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ON MEROMORPHIC DERIVATIVES

BY WANG YUEFEI AND WANG SHUPEI

1. Introduction and main results.

(A) Let f{z) be a transcendental meromorphic function. We use the usual
notations of Nevanlinna theory ([3], [8]), then we have the defect relation

The upper bound of two is sharp in general, even not including the infinity.
But for the upper bound of the deficiency of derivatives, Yang Lo [9] proved
that for k^l,

^ (1.1)

This estimate is better than that in [3] and [5], but the upper bound is still
not sharp. There are two problems on the deficiency of derivatives, namely:

( I ) To what extent one can extend the sum of the deficiency of (1.1)?
(Π) What is the best upper bound for the left-hand side of (1.1)?
Our first result is an answer to ( I ) .

THEOREM 1. Suppose that f(z) is a transcendental meromorphic function and
k is a positive integer. Then we have

( L 2 )

where the second summation is taken over all the non-constant entire function
which is small with respect to f(z), and Ak is defined as

Mr

A simple example shows that the inequality is sharp. Let f(z)=ez, then
for k^l,
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Σ ( , / ) W , / ) , * , Σ
CCE C 6(2)

and β(oo, /c*))=i. So the equality of (1.2) holds for this function.
For problem (II), Mues [5] conjectured that the best upper bound for the

leftside of (1.1) is one. This conjecture was recently affirmed in [7] and [11]
for all integers with at most finitely many exceptions of k. In the following
theorem we will prove that Mues's conjecture still holds for almost every in-
tegers even if we consider the "small" entire functions instead of the complex
numbers. In fact, we have

THEOREM 2. Let f{z) be a transcendental meromorphic function. Then we
have

holds for every integer k with at most finitely many exceptional ones, where the
summation is taken over all the "small" entire functions of f(z).

(B) The well-known Hayman inequality [2] is an important and striking
result for estimating the characteristic function of a meromorphic function.
For

T(r, f)<(2+j)N(r, I ) + (2+|)iv(r, -^L-^+Sfr, /), (1.3)

where S(r, f)=o{T(r, /)}, as r->oo, rφ.e, and e is a set of finite measure.
The small term Sir, f) may not be the same at each occurrence.

In [3], Hayman posed the question: whether the coefficients of N(r, 1//)
and N(r, l//(*)—1) in (1.3) are best possible or not. There had no work been
done on this problem until 1990. By using a result of Frank and Weissenborn
[1], Yang Lo [10] obtained the following result. For 6 ^ 1 , ε>0,

T ( r , ( ) ( ) (

( ^ ) f)+S(r,-N(r, ,j

When k is large, we see that the coefficients are close to one, which is
the best possible coefficients. Our third problem is to consider

(IΠ) Can one extend the complex numbers to small functions of /Car)?
Our Theorem 3 answers the question (IΠ).

THEOREM 3. Let f{z) be a transcendental meromorphic function and a(z) is
a small entire function of f(z). Then for any positive integer k, positive numbers
ε and δ, there exists a set E(δ) whose upper logarithmic density does not exceed
δ, such that
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T(r,

-N(r, {fJyaγ) + ̂ (r, f)+S(r, f),

2. Lemmas.

In order to prove our theorems, we need two known results.

LEMMA 1. (Hayman and Miles [4]). Let f(z) be a transcendental meromor-
phic function and K be a real number (K>1). Then there exists a set M(K) of
upper logarithmic density at most

eκ-1-l)-\ (l+e(K-l))exp(e(X-K))} (2.1)

such that for every positive integer k

Remark. It follows from (2.1) that d(K)-+0 as K-^oo.

LEMMA 2. (Milloux inequality [3]). Let f(z) be a transcendental meromor-
phic function and a{z) be a small meromorphic function of f(z). Then for any
integer k>l,

T(r, f)<N(r, f)+N(r, j

For convenience, we introduce the following definition.

DEFINITION 1. Let f{z) and a{z) be two meromorphic functions in the
complex plane. We say a(z) is a quasi-small function of f(z), if for any d>0
there exists a set E(d) whose upper logarithmic density does not exceed δ,
such that

T{r, a)=o{T(r, f)\

as r—>oo, r£E{δ).

LEMMA 3. Suppose that f(z) is a transcendental meromorphic function and
a(z) is a small entire function of f(z). Then for every positive integer kf ac~k:>(z)
is a quasi-small function of f(z) (where ac~k:>(z) is the kth primitive function of

Proof. By using Lemma 1 on ac~k:>(z), we have for

T(r, a<-k>)^4eKT(r, a) (2.2)
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as r^oo, r£M(K), where M(K) is a set of upper logarithmic density at most
d(K) as in (2.1).

Since a(z) is the small function of f(z), then it follows from (2.2) that

T(r, a<-k>)=o{T(r, /)} as r — > oo, r^M(K).

On the other hand, we can see from Lemma 1 that d(K)—>Q as K-+oo. So,
for any given <5>0, we choose a suitable number KO>1, such that d(K0)<δ.
Now set E(δ)—M(K0)t and the conclusion of Lemma 3 follows. •

Suppose now that ax{z), a2(z), •••, an(z) are n linearly independent small
functions of f(z). Put

W(au a2, ••-, an, f)

W(au a2y "-, an)

where W(fu f2, •••, /„) denotes the Wronskian of fu /2, •••, fn.
Bearing on the ideas of Frank and Weissenborn [1], we now establish our

principal lemma concerning the lower bound of the zeros of the linear differential
polynomial

LEMMA 4. Let f{z) be a transcendental meromorphic function. Suppose that
di(z), a2(z), •••, an(z) are n linearly independent small entire function of f(z),
then for any non-negative integer k, positive numbers ε and δ, there exists a set
E(δ) whose upper logarithmic density does not exceed δ such that

n)N(r, f)<N(r, ~ I ~ y ) + ( l + ε)iV(r, f)+o{T(r, /)},

r — > oo,

Proof. Since aj(z)(j=l) 2, •••, n) is entire and

*•> Z> ' " » (b — Λ\ t Z ' ι~ ' '"' an~ ) ~ ^ ^ α i » α 2 , •", Q>n

then

W(au a2y •••, an, fa))

W(au a2, •••, an)

, z, ~, q/(k-l)\)zk-\ a[-k\ - , a£k\ f)

l, z, .»,

:=Li(/), say.

By Lemma 3, for every αj" f e ) (l^/^w), there exists a set £}(δ) whose upper
logarithmic density does not exceed δ/n, such that

T(r, αj-*>)=o{T(r, /)}, r — > oo,

Set E1(δ)=^J%1E}(δ), then the upper logarithmic density of E^δ) does not
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exceed δ and for every l ^ / < n .

T(r, αj-*>)=o{T(r, /)}, r — ^ co,

Hence 1, z, •••, (l/(k—l)\)zk~\ at*\ •••, αn"*} are £ + w linear independent
functions which are quasi-small with respect to f(z), and we denote them by
βι, β*, —, βk+n respectively.

For sjg l, we consider the C-linear space H8 spanned by the functions
Πί-ij8jβ, yυe{l, •••, k + n\. As in [6], let ds denote the dimension of Hs, we
have

Therefore, for any given s>0, we can choose an s0 such that

Let &!, •••, bι(l=d8Q) be a basis of H8Q and Sj, •••, 5T O (m—dS(J+ι) be a basis
of H,0+ι. We define P(/) and A by

and

Λ =
 Pif)

First of all, we may apply the following identity for Wronskians

W(hlt - , hm, gu - , gt)(W(hu ..., Λm))«-

=WW(Λ l t - , A«, ί i), - , W(hlt ..., Am,

to show that

m(r, A)=o{T(r, /)} +S(r, / ) , r — * oo,

Putting MJ(f)=W(B1, -,Bm, bj), y = l , 2, ••-,/, we obtain

Note that each M} is a linear differential operator with

Mj{βμ)=0, for μ=l,2,-,k + n,

therefore

Mί(f)=Nj(L1(f)),

where again N} is a linear differential operator. Using the well-known lemma
on the proximity function of a meromorphic function ([3] or [8]), we have
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m(r,

Since !,(/)=£,(/<*>) and

T(r, /<*>)£(*+l)7(r, f)+m(r, - ^ - ) ,

m(r, Λ)=ro(r, - J ^ L - ) = S ( r , /)+o{7>, /)}, r —• oo, rφE1(δ).

Therefore, by the first fundamental theorem we have

0^m(r, j)=Mr, A)-N(T, j)+m(r, A)+O(X)

&N(r, P(f))+lN(r, -j^j-lNir, L1(f))+m(r, A)+O(l), r - oo.

(2.4)
Since

P(f)=W(Bu - , Bm. bj, -, btf)

E±. ... I t , k ...
/ i i f "it >

N(r,bj)<T(r,b})=o{T(r,f)},
and

N(z, Bj)^T(r, Bj)=o{T(r, f)\, r—^ oo, r^Eι(δ),

we have

N(r,P(f))£(m+l)N(r,f)+o{T(r,f)}, r —> oo, r^£,( ί ) . (2.5)

On the other hand

N(r, Lλ{f))=N{r, /<*+n>)+o{T(r, /)}

= N(r, f)+(k + n)N(r, f)+o{T(r, /)}, r —+ <*>, rψEtf).

(2.6)

From (2.4), (2.5) and (2.6), we have for r—oo, rψEtf),

0<(m+l)N(r, f)+lN(r. -j^)-lN{r, f)-l{k + n)N(r, f)

+m(r,A)+o{T(r,f)}.

Therefore, for r^oo,
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(k + n)N(r, f)<jN(r, f)+N(r, LJ )+S(r, f)+o{T(r, /)}

<N(r, z , J ( t ) ) ) + ( i + ,)jV(r, f)+o{T(r, f)\+S(r, /) .

Since S(r, f)—o{T(r, /)}, r-*oo, rφ.e, where e is a set of finite measure, we
set E{$)—E,f$)\Jey hence the upper logarithmic density of E(δ) does not exceed δ.

This completes the proof of the Lemma 4. •

3. Proof of the theorems.

Proof of Theorem 1. Let bi(z)(i=l, •••,/) be / distinct small entire func-
tions, which can be complex numbers, with respect to f{z). Without loss of
generality, we assume that bt(z) (i—l, •••, q; q^l) are the largest linearly in-
dependent group in {bi{z)}\=1.

Let F(z)=Σ5-il/(/ c* )W-6<W), then ([8])

Denote L(f^)=W(bίf •••, bq, f°°)/W(bu •••, bq). By Lemma 4, we have

(q+k)N(r, f)<N(r, L ( /

1

( * ) ) ) + ( 1 + £)Mr, /)+o{T(r f /)}, r - o

Noting that L(f^)=L(f^-bt) ( ι=l , •••, /), hence we get

, f)-N(r, -^i

Therefore

r, f)+S(r, f)+o{T(r, /)}, r - oo,

(3.1)

On the other hand, for p finite distinct complex numbers {a}}%lt
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=T(r, /<*«>)-ΛΓ(r, j^)+S(r, f)

r, f)-N(r, — L ^ + S f o / ) . (3.2)

Therefore, from (3.1) and (3.2), we have

+S(r, f)+o{T(r, /)}, r —> oo, r££(<5). (3.3)

However, from Lemma 1 it follows that

/<*>), r — > oo,

Noting that S(r, f)—o{T{r, /)}, r^oo, r ^ e and e is a set of finite measure, we
have from (3.3) that

Letting /, £^oo, e->0, we get

αeC" 6(2)

where the second summation is taken over all the small entire functions includ-
ing finite complex numbers.

This completes the proof of Theorem 1. •

Remark. In fact, from (3.3) we can get the following.

COROLLARY 1. // f(z) is meromorphic and transcendental, then

where the first summation is taken over all the small entire functions, including
finite complex numbers and

JV(r,/c*> = α)
β ( β f / c ^ l - h m Γ ( ^ / < i } ) .

Proof of Theorem 2. Let dι(z), •••, αq(z) be ^ arbitrary distinct small entire



314 WANG YUEFEI AND WANG SHUPEI

functions. Without loss of generality, we assume that a^z), ••-. an(z), (n<*q)
are the largest linear independent group in {aι(z)}%χ. Put

W(alf fl8, •••, an)

Since ([8])

<T(r,

))=N(r, f^)+nN(r, f)+S(r, f),

and

we have

( i ) ( ) ). (3.4)Σm(r, ^ i Γ ^ - ) ^ Γ ( r ( f^)+nN(r, f)-N(r, -Jjj

We distinguish two cases.
( i ) There exists an integer sequence {̂ }7=i> s u c h t n a t

N(r T(h))^r>
holds on R except possibly a set εkj of finite measure.

In this case, from Lemma 4, we have for any positive numbers 5 and δ,

{kj+n)N(r, f)£N(r, L{f<kfi))+Q-+*)N(r, f)+o{T(r, /)}, r-<χ>,

where Ekβi) is a set whose upper logarithmic density does not exceed δ.
Therefore,

kjN(r, / ) ^ ( l + β ) M r , /)+o{T(r, /)}, r — > 00,

For any given e'>0, we choose an kjQ such that

ε'kh>(l+ε)n.
Then

nίV(r, f)<t'N(r, f)+o{T(r, /)}, r — > 00, r ^ E 0 , (3.5)

where E0~Ekj0(l/4)Uekj0, whose upper logarithmic density does not exceed 1/4.
By Lemma 1, we can choose some K, such that for every integer k
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T(r, f)<4eKT(ry /<*>), r — ^ <χ>, r£M(K), (3.6)

where M(/£) is a set of upper logarithmic density at most 1/4.
Put Ex=E0\jM(K). Then the upper logarithmic density of Ex is at most

1/2. From (3.5) and (3.6), we have for every positive integer kt

nN{r, f)<ε'N(r, f)+o{T{r, /<*>)}, r -^ oo, r ^ . (3.7)

We can now deduce from (3.4) and (3.7) that for every positive integer k,

/<*>)+ε'iV(r, f)+o{T(r, /<*>
J Uj

r —> oo, rφ.Ex.

Since S(r, f)=o{T(r, /)}, r—>oo, r^^, and e is a set of finite measure, we
have from (3.6), S(r, /)=^{T(r, /c*>)}, r^oo, rφM(K)\Je. Therefore,

Thus for every positive integer k, we obtain

by letting ε'^0 and ^—>oo.
(ii) For every positive integer k,

nN(r, f)£N(r, ~[^jr^) (3.8)

holds on a set Sk of infinite measure, except possibly finitely finitely many
integers ku •••, km. Then we have from (3.4) and (3.8) that

), r s S , .

Therefore, again by applying Lemma 1 to S(r, f) we have

for every k^{kj}%i. This completes the proof of Theorem 2. D

Proof of Theorem 3. Let n — l in Lemma 4 and

Then for
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Mr, f)+N(r, LJ(fe;) )+o{T(r, /)}. (3.9)

From Lemma 2

T(r, /)<iV( ( j ) ( ^ J ) ( ^ ^

(3.10)
Noting that

hence, from (3.9) and (3.10), we have

kΠ(r, f)£N(r, j)+N(r, fJa)+'N<r, f)+S(r, /),

(3.11)
where we write o{T(r, /)} as S(r, / ) . For r<£E(δ), r->cx>,

follows from (3.10) and (3.11), which completes the proof of Theorem 3. D

Remark. The method used in this paper is effective in dealing with the
problems of meromorphic derivatives, specially concerning "small entire func-
tions". Whether the "small entire functions" in our theorems can be replaced
by "small meromorphic functions" is still a problem. The difficulty is that the
existence of the primitive functions of the small entire functions is needed in
the proof of our principal lemma.
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