
O. IKAWA
KODAI MATH. J.
16 (1993), 295-305

HARMONIC MAPPINGS, MINIMAL AND TOTALLY GEODESIC

IMMERSIONS OF COMPACT RIEMANNIAN HOMOGENEOUS

SPACES INTO GRASSMANN MANIFOLDS

Dedicated to Professor Hisao Nakagawa on his sixtieth birthday

BY OSAMU IKAWA

§ 1. Introduction.

Let M and N be two compact connected Riemannian manifolds. A smooth
mapping F: M —> N is called harmonic if it is an extremal of the energy.
Moreover, if harmonic mapping F: M-^N is an isometric immersion, then F
is a minimal immersion. An isometric immersion F: M->N is called totally
geodesic if F carries every geodesic of M to a geodesic of N. A totally
geodesic immersion is especially minimal. The existence and construction of
minimal immersions and harmonic mappings are interesting and important
problems in various situations. In the previous paper [1], we construct har-
monic mappings and minimal immersions from compact Riemannian homogeneous
spaces into Grassmann manifolds. In this paper, we study different construction
of harmonic mappings, minimal and totally geodesic immersions of compact
Riemannian homogeneous spaces into Grassmann manifolds (see Theorem A
and B).

The author would like to express his hearty thanks to Professors Tsunero
Takahashi, Katsuya Mashimo and Hiroyuki Tasaki who gave him valuable
advice during the preparation of this note.

§2. A construction of harmonic mappings and minimal immersions of
compact Riemannian homogeneous spaces into Grassmann manifolds.

Let G be a compact connected Lie group with Lie algebra g and K be a
closed subgroup of G with Lie algebra f. Take a bi-invariant Riemannian
metric < , > on G and denote also by <, > the induced Ad(G)-invariant inner
product on m—ϊ1. Thus M=(Mn, <, » = G / / f is a compact Riemannian homo-
geneous space. The subspace m of g is naturally identified with the tangent
space T0(M) of M at o=π(e), where π: G-*M is a natural projection.

Take a nontrivial real spherical representation (p, V) of (G, K), that is,
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(p, V) is a nontrivial real irreducible representation of G, and there exists a

nonzero vector VO(ΞV such that

p{k)vQ—vQ for each

Take a G-in variant inner product <, > on F . Put

VQ=Rvo,

the orthogonal projection of span{p(X)p(Y)v0; X, Fern}

to ( F
(2.1)

F f c = t h e o r t h o g o n a l p r o j e c t i o n of span{p(Xι) ~ρ(Xk)v0; Xu •••,

to

where we denote the differential representation of p of G by the same symbol
jθ. Since p is irreducible, there exists an integer m such that

771

F = Σ ^ t (the orthogonal direct sum of /ίΓ-mvariant subspaces),
t = 0

VtΦ{0} fovO£i£m.

Since p is nontrivial, we get ra^l. Put 5m={0, •••, m}. For subsets P(Φ0),
Q{Φ0) with Sm=P\jQ (disjoint union), put VP =Σ,PGPVP) VQ = Σ?GρFς, α =
dimFp, b = dimFρ. Then F + F P + F ρ (orthogonal direct sum of ^-invariant
subspaces). Put

(2.2) F : M = G/K—> Gatb(R)=SO(a+b)/S(O(a)xO(b));

gK>—• p(g)VP=p(g)S(O(a)Xθφ)).

We call Gafb(R) the Grassmann manifold consisting of all α-dimensional subs-
paces in F .

We explain that F is /2-full. Let Fp and Fρ be subspaces of VP and VQt

respectively. Put α'^dimFp and fr^dimFρ. Then SO(a'+b') is considered
as a closed subgroup of SO(a+b) in a natural manner. So Ga>,b'(R) is a totally
geodesic submanifold of Ga,b(R). The mapping F is said to be β-full when
the image F(Af) is not contained in these totally geodesic submanifolds Ga>tb>(R)
with a'+b'<a+b. From the irreducibility of {p, F), the mapping F defined
in (2.2) is clearly Λ-full.

We prove the following theorem.
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THEOREM A. F is a nonconstant R-fuίl equtvanant harmonic mapping. If
the isotropy action of K is irreducible, then F is a minimal immersion. In parti-
cular, if we put P— {0}, Q = {1, •••, m}f then F is a minimal immersion of M
into a projective space.

In order to prove this, we prepare a few lemmas. First, we note that
r ••• +Vk+1 for k—0, •••, m, where we put Vm+1={0}.

LEMMA 2.1.

/t>(m)V*c:Vr

ik-1+Vr

ifc+yik+1 for k=0, 1, •••, m, where we put V^={0}.

Proof. We prove this by induction on 1;, It is clear when k=0. We
assume that this lemma holds until k. For 0<^ι<Lk — 1, by the hypothesis of
induction, we get <p(m)Vk+1, Vt>=<Vk+l9 p(m)Vt>= {0}. Q.E.D.

We denote an orthonormal basis of m and ϊ by {Eί}liι^n and {-En+
respectively. We remark that the Casimir operator

of p is a scalar operator because C is a G-invariant symmetric transformation
and p is irreducible. For v<^V, we denote the Vk-component of v by vVk.

LEMMA 2.2. ^Uρ(Eι)(p(Et)vk)Vk+ί(ΞVk-{-Vk+ί for each vk^Vk

Proof. We have

Hence we have by Lemma 2.1

Since Vk is K-invariant, we get the conclusion. Q. E. D.

The Lie algebra u of SO(a+b) acts on V, naturally. Put ΐ=Lie(S(O(α)X
Oφ))) and p= { T G U ; TVPaVQ, TVQczVP}. Then u = ϊ + ί is the canonical
decomposition of u. For T(=n, we denote the £(resp. ϊ)-component of T by
Tp(resp. Ti).

LEMMA 2.3. Σ>Ui(ρ(Eι)ίp(Eι)p+p(Et)pp(Eι)ι)=0.

Proof. For each vk^Vky we have

Σ3
l



298 OSAMU IKAWA

Since

Σ ρ(Etγ= Σ (p(Et)ίp(Et)p+p(Et)9p(Et)ί)+ Σ (p(Et)ιp(Et)ί+p(Et)9p(Et)9),
i = ί ι=i ϊ=l

we get the conclusion. Q. E. D.

Proof of Theorem A. Let H^p denote the tension of F at o. Then by-
homogeneity F is harmonic if and only if H=0. By (4.1) in [1], we have
H=Σιΐ=ιίp(Eι)u ρ(Et)9']. From Lemma 2.3, we have

H=2 Σ p(Et)φ(Et)p=-2 Σ p(Eι\p(Eι)ί.
i=l ι=i

If 0, I G P O Γ 0, l e Q , then we have Hvo=O by ρ(Eτ\vo=0. If OeP, l e Q or
OeQ, l e F , then we have Hvo=O by p(Eι)ίv0

:=0. Hence we have / / | F 0 = 0 .
We assume that H\(V0+ ••• +F > 7 )=0. We will prove J7 |7, + 1 =0. Clearly, we
have HVJ+ιCzyΣt{toVι. By the hypothesis, we have

Hence we have HVJ+ίczVJ+ι+V}+i+V,+•,. We define two maps XP, XQ: Sm^{0, 1}
as follows:

1 (ieP) f 1 (k(=Q)
e ( )

0 (*€=<?), I 0 (AeP) .

For each υ ί + 1 s F J + I , we have by Lemma 2.1 and the hypothesis of induction

Σ? β ( ) Σ

Σ2
Xp(l)(p(Eι)(p(Eι)vJ+1)vk)vι

1

+3) Σ

Σ (p(£«
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2] * ( £ ) Σ *Σ2] */>(£) Σ Σ XQ(l)(p(Eι)(p(Eι)vί+1)vk)vι
=j 1 = 1 l = k - l

Σ *Σ
1=1 l=k-1

Σ

Hence, if + l , /+2<=P or +l , /+2GEQ, then we have (Σ>nt=ιp(Et)ίp(Ei)v)vj+ι

0. If y + l e P , j+2<=Q or + l e O , 7+2eP, then we have by Lemma 2.2

Σ p(Et\p(Et)ίy^χ= Σ

Hence we have H\VJ+ί—Q. Therefore F is a nonconstant harmonic mapping.
We show that F is an isometric immersion if the isotropy action of K is

irreducible. We define a symmetric linear transformation A of T0{M) by

<Xt AY>=(F*X, F*Y) for Z, F ^ T 0 ( M ) ,

where (, ) denote a SO(α+δ)-invariant Riemannian metric on Ga,b(R). Since
A is a /f-ho isomorphism, Λ is a scalar operator by the irreducibility of (G, K).
The scalar is clearly nonnegative. So if F were not an isometric (more
precisely, homothetic) immersion, then F*=0. This means that VP andFQ are
G-invariant (see (2.1) in [1]). This is a contradiction. Hence F is an isometric
immersion. Q. E. D.

Remark 2.4. Put

F : M = G/K~>S*-1={VΪΞV; | | v | | = ||v0||} C<=Vr=ΛΛr) gKi—>p(g)vQ.

Then we can prove that F is a harmonic mapping into a sphere in the same
way of the proof of this Theorem (see [2] and [3], Proposition 8.1, p. 21). •

Remark 2.5. Let (p, V) be a complex (resp. quaternion) spherical representa-
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tion of (G, K). Put

VK={V^V; p(k)v=v for each k<=K)(Φ {0}).

If there exists a nonzero vector vQ^Vκ such that

(2.3) <ρ(g)v0, vo}^R for each

then we can construct a harmonic mapping from M into a complex (resp. qua-
ternion) Grassmann manifold in the same way of Theorem A. Condition (2.3)
means

PROPOSITION 2.6. A complex (resp. quaternoiri) spherical representation (p, V)
is satisfied with (2.3) // and only if there exists a real spherical representation
(T, W) of (G, K) such that

(2.4) (p, F)=(r, W)c{resp. (τ, W)B),

where (r, W)c (resp. (τ, PΓ)*) denote the complex (resp. quaternion) representation
of G obtained by extension of the coefficient field of (r, W) to C(resp. H).

Proof. Clearly (2.4) implies (2.3). Conversely we assume (2.3). If we put

PF=/Minear span of {ρ(g)v0; g^G},

then (2.4) is concluded. Q. E. D.

If (G, K) is a compact symmetric pair (see § 3 for definition) of rank one,
then every complex (or quaternion) spherical representation (pf V) of (G, K) is
satisfied with (2.3) (see [3], p. 25, Cor. 8.2 and [1], § 3, Lemma 3.3 (3)).

We prepare a few lemmas for use later (§3).

LEMMA 2.7. p(X1) "p(Xk)v0 = p(XrW) ••• ρ(Xτ^)v« (mod F0-f ••• +Vk-%) for
Xlf •••, Z ^ e m , rG(Sϋ, where we denote the symmetric group of degree k by ©*.

Proof. We have

+p(X1y-p(Xi-1)p([Xl,Xt+ll)p(Xl+2):-p(Xk)v6.

Hence we get the conclusion Q. E. D.

LEMMA 2.8.

Vk—the orthogonal projection of span{p(X)kv0; Z e m ) to (VQ-\ \-Vk-i)1-
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Proof. We prove this by induction on k. It is clear when k=0. We
assume that this lemma holds for k. From this, we get

Vk+i—the orthogonal projection of spa.n{p(X)p(Y)kv0; X, Fern}

to (yo+...+vky.

From Lemma 2.7, we have

•h J_1\

+Vk)

for 1=1,2,-", k-\-2. By the formula of Van der Monde, we have

1 1 ••• 1

det 2° 21 ••• 2k+ι = Π 0 - 0 * 0 .

Hence the vector p(X)p(Y)kv0 is a linear combination of p(X+Y)k+1v0, •••,
/ 0 ( * + ( * + 2 ) r ) * + 1 i / β (mod F o + ••• + 7 * ) . Q. E. D.

§ 3. A construction of totally geodesic immersions of compact irreducible
Riemannian symmetric spaces into Grassmann manifolds.

Let (G, K) be a compact irreducible symmetric pair, that is, G is a compact
connected Lie group with Lie algebra g, K is a closed subgroup of G with Lie
algebra ϊ, and there exists an involutive automorphism θ of G such that K lies
between the identity component (Kθ\ of Kθ and Kθ—{g^G; θ(g)=g}. And
the adjoint action of K on m is irreducible.

An Ad(G) and ^-invariant inner product < , > on g naturally induces a G-
invariant Riemannian metric on M—G/K. M is a compact Riemanniau sym-
metric space with respect to the G-invariant Riemannian metric. Since θ is an
involutive automorphism, we have a canonical orthogonal decomposition of g:

Put F as in § 2 with P= {even}, Q = {odd}, then we have the following theorem.

THEOREM B. F is a totally geodesic immersion.

In order to prove this, we prepar the following lemma.

LEMMA 3.1.

p(m)Vkc:Vk-i+Vk+ι for 6 = 0 , 1, ••-, m, where we put F _ 1 = F m + 1 = {0}.

Proof. We prove this by induction on k. It is clear when k—0. We
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assume that this lemma holds until k. From Lemma 2.1, it is sufficient to
prove <|θ(m)F*+i, 7*+i>={0}. When k is even, put k=2l. For ΛΓem, by the
hypothesis of induction, we get

p 1 + v s + ••• + y 2 ί + 1 .

For F e r n , we get

By the hypothesis of induction, we get

%ρ(Y)(ρ(Xrι+1Vo)v2s^V0+V2+ - +V2l.

For each Z e m , we have

Σ

From Lemma 2.8, it is sufficient to prove

<p(Y)p(Xγι*iv0, p{Zfι^v,y=G for each X, Y, Zem.

For Xι, •••, Z 2 ( + 2 , Fi, •••, F ! 1 + 1 e n t , σ ε @ ί i n , by the hypothesis of induction and
[m, m]cf, we have

u+ύv» p(Yι)

Hence we have
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=<p(ZyP(Wy^vOf p(Z)ιp(W)ι+ίVo>

= 0 for each W, Z e t n .
Hence we have

0=<p<y+mX)u+*υ9,

21 + 2/9/ 4-2 \

= Σ «= Σ
0

\ I /

for X,r,Zett ! ,m=l, ,2/+3.

By the formula of Van der Monde, we have

1 1 - 1

det 21 -. 2 2 l + 2

(2/+3)ι» (2/+3) ί t + 8 .

- Π

Hence we have <p(Y)p(X)*ι+1v0, p(Z)u+1v0)=0. When * is odd, we can prove
this in the same way. Q. E. D.

Proof of Theorem B. We have p(m)czp by Lemma 3.1. Hence F is a
totally geodesic immersion. Q. E. D.

Remark 3.2. Let (pt V) be a complex (resp. quaternion) spherical represen-
tation satisfied with (2.3). Then we can construct a totally geodesic immersion
of M into a complex (resp. quaternion) Grassmann manifold in the same way
of Theorem B.

The next example is not contained in Theorem 3.1, [1].

Example, (G, K)=(SC/(n), SO{n)) ( n ^ 3 ) .

Since G acts on Cn naturally, G acts on a complex vector space W=(σ, W)
~S2(Cn)=;span{U'V=l/2(u(g}v+v<g)u) u, ι;eCn}.. Let {e<}isfSn denote the can-
onical basis of C n . Put Vo—Έ^iei&W. Then we have a(k)vo—vo for each
&(=/f. Put (/>, V)—(σ, W)R. Then (/o, F) is a nontrivial real spherical repre-
sentation of (G, /f) (see Lemma 3.5). The canonical inner product on Cn=R2n

natually induces a G-invariant inner product on V. We define /f-invariant
subspaces Vk as in (2.1). Then we have

2 = Σ
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Put F as in (2.2), then F is a minimal immersion. Since V0 = VSf VΊ = V2

(/f-isomorphic), this example is not contained in Theorem 3.1, [1].
In order to prove the irreducibility of (p, V), we prepare a few lemmas.

LEMMA 3.3. Let (σ, W) be a complex irreducible representation of a compact
connected Lie group G. If there exists a weight λ of (σ, W) such that —λ is not
a weight of (σ, W), then (σ, W)R is a real irreducible representation of G.

Proof. If (σ, W)R were not irreducible, then there exists a real representa-
tion (p, V) of G such that (σ, W)-{p9 V)c by Lemma 2.2, [1]. Let / denote
the conjugation of W with respect to V. Then / is a conjugate G-linear map-
ping with P—\. Let T be a maximal torus of G with Lie algebra i. Let vχ
be a nonzero weight vector of λ, that is,

p{H)vλ^Λ/~-ίλ{H)vλ for each He=t.

Since / is conjugate G-linear, we have

V^ϊ for each J/ei.

Since — λ is not a weight, we have Jvχ=0. Since / 2 = 0 , this is a contradic-
tion. Q. E. D.

LEMMA 3.4. O, W) is a complex irreducible representation of G.

Proof. We first let El3 denote the matrix, whose r-th row and s-th column
are given by δirδJgί i.e., EtJ has a 1 in the i-th row and /-th column and zeros
elsewhere.

It is sufficient to prove that the complexification δϊ(n, C) of 8u(n) acts on
W irreducibly. Suppose Wo(^{O}) is an Sl(n, C)-invariant subspace of W. In
order to prove W0=W, first we show v^WQ. Let v=^Σι^k^ι^n(ikiek'βι^W().
P u t ί = m i n { * ; akιΦθ], / = m i n { / ; atιΦθ}. We may assume (i,j)Φ(n,n). If
/ = y « n ) , then we have WQ 3 σ(Enι)

2v= 2auel. If i<j, then we have WQ^
σ(Enι)v=Σιjίianaιιeren. Hence, if i<j—ny then we have W^aιnel. If ι<j
<n, then we have W^σ(Enj)σ(Enι)v=aιjel. Hence we get ei^W0. For 1<;
i<Ln—l, we have W^σ{EιnYel = 2e\. Hence we have v^W*. Since M7^
span {p(G)v0}, we have WK0=W. Q. E. D.

LEMMA 3.5. (p, V) is a real irreducible representation of G.

Proof. Put
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T=S(t/(l)X Xί/(l))

and

i={V=ϊdiag{x l f •••, xn

Then T is a maximal torus of G with Lie algebra 1. For H=yί=ΛάvΆg{xu •••,

x n }el, we have a(H)(el'ej)=V^l(Xi+Xj)ei'ej. Since n ^ 3 , this shows that

(p, V) is irreducible by Lemma 3.3 and 3.4. Q. E. D.
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