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§ 1. Introduction.

The Gauss map of complete minimal surfaces in Rm have many properties
which have analogies to value-distribution-theoretic properties of holomorphic
curves in the complex projective space. The author gave some of them in his
papers [5]~[8]. Moreover, in [9] he obtained the following analogy of Nevan-
linna's unicity theorem ([11]):

T H E O R E M . Let M and M be two nonflat minimal surfaces immersed in R3

and let G : M-^S2 and G : M-+S2 be the Gauss maps of M and M respectively.
Suppose that there is a conformal diffeomorphism Φ between M and M. If M
or M is complete and there are seven distinct directions nu •••, nΊ(ΞS2 such that
G-\ns)=(G-ΦYKn,) (1<J<7), then G = G-Φ.

He gave also more precise results for the case where both of M and M are
complete and have finite total curvature. The purpose of this paper is to give
some generalizations of these results to minimal surfaces in Rm for the case
m>3.

As is well-known, the set of all oriented 2-planes in Rm containing the
origin is canonically identified with the quadric

Qm_2(C) : = {<>!: - : wm) w\+ ••• +u&=0}

in Pm~\C). For a minimal surface x\— (xu •••, xm): M->Rm immersed in Rm

the Gauss map G of M is defined as the map of M into Qm-2.{C) which maps
each p<ΞzM to the point in Qm-ziC) corresponding to the oriented tangent plane
of M at p. We may regard M as a Riemann surface with a conformal metric
and G as a holomorphic map of M into Pm~\C).

As in the case m=3, we consider two nonflat minimal surfaces

x : = ( * ! , •••, xm): M->Rm, x : =(xu •••, xm): M^Rm

and their Gauss maps G : M->PN(C) and G : M-+PN{C), where N: =m—1. Sup-
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pose that there is a conformal diffeomorphism Φ between M and M. Then
the Gauss map of the minimal surface x-Φ : M->Rm is given by G-Φ. Consider
the holomorphic maps f :=G : M->PN(C), g:=G-Φ: M-*PN(C) and assume
that they satisfy the following:

A S S U M P T I O N 1.1. There exist hyperplαnes Hlt •••, Hq in PN(C) located in
general position such that

( i ) f-\Hj)=g-\Hj)ΦM for every j ,

(ϋ) f=g on UJ-i f~\Hj)-K for a compact subset K of M.

The main result is stated as follows:

THEOREM 1.2. Under the above assumption^ we have necessarily f=g

(A) if #>m2+m(ra—1)/2 for the case where M is complete and has infinite
total curvature or

(B) if q^m2+m(m—l)/2 for the case where K=0 and M and M are both
complete and have finite total curvature.

We shall give some estimates for divisors on an open Riemann surface in
§2 and construct a pseudo-metric with strictly negative curvature associated
with two holomorphic maps / and g into PN{C) satisfying Assumption 1.1 in
§ 3. After these preparations, in §§ 4^5 we shall prove some unicity theorems
for holomorphic maps into PN(C) defined on an open Riemann surfaces with
complete conformal metrics. Theorem 1.2 will be proved in § 6.

§2. Some estimates for divisors.

Let M be a Riemann surface. In this paper, a divisor v on M means a
map v: M-+R whose support Supp (v): = {z; u(z)Φθ\ has no accumulation point
in M. We say that a complex-valued function u on M has mild singularities
if it can be written as

(2.1)
\og\gi{z)vi{z)\

on a neighborhood of each a<=M with a real number σ, finitely many nonnega-
tive numbers τιt positive C°° function w*, Vι and nonzero holomorphic functions
gt, where z is a holomorphic local coordinate around a. For a function u with
mild singularities, we define the divisor vu of u by

vu(a):=the number σ for the representation (2.1)

for each a^M.
Let / : M-+Pn(C) be a nondegenerate holomorphic map. For α e M taking

an open neighborhood D of a contained in the domain of a holomorphic local
coordinate, we choose a reduced representation / : = ( / „ : •••: fn) on D, where
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/Vs are holomorphic functions on D without common zero. Consider the holo-
morphic map

(2.2) Fk:=F™*F™A ••• ΛFck): D ->*ΛCn + 1

for Q^k^n, where F™ = F:=(fQ, •••, /„) and F ( O : = ( / o

α ) , •••, A l ) ) for each
/ = 0 , 1, •••. The norm of Fk is given by

Fk\:=(
\osto<

where W(/»o, •••, flk) denotes the Wronskian of ftQ, •••, / l j k . Set
for O^k^n. The divisor vn is nothing but the divisor of W(f0, /Ί, •••, / J
These are globally well-defined on M. Because, for another reduced representa-
tion / : = ( / o : •••: /„) we can write (/<>, •••, fn)=hF with a nowhere vanishing
holomorphic function h and F^ is multiplied by hk+ί, and for another holo-
morphic local coordinate ζ, Fk is multiplied by {dz/dζ)kik+^12.

We now take a hyperplane H with f(M)%H given by

For each reduced representation / : = ( / „ : •••: fn) we set

(2.3) F~F(H): = c o / o + - + c n / »

and define the pull-back of the divisor H via / by v(f, H): =vF, which is well-
defined on M.

We next consider q hyperplanes Hu •••, Hq in Pn(C) given by

\-cjnwn=0

where ^ : = ( c > 0 , - , cjn)^Cn+1- {0}. For Λ g Q : = {l, 2, •••, ̂ } we denote by
d(R) the dimension of the vector subspace of Cn+1 generated by {Aj\j<=R\.
Following [3], we say that Hu •••, Hq are in Λ/-subgeneral position if d(R)=
?2 + l for all R^Q with #R^N+1, where #Λ means the number of elements
of a set A. In particular case N=n, these are said to be in general position.
In [12] E. I. Noachka gave the following theorem:

T H E O R E M 2.4. For given hyperplanes Hu H2, •••, Hq in Pn(C) located in N-
subgeneral position, there are some rational numbers ω(l), •••, ω(q) and θ satis-
fying the following conditions

( i ) O<

(ϋ) Σω(j)=n+l+θ(q-2N+n-l),

(iv) if RaQ and 0<#R^N+l, then
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For the proof, see [3] or [10, §2.4].

We call constants ω(j) (l<*j<>q) and θ with the properties of Theorem 2.4
Nochka weights and a Nochka constant for Hu •••, Hq respectively.

Related to Nochka weights, we have the following:

PROPOSITION 2.5. Let Hu •••, Hq be hyperplanes in Pn(C) located in N-
subgeneral position and let ω(l), •••, ω(q) be Nochka weights for them, where q>
2A/-W+1. For each RQQ: = {1, 2, •••, q) withO<#R<LN+l and real constants
Eu •••, Eq with E^l, there are some R'GR such that #R'=d(R')=d(R) and

For the proof, see [3] or [10, Proposition 2.4.15].

For later use, we shall give the following estimate for divisors.

P R O P O S I T I O N 2.6. Let f be a nondegenerate holomorphic map of a domain
in C into Pn(C) with a reduced representation f — ( / „ : •••: f n ) and let Hlf •••, Hq

be hyperplanes in N-subgeneral position with Nochka weights ω(l), •••, ω{q) respec-
tively. Then,

Proof. For an arbitrary a^M set m3:—v{f, Hj)(a) and S: = {j mj>0\.
Then #S^N. For, otherwise, fτ (0<ii<Ln) are represented as linear combina-
tions of \F(Hj); j'^S} and so f0, •••, fn have a common zero at a. We choose
a set R with S g f l g {1, •••, q) and #R=N+1. Then we see d(R)=n+l by the
assumption. Set Ej:=emJ. By Proposition 2.5 there exists some /0, j \ , •••, j n

in R such that HH, •••, //^w are linearly independent and
so that

(2.7)

Set ^ : =F(i//() and define φ: = ΐ y ( ^ ' f1' " ' ' ^ J . Since /„, fu-,fΛ are

r e p r e s e n t e d a s l i n e a r c o m b i n a t i o n s of ψ0, •••, </>n, P ^ ( / o , / i , •••, / n ) is a n o n z e r o
c o n s t a n t m u l t i p l e of W(ψ0, ψu •••, ψn). T h i s i m p l i e s t h a t

(2.8) ^(fl)=v»(fl)-Σm J l .
i = 0

On the other hand, the meromorphic function φ is expanded as
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1

ΦΌ
φo

1

φί

φl»

φn

φn

Since the order of the pole of each φf^lφj is at most /, each term in the above
expansion of ψ has a pole of order at most n(w + l)/2 at a. Therefore, we
have vφ(a)^ — n(w + l)/2. By the use of (2.7) and (2.8) we conclude

The proof of Proposition 2.6 is completed.

§3. Pseudo-metrics with strictly negative curvature.

Let M be an open Riemann surface and ds2 a pseudo-metric on M, namely,
a metric on M with isolated singularities which is locally written as ds2—
λ2\dz\2 in terms of a nonnegative real-valued function λ with mild singularities
and a holomorphic local coordinates. We define the divisor of ds2 by vds\—vx
for each local expression ds2=λ2\dz\2, which is globally well-defined on M.
We say that ds2 is a continuous pseudo-metric if vds^0 everywhere.

DEFINITION 3.1. We define the Ricci form of ds2 by

for each local expression VdS'—Vλ, where we mean by [M] the current asso-

ciated with a locally integrable function u and by d and dc(: =(V— l/4π)(5—3))

the differential operators for the currents.

Let /, g be distinct nonconstant holomorphic maps of M into PN(C) and
consider a nonzero function X(w, w) on CN+1xCN+1 having the following:

PROPERTY 3.2. It is bilinear with respect to the variables w and w, and
X(w, w)=0 for all WCΞCN+1.

Suppose that they satisfy the following:

ASSUMPTION 3.3. There exist hyperplanes Hu ••«, Hq in PN(C) located in
general positien such that

(i) χ(/, ^)^0 and r\Hs)=g-\H,)ΦM for every j ,
(ϋ) *(/, g)=0 on U?-i f~\Hj)-K for a compact subset K of M.
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Take the smallest projective linear subspaces Pf and Pg of PN(C) which

include the images f(M) and g(M) respectively. Set nf:— ά\mPf and ng :—

d i m i V Then the maps f: M->Pf and g:M-^Pg are nondegenerate. We

regard hyperplanes HιΓ\Pfy •••, HqΓ\Pf as hyperplanes in Pf, which are located

in iV-subgeneral position. We take Nochka weights ωf(l), ••• , ωf(q) and a

Nochka constant # r for these hyperplanes. Similarly, we take ωg(l), •••, ωg(<?)

and 0^ for the hyperplanes HiΓ\Pg, •••, HqΓ\Pg with respect to the map g.

Choose reduced representations / : = (/ 0 : •••: f n f ) , g:= (g0: •••: g n p on M in

terms of some homogeneous coordinates on Pf and Pg respectively. Set F:=

(/o, •••, / w / ) and G : = (g0, •••, gng) and consider the maps Fk and Gk defined

as (2.2) for / and g. Taking unit vectors / l ; e C " / + 1 , Bj ̂ C"**1 with

ftπP/ : <u>, Λ > = 0 (wξ=Pf), HjΓ\Pg : <u>, J3 J>=0 {w^Pg),

we define F(//, ) : = <F, -V, G(Hj) : = <G, 5,> and the contact functions ^(Z/,) :

= i ^ * V A ; | 7 | F , | 2 for 0£k^nf and φg

k(Hj):= | G * V - 4 , | 8 / | G * | 2 for Q^k£ng,

where X\/Y denotes the interior product of vectors .Y and Y (c. f., [8, §3]).

Set σn:= n(n + l)/2, rn:=^k=i0k and

(3.4) γf := θf(g-2N+nf-l), γg := ^,(^

Suppose that

(3.5) σ^/+^<l.

Choose positive numbers εlf ε2 such that γf>ε1τnf, γg>e2τng and

and define the functions

1 F| Tf-l"nf + l 1 /Γw/j Π^O I Ffe I
 £1

j
iU-i (I F(// )̂ I Πί-V1 log (δ/φ{(Hj))r'

where ^ is a sufficiently large positive constant which is specified later. As

is easily seen, η}\dz\2 and ̂ | c / z | 2 are globally well-defined on M. Take pi

and >̂2 with

and define

(3.8) dτ2 :=
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DEFINITION 3.9. We say that a continuous pseudo-metric ds2 has strictly
negative curvature on M if there is a positive constant C such that

where Ωds2 denotes the area form for ds2, namely, Ωds2:— λ2(V— l/2)dzΛdz
for each local expression ds2=λ2\dz\2.

PROPOSITION 3.10. For a sufficiently large δ, the pseudo-metric dτ2 given
by (3.8) is continuous and has strictly negative curvature on M—K.

Proof. We first show that i^Γ(z)^0 for all Z^ΞM. This is obvious if

\JUif-\H,)(=Vq,-ιg-\H,)). Otherwise, since

Vnf— Σ,ωf(j)v(f, Hj)^-σnf, vng— Σ><
J j=i J n J = ί

by Proposition 2.6, we obtain

*na-

On the other hand, by the assumption we have 1=0 on U?-i f~ι{Hj) and hence
there. This concludes that dτ2 is continuous on M.

To complete the proof, we choose a sufficiently large δ so that

(3.11) *

ddc log ηl ^

on A/—(/ίUU?=i f~\Hj)) for some positive constants C\ by the same arguments
as in [8, pp. 31-32], where Ωf:= ddc log \F\2 and Ωg := <iί/c log | G | 2 . We
then have

-Ric ldτ2l = ddc log \l\2-Ωf-ΩgΛ-p,ddc log 7]} + p2ddc log 77
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Since we have | X | ^ C 2 | F | | G | for some constant C2>0, we can conclude that
dτ2 has strictly negative curvature. The proof of Proposition 3.10 is completed.

§4. Unicity theorems for holomorphic curves.

Let M be an open Riemann surface and ds2 a complete conformal metric
on M. We now recall the following definition and result given in [8].

DEFINITION 4.1. Let Ωγ and Ω2 be C°° differentiate (1, l)-currents on M.
For some c>0, by Ωι^cΩ2 we mean that there exist some divisor v and a
bounded continuous nonnegative function k with mild singularities on M such
that v^c everywhere on Supp(y) and

where |>] denotes the current associated with v. The notation £?r<β2 means
that Ωi^cΩi for some c>0.

THEOREM 4.2. Let M be an open Riemann surface with a complete conformal
metric ds2. If there exists a continuous pseudo-metric dτ2 on M whose curvature
is strictly negative on M—K for some compact set K such that, for some constant
p with Q<p<l,

-Ric C^s2]<1-P £(-Ric Wr2])

on M—K, then M is of finite type, namely, biholomorphic with a compact Rie-
mann surface with finitely many points removed.

For the proof, see [8, pp. 24~27].

To state the main result of this section, we give the following:

DEFINITION 4.3. Let /, g: M->PN{C) be nonconstant holomorphic maps.
We say that they satisfy the condition (C)PvP2 for some plf ρ2^>0 if

on M—K for some compact set K.

THEOREM 4.4. Let M be an open Riemann surface with a complete conformal
metric ds2 and /, g nonconstant holomorphic maps of M into PN(C). Suppose
that, for some ρu ^ 2 > 0 ,

( i ) M is not of finite type,
(ii) / and g satisfy the condition (C)PvP2>

(iii) 77, yg>0 for the numbers 77, γg defined by (3.4) and Assumption 3.3
holds for some X with Property 3.2.
Then, it holds that
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If g

Proof. The proof is given by reduction to absurdity. Suppose that the
conclusion does not hold. We then have the stituation considered in § 3. We
use the previous notations without permission. Set

(4.5) A : = r - f ~ 6 i ° n f i l ™

where εx and ε2 are chosen so that ?7>εi<7 Λ / + 1 >0, γβ >ε2png+ι>0 and

(4.6) tψ+/ψ<lm

Set

. =

 BPi+p2-py Aρ2 + pi-p2
Pι' A

Then, we see easily

(4.7) j M - - l

and

(4.8) h A -
p

Using these constants εu ε2 and a sufficiently large δ, we define the functions
7]f and ηg by (3.7) and pseudo-metric dτ2 by (3.8), which is continuous and has
strictly negative on M—K according to Proposition 3.10.

Now, we represent each H3 as

Hj: cjowQ-\- ••• -\rcjNwN=0 .

As in [8, p. 32], taking some holomorphic local coordinate z, for each /, k
(l<,j<>q, 0<k^nf — l) we choose iu ••• , ik with 0 ^ * i < ••• <ik<N such that

ψh := Σ CjiWift, flv - , ΛΛ)=£0,

where we set ψ%:= F(Hj). We then have \<fήk\
2/\Fk\

2£φ{(Hj) and, by the
theorem of identity, ψζ

Jk^0 for every holomorphic local coordinate ζ. Set

which is a well-defined function with mild singularities on M—K. Since

— < SUp Xεi/q \θgωfίn(—λ< + oo ,
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kf is bounded. Set

on the domain of each holomorphic local coordinate z. Then, we have vηf^Vφv

and ηfkf=\F\Aφu so that

ddc \og{r)fkff=AΩf+ddc logical2.

Similarly, we can choose a bounded continuous nonnegative function kg

with mild singularities and a locally defined nonzero meromorphic function φ2

satisfying the condition vVgtίvφ2 such that

On the other hand, we have ddc log|0i | 2— [i^J (2—1,2) by Poincare-Lelong
formula. Therefore, we obtain

-Ric Idτ^ + pidd' log k) + p2ddc log k\

2ddc lθg(ηgkg)
2

where vQ:= vχ + pίVφί-\-p2Vφ2. By (4.7) and (4.8) this yields that

(4.9) -Ric ίdτ»-\ + dd* log kγ>kγ*= . ' ' ( P , β ; + p 8

We have also the inequality vo^vχ-}-piVnf-\-p2vVg=ϊ,dτ^0 on M—K and, more-
over, there is a positive constant c0 with i>0^c0 on Supp(vo) Set

Ap2+Bpx
P'~ AB-A-B'

Then, 0<jfr<l by (4.8) and the identity (4.9) can be rewritten as

PιΩf + p2Ωg<pCo p(-Ric Wr 2]).

The assumption (ii) yields that

-Ric ids^KpxΩf+piΩg^pi-Ric [ί/r2]).

We may write this

-Ric [ f l ^ K ^ p(-Ric [ύίr2]),

because we can choose ε1 and ε2 so that 1 — p is sufficiently small. This con-
tradicts Theorem 4.2. The proof of Theorem 4.4 is completed.
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§ 5. Holomorphic maps defined on a Riemann surface of finite type.

In this section, we give a unicity theorem similar to the previous section
for holomorphic maps into PN(C) defined on an open Riemann surface M of
finite type which has a complete conformal metric ds2.

DEFINITION 5.1. Let f, g: M->PN{C) be nonconstant holomorphic maps.
We say that they satisfy the condition (C)'PvP2 for pu p2>0 if there is a bounded
continuous nonnegative function k with mild singularities such that

(5.2) -Ric {.dsz~\^p£f + p$8 + ddc log k2

on M.

THEOREM 5.3. In the same situation as in Theorem 4.4, suppose that, for
some pu p2>0,

( i ) M is of finite type,
(ii) / and g satisfy the condition (C)PvP2,
(iii) γf, γg>0 and Assumption 3.3 holds for K:= 0 and some 1 with Pro-

perty 3.2.
Then, it holds that

Proof. Assume that the conclusion does not hold. We use the same nota-
tions as in the proof of Theorem 4.4, where K\— 0 . Using the same constants
pi, p2 and functions ηf, ηg as m the proof of Theorem 4.4, we construct a
continuous pseudo-metric dτ2 on M, which has strictly negative curvature on
M. Here, we note that the universal covering surface of M is biholomorphic
with the unit disc. For, there is no continuous pseudo-metric with strictly
negative curvature on a Riemann surface whose universal covering surface is
biholomorphic with C. By the generalized Schwarz' lemma ([1, pp. 12^14]),
there exists a positive constant Co such that

where dσ% denotes the Poincare metric on M. By the assumption, M is bi-
holomorphic with a compact Riemann surface M with finitely many points aL's
removed. For each at we take a neighborhood Uι of at which is biholomorphic
with Δ* := \z', 0 < | z | < l } , where z(aι)=Q. The Poincare metric on the domain
Δ* is given by

A\dz\2

doΔ* '.—

By the use of the distance decreasing property of Poincare metric we have
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\dz\*

\z\2log2\z\2

for some Ct>0. This implies that, fora neighborhood Uf of β ; which is rela-
tively compact in Uu

Since M is compact, we have

(5.4) \ Ωdτ2^\ *ΩΛ

We now take a nowhere zero holomorphic form ω on M. Since ddclogη}
^ΛΩf and ddc log η2

g^BΩg by (3.11), we can find subharmonic functions vx

and f 2 such that

η}\dz\2=evi\F\2Λ\ω\2,

Set ι;3:— l o g | Z | 2 + ί i 2 ; i + ^ 2 and

v:=V3+(PlA-l-Pl)log \F\2+(p2B-l-pz)log \G\2,

which is subharmonic by (4.8). We then have

(5.5) dτ2^ev"\F\Hp^~

Now, take the functions Λ>0 with ds2=ϊ2\ω\2 and k as in Definition 5.1. By
(5.2) there is a subharmonic function w{^ — oo) such that

Combining this with (5.5), we obtain

ev+wds2<C0dτ2

on M for some positive constant Co. Here, we can apply the result of S. T.
Yau in [15] to see

because M is complete with respect to the metric ds2 and v-\-w is subharmonic.
This contradicts the assertion (5.4). The proof of Theorem 5.3 is completed.

Related to Theorem 5.3, we shall prove more precise unicity theorem of
holomorphic curve for a particular case. To state this, we give the following:

DEFINITION 5.6. Let / be a nonconstant holomorphic map of an open Rie-
mann surface M into PN(C). We say that / has an essential singularity at an
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isolated end of M if we can take a not relatively compact connected open sub-
set D of M} called a neighborhood of the end, such that there is a biholomar-
phic map Φ of {z^C ;0<\z\<2} onto an open neighborhood of D satisfying
t h e c o n d i t i o n t h a t φ(dD)={z; \z\ = l\, Φ(D)=Δ*:= {z;0<\z\<l} a n d t h e m a p
f-Φ: A*->PN(C) has an essential singularity at the origin.

THEOREM 5.7. Let M be an open Riemann surface and /, g nonconstant
holomorphic maps of M into PN(C) at least one of which has an essential singu-
larity at an isolated end of M. Suppose that 77, Yg>0 and Assumption 3.3 holds
for some X with Property 3.2 on some neighborhood of the end. Then

rf r
g

For the proof, we recall the second main theorem in the classical value
distribution theory of holomorphic curves. Let / be a nonconstant holomorphic
map of an open neighborhood of Δs.+oo:^ {z; s ^ | z | < + °°} into PN(C). The
order function of / is defined by

T,(r) : = ( ' £ ( Ωt,
J Js t J s s i z ι < ί

which can be rewritten as

(5.8) Tf(r)= J~\2πlog I F{reiθ) \dθ- ^ - P l o g I F(seίθ) \ dθ+O(log r)
Iπ Jo In Jo

with F\— (/o, •••, fn) for a reduced representation / := (/0: •••: fn) ([10, Corol-
lary 3.1.12]). For a divisor v on an open neighborhood of ΔSi+co the counting
function of υ is defined by

N(r,v):=\T( I
JS \ S g | 2

dt

Let H be a hyperplane with /(ΔS(Oo)g//. By definition, the counting function
of H for / is given by

Nf(r,H)\=N(r,v{f,H)).

According to Jensen's formula, we have

Nf(r, H)= ^ Γ W I F{H)(reiθ)\ dθ-~^\og \F{H){seiθ) \ dθ+O(\ogr\
Δ7C Jo ZTΓJo

where F{H) is the function defined by (2.3) ([10, Corollary 3.1.8]).
The second main theorem in value distribution theory is stated a.s follows:

THEOREM 5.9. Let f: As>JrOo->PN(C) be a nonconstant holomorphic map and
Hi, •••, Hq hyperplanes in PN(C) located in general position such that /(Δβ,+«,)§=
\Jj Hj. Consider the least project ive linear subspace Pf which includes the image
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of f and set nf : = άimPf. Take Nochka weights α>/(l), ••• , (of(q) and a Nochka
constant θf for f considered as a map into Pf. Then,

(5.10) rfTf(r)£ Σ ωfU)Nf(r, H})-N(r, vnf)+O(\og (rTf(r))

for all r not including in a set E with \ (l/r)dr<oo, where γf=θf(q—2N+nf — l).

This is given in [12]. The details of the proof are described in [2] (cf.,
[10, Theorem 3.2.12]).

Proof of Theorem 5.7. Changing notation if necessary, we may assume
that / has an essential singularity at an isolated end of M. Then there is a
not relatively compact open subset D of M and a map Φ satisfying the condi-
tions stated in Definition 5.6. By the identity theorem we have only to prove
that f-Φ = g-Φ on Δ*. On the other hand, Δ* is biholomorphically equivalent
to Δi.+oo. Therefore, there is no harm in assuming that M=Δlt+oo and / has
an essential singularity at oo. By Theorem 5.9 we have (5.10) and, similarly,

ϊgTg{r)^hωg(j)Ng(r, Hj)-N(r, pn,)+O(log(rT,(r))

outside a set E with \ (l/r)dr<oo. On the other hand, by Proposition 2.6 we

JE

get
Σ%(i)JV,(r, Hj)-N(r, vnf)<σnfN{r, m i n ^ , 1)),
7 1

r9 Hj)-N(r, vng)^σUgN(r, min (vg, 1)),

where vs := ΣlMf, Hj) and vg := ΣϊMg, Hj). By Assumption 3.3 we have easily

N(r, m i n ^ , l))^N(r, X(f, g)), N(r, min(^ , l))£N(r, X(f, g)).

By (5.8) and the bilinearity of X,

N(r, vX(f,g,)^Tf(r)+Tg(r)+O(\og r).

These imply that

(5.11) Tf{r)+Tg{r)d^L + ~8-\τf(r)+Tg(r))+O(\og (rT f(r)T g{r))).
v ϊ / ϊ g '

On the other hand, since / has an essential singularity at oo, it holds that
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([10, Proposition 3.3.3]). Dividing both sides of (5.11) by Tf(r)+Tg(r) and
tending r to oo, we can conclude that

ΐf

This gives Theorem 5.7.

§6. Unicity theorems for the Gauss maps of
complete minimal surfaces.

In this section, we shall give some unicity theorems for the Gauss map of
complete minimal surfaces in Rm by applying the results in the previous sections.

Consider two nonflat minimal surfaces

x : = (Xlf ..., X m ) : M->Rm, x : = (xu - , xm)' M->Rm

and let G and G be the Gauss maps of M and M respectively. Assume that
there is a conformal diffeomorphism Φ of M onto M. We may regard M and
M as Riemann surfaces and Φ as a biholomorphic isomorphism between M and
M. Consider the maps

f:=G:M->PN(C), g:= G-Φ : M -> PN{C),

where JV:= m—1, and holomorphic forms wt:=dxt on M and ω̂  : = 9^ t on M.
As is well-known, the Gauss maps of M and M are represented as

(6.1) G—{ωx: ••• :ω m ) , G = (ωi: ••• : ω m ) ,

and the induced metrics of Λf and M are given by

(6.2) d s 2 = 2 ( \ ω ι \ 2 + ••• + | ω m | 2 ) , d S * = 2 ( \ ω ι \ * + ••• + | 5 m | 2 )

respectively (e.g., [13]). We can easily obtain the following:

(6.3) -Ric [ds2] = -Ric [Φ*(dSr2)] = β / = f l ί .

Therefore, / and g satisfy the condition (C)1/2li/2, where we may take K=0
in Definition 4.3 and hence the condition (C)ί/2.1/2 is also satisfied.

THEOREM 6.4. In the above situation, assume that x : M-+Rm is complete
and has infinite total curvature and that f and g satisfy Assumption 1.1. If q>
m2+m(m-l)/2, then f~g.

For a paricular case where f has an essential singularity at an isolated end,
the same conclusion holds under the only assumption q>m2.

Proof. Assume that f^g under the assumption of the first part of Theo-
rem 6.4. For reduced representations / = ( / i : •••: f m ) and g—{gι: •••: gm), the
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function

X((wu ••., wm);(wu " ,wm)):=wiwj-wjwι

satisfies Assumption 3.3 for some distinct indices i, j . Setting p1=ρ2:= 1/2,
we apply Theorem 4.4 to see

nf(nf + ϊ) ng(ng + D 22
= 3 '2θf(q-N+nf-l) 2Θ g{q-N+ng-l) = 3 '

On the other hand, by Theorem 2.4 (iii) we see

=
nf(2N-n

θf(q-2N+nf-l) = q-2N+nf-l

and, since l<nf^N and #>(;V+1)2, we have

/VqV+1) nf(2N-nf + l)
q-N-l q-2N+nf-l

(N-nfX(N-nf + l)q-(N+lX2N-nf + l))
(q-N-ΪKq-2N+nf-l)

These are also true if θf and nf are replaced by θg and ng respectively. Thus,
we obtain

{t3 ύ> θf(q-2N+n,-l)=q-N-l θs(q-2N+ne-l) = q-N-l'

and so

2
>

q-N-l = 3 '

This leads to an absurd conclusion

The first part of Theorem 6.4 is completely proved.
The proof of the latter half is also given by reduction to absurdity. Suppose

that f^g, and take some X with Property 3.2 which satisfies Assumption 3.3.
By assumption, / has an essential singularity at an isolated end and q>(N+l)2.
Then, since 77, γg>0 for the constants 77 and γg defined by (3.4), we can apply
Theorem 5.7 to get

tttt */(*»/+!) , ng(ng+D > 1
{Ό'Ό) 2θf(q-N+nf-ϊ) ~t~2θg(q-N+ng-l)

The assertions (6.5) remains valid in this case too. By (6.6) we conclude

q—N—1
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This contradicts the assumption for q. The proof of Theorem 6.4 is completed.

THEOREM 6.7. In the same situation as in Theorem 6.4, suppose that M, M
are both complete and have finite total curvature. If f and g satisfy Assumption
1.1 for K=0 and q^m2+m(m-l)/2, then f=g.

Proof. Assume that fφg and take some X with Property 3.2 which satisfies
Assumption 3.3. For our purpose, we may replace x : M->Rm by x Φ : M-+Rm

and so we may assume that M—M and Φ is the identity map. By Chern-
Osserman's theorem ([4]), we may set M=M—{au •••, aκ} for a compact Rie-
mann surface M and the forms ωt:— dxt, ώi : = dxι (l<:i<m) are meromorphically
extended to M. The induced metrics ds2, ds2 are also extended to M as pseudo-
metrics. We consider the numbers nff ng, ωf(jy&, α>*(/)'s, θf, θg, γf and γg

defined in §3. The assertion (6.5) holds in this case too. The assumption
implies that

rf =2{q-N-l)= 3 ' γg =2(q-N-l)= 3 '

Choose sufficiently small positive rational numbers ελ and ε2 such that the con-
stants A and B defined by (4.5) are both larger than 3—ε for an arbitrarily
pre-assigned positive number ε. Settign ρί=ρ2=l/2, we define the pseudo-
metric dτ2 by (3.8), whose curvature is strictly negative on M.

Now, we choose a nonzero vector (cίt •••, cm) such that

H0:= {{w,: •••: wm); c.w^ \-cmwm=0] ,

(6.8) ω : =

Choose the functions φJk for / as in § 4 and ψjk similarly for g and set

~εiσnf+11 Kf IIL. * 10>* 1 £ l /V ( gn/+ £ i r^/ )

We define a new pseudo-metric by

Here, we may assume that all exponents appearing in the above are rational
numbers. As is easily seen, dφ2 is a well-defined pseudo-metric on M. On the
other hand, for an arbitrary s-ple meromorphic form ψ on M it holds that
Σιp<EMVdφ(P)— s(2γ—2). For a sufficiently large integer s, we can find an s-ple
meromorphic form φ=φz(dz)8 such that dφ2= \<pz\

2/s\dz\2 for each holomorphic
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local coordinate z. It follows that

(6.9) Σ vdφ(p)=2γ-2,

where y denotes the genus of M. If we take a nonzero holomorphic function
g with vg=mm{vωi) l<i^m} in a neighborhood of each αeM, we have

on M. We define the degree of / by

df := Σ »(/, Ho)(z),
z<=H0

which does not depend on the choice of the hyperplane Ho. We then have

(6.10) 2r-2= Σ vω(z)= Σ Vd.(z)+df= Σ vds(pι)+df ,

where we used the fact that vds=0 on M. Similarly, we get

(6.11) 2 r h

Comparing the definition of dφ2 and dτ2, we have

(A Λ , /B

where

Since vdτ>,^ on M by Proposition 3.10, we have by the use of (6.9)

Σ vdτ{at)= Σ vdτ(z)- Σ ι>dτ(z)
1 = 1 z<=M ZE:M

< Σ vφ)- Σ ((4-

Since

2 i^ϊ

by (6.10) and (6.11), we obtain
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Σ v d τ (α ( )^ |( Σ vUaύ+vaiiai))-^-§)<*/-(§- j)dg .

On the other hand, according to Chern-Osserman's theorem ([4, Lemma 2]),

(6.12) v

This gives

Here, if we choose a sufficiently small positive βi, ε2 and ε, then every term

of the right hand side except the first may be assumed to be smaller than an

arbitrarily small pre-assigned positive number. This implies that there is some

l0 with vdτ(aι0)<— 1. It follows that

\ dΩdτ2—-\-oo .

On the other hand, by the same argument as in the proof of Theorem 5.3 we

can show \ dΩdτz<°° because (3.6) holds in this case too. This is a contra-
J M

diction. We have Theorem 6.7.
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