.. Therefore this g{z) shows again that we cannot replace a con-
stant 7*1 in (4.6) by any number not smaller than 4/5.

There is an example of meromorphic functions g(z) such that g{z) as well
as WΊ(z) has never a zero but it has an infinite number of poles and finite order.

Example 3. Consider the function

1

COS 2

then

This is such a function as mentioned above. Another example is given by
choosing h(z) as an entire function obtained in ( i ) of Theorem 2 and setting

1

with a positive integer m. More generally, the only matter required of h{z)
is that it should be an entire function of finite order and having infinite many
zeros but the meromorphic function
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( 4 9 ) h\z)Kz)-ah\zf

has never a zero with a = l.

Remark. As far as the author knows it is however an open question
whether there exists an entire function h(z) other than those in ( i) of Theorem
2 such that it has infinitely many zeros but the function (4.9) has no zero or
not. This question makes us return to Hayman's original one in [2: §3.6] of
meromorphic functions f(z) such that f(z)f{z)Φ§, for setting f(z)=l/h(z) we
have

h'\z)h{z)-2h'(zT
1 [Z)- h{zf

and therefore we are led to the similar question to the above. As mentioned
in [2: Appendix] this solved by Mues when f(z) and thus h(z) are of finite
order.

REFERENCES

[ 1 ] G. FRANK AND W. HENNEKEMPER, Einige Ergebnisse iiber die Werteverteilung
meromorpher Funktionen und ihrer Ableitungen, Resultate der Mathematik, 4
(1981), 39-54.

[ 2 ] W. K. HAYMAN, Meromorphic functions, Oxford University Press, 1964.
[ 3 ] W. K. HAYMAN, Research problems in function theory, University of London,

The Athlone Press, 1967.
[ 4 ] W. K. HAYMAN, Picard values of meromorphic functions and their derivatives,

Ann. of Math., 70 (1959), 9-42.
[ 5 ] E. MUES, Uber die Nullstellen homogener Differentialpolynome, manuscripta

math., 23 (1978), 325-341.
Γ 6 ] K. TOHGE, The logarithmic derivative and a homogeneous differential polynomial

of a meromorphic function, preprint.

DEPARTMENT OF MATHEMATICS

SCIENCE UNIVERSITY OF TOKYO

NODA, CHIBA, JAPAN




