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Introduction.

Let R be an open Riemann surface and V be a union of a finite number
of regular subregions in R with disjoint closures. We assume that R—V is
connected. Denote by C¢(@V) the space of real analytic functions on oV and
by H(R—V) the space of harmonic functions on R—V. A linear operator L
from C¢@V) to H(R—V) is called a normal operator if L satisfies the follow-
ing conditions:

Lf'Bsz ’

minf<Lf<maxf,
av ov

Sw*dL £=0.

The notion of normal operators was introduced by L. Sario [13]. He constructed
two normal operators L, and L,. Here we are specially concerned with L,-
operator. If R is a compact bordered surface with smooth boundary, L,f is
characterized by the following additional properties:

L,f=constant on §,,
* -
J, rdLar=0,

where 8, are the boundary components of R. For a general open Riemann
surface R, L.f is defined as lim,.. L%»f, where {R,} is a canonical exhaustion
of R and L%~ is the L,-operator from C¢@V) to H(R,—V).

Let I',(R) be the Hilbert space of real square integrable harmonic differen-
tials on R and [",:.(R) be the space of semiexact differentials in I",(R). Let us
denote by I'»n(R) the orthogonal complement of */ ", (R) in L,(R). Then L,f
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is characterized by the following properties:
There exist a harmonic function #,, on R with dupnln»(R) and a
Dirichlet potential » on R such that

Llf=uhm+ﬁ
on R—V and

gc*dL, =0

for all dividing cycles ¢=02 with QcR—V.

In [7], we introduced ['#» the space generated by the differentials of
generalized harmonic measures and [",.. the space of harmonic differentials
which have vanishing periods along almost all weakly dividing cycles.

In the present paper we construct a normal operator L,, which is a
generalization of L,-operator. In contrast with L,f, L,f is characterized by
the following properties:

There exist a harmonic function u#7} on R with dujnel'in(R) and a
Dirichlet potential p on R such that

f,,f=u,{,}+p
on R—V and

Sé*dﬁl F=0

for almost all weakly dividing cycles é=0G with G R—V.

Roughly speaking L,f takes a constant value on each connected component
of the Royden harmonic boundary of R and *dL,f has vanishing period along
cycles dividing the components of the Royden harmonic boundary.

First, we shall define a finite partition (P) of the Royden harmonic boundary
and define the subspaces (P)'im(R) and (P)['hwe(R) of I'n(R). Further we
shall define periods of a differential along components of the harmonic boundary.

Next, we construct (P)L.-operator and L,-operator. We also study an
extremal property of L-operator.

Finally, we shall introduce a modulus function obtained from L -operator
and give an example related to the topic.

1. Preliminaries.

Let R be an open Riemann surface and I'=7"(R) the Hilbert space of real
square integrable differentials on R (cf. [2]). For w,, w,; € I'(R), (@, @s)r=
SRw,/\*wz denotes the inner product of w,, w,. where *w is the conjugate dif-

ferential of w and |w|r denotes the norm of @ on R.

We use the notation |w| for the density v'a®+b%|dz| if w=adx+bdy locally.
For the sake of convenience we recall some definitions of subspaces of I" used
below. Let I, be the space of exact differentials in /" and [, be the closure
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of differentials of C'-functions with compact supports. Let I', the space of
harmonic differentials in I, [';,. be the space of semiexact differentials in /7,
and I'y.=I"»NI".. We denote by /', the orthogonal complement of */";,, in
I, where *[7, is the class of differentials conjugate to those in I',. Then
the following orthogonal decompositions are well known:

Fth“‘Feo‘)'*Feo:
Pe:Fhe+Feg.

Let D(R) be the class of real continuous Dirichlet functions on R and
BD(R) be the class of bounded functions in D(R) (cf. [3], [14]). Let HD(R)
(resp. HBD(R)) be the class of harmonic functions in D(R) (resp. BD(R)) and
Dy(R) (resp. BD,(R)) be the class of potentials in D(R) (resp. BD(R)). Since
dDy={df; feD, s, we have (g, dp)r=0 for any o= ,(R) and p=D,(R).
The class BD(R) forms an algebra and the class D(R) has the following lattice
property ; if f, g&D(R) then fUg=max(f, g) and fNg=min(f, g) belong to
D(R).

Let R* be the Royden compactification of R and A the (Royden) harmonic
boundary of R. Every function f in D(R) can be extended continuously to R*,
Since the extension of f is unique, we may use the same notation f for the
eXtension.

We know that BD(R) enjoys the following Urysohn’s property. That is,
for any two non-empty disjoint compact sets K;, K, in R* and two real values
a1, @, there is a function f in BD(R) such that f=a, on K,(71=1, 2) and
min (a,, a,)=<f<max(a,, a,).

We use the following lemmas ([14]) in the sequal.

LEMMA 1.1. Let {f,} be a sequence of functions in BD,(R) and f a bounded
Sfunction on R. If ||df .|z is uniformly bounded and {f.} converges to f uniformly
on every compact subset of R then f&BDR).

LEMMA 1.2. A BD-function (resp. D-function) f on R belongs to BDy(R)
(resp. Dy(R)) if and only if f=0 on A.

LEMMA 1.3. Any BD-function (resp. D-function) f on R can be umquely
decomposed into the form f=u-+p, where uc HBD(R) (resp. HD(R)) and p<
BDy(R) (resp. Dy(R)) (the Royden decomposition).

LEMMA 1.4. Every HD-function on R has p-integrable boundary value on
A, where p is the harmonic measure of A with respect to a point z,ER.

2. Generalized harmonic measures.

DEFINITION. A harmonic function # on R is called a generalized harmonic
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measure if the greatest harmonic minorant u A(1—u) of u and 1—u vanishes
identically on R ([5]).

LEMMA 2.1 ([7]). Suppose that u is a nonconstant generalized harmonic
measure with finite Dirichlet integral on R. For each 0<r<l, set G,={pcs R;
u(p)>r}. Then

—_— *
(du, w)r= SMT ©

for any wsI",(R) with Saa low| <oo.

We note that Saa |w| <oo for almost all » (0<r<1), where each relative

boundary of an open set is oriented so that the open set lies on the lefthand
side of the boundary (cf. [1], [9]).

DEFINITION. We say that an exact differential du on R belongs to the
class I'#m(R) if there exists a sequence of functions {u,}, each u, being a real
linear combination of generalized harmonic measures with finite Dirichlet in-
tegral and ||du,—du|z—0(n—co).

Then clearly I"'/n(R) is a closed subspace of I7,(R).

3. Partitions of the harmonic boundary.

DEFINITION. We say that (P)=(P: 8,, ---, 8x) is a finite partition of the
harmonic boundary A if d,, -+, 6y are mutually disjoint nonempty compact
subsets of A and A=d,\U---\Udy.

DEFINITION. An exact differential du in ["in(R) belongs to the class
(P)I'#=(R) if u takes a constant value on each part §;(1<7<N) of the partition
(P) of A.

PROPOSITION 3.1. The class (P)I'imn(R) is a closed subspace in I'im(R).

Proof. Clearly (P)[ in(R)cT'im(R). Suppose that du,=(P)in(R), ducs
I'im(R) and ||du,—du|z—0. We may assume that there is a point z,& R such
that u,(z,)=u(z,)=0 and {u,} converges to u uniformly on every compact
subset of R. Let u,=c$ on §;(1<7<N).

First, we prove that {u,} is uniformly bounded. Suppose that {u,} is not
uniformly bounded. We may assume that ¢’<0 and ¢ —o. Let M be an
arbitraly positive number. Then for sufficiently large number n, 0U(x,NM)=0
on 0, =M on J, and converges to OU(uNM) uniformly on every compact
subset of R. Let h be an HBD-function on R such that A=1 on 8, and h=0
on A—Jd,. Then Ah((QOUu.,N\M)—M) converges to A(0U(uNM)—M) uniformly
on every compact subset of R. Further, for sufficiently large number =z,
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hOUu,N\M)—M)=BDyR) and
d(ROU(uNM)—M )= lld(hus)lp+2MIld b g
S3M | dhllrtdullr) .

By Lemma 1.1, AQU(uNM)—M)BDR) and M=unM<u on d,. While,
HD-function u is p-integrable on A and p(d;)>0, where p is the harmonic
measure with respect to z,. This is a contradiction. Hence, {u,} must be
uniformly bounded and u= HBD(R).

Since {c$’} is uniformly bounded, we may assume that there are constants
e, -+, ¢ such that ¢’ —¢% (n—o) for each j. For each d,, let g be an
HBD-function on R such that g=1o0nd, and g=0 on A—4,. Then g(u,—cy’
&BD,(R). By the similar argument above, we conclude that g(u—c“)eBDy(R).
Hence u=c¢“ on 4,. m

4. Weakly dividing cycles.

We say that ¢ is a curve on R if ¢ is an image of a homeomorphic mapping
from an open interval or the unit circle into R. Let {c.} be a set of (at most
countable number of) oriented piecewise analytic curves clustering nowhere
in R.

Let (P)=(P: é,, ---, 0y) be a finite partition of the harmonic boundary A.
We say that a formal sum ¢=3c, is a (P)-weakly dividing cycle in R if there
exists an open set G such that

(1) c¢=3)c, coincides with the relative boundary oG of G,

@) 9GNA=Q,

(3) for each 4, it holds either §,cGNA or §;,cA—G,
where the closure is taken in R*.

In (1), 0G is oriented so that G lies on the left hand side of dG. So, if
G is the complement of a curve 7 in R, then 9G is the sum of two oriented
curves 7+ and 7~ which have the same image as 7 and are oriented reversely.
We write (1) simply c=0G. While, in (2) 0G is the topological relative boundary
of G in R.

We say that ¢ is a weakly dwiding cycle if (1) and (2) hold ([7]).

We say that a property holds for almost every curve or almost all curves
in a family of curves if the subfamily of exceptional curves has infinite extremal
length (cf. [11]).

DEFINITION. We say that a differential w belongs to the class (P)I 4 we(R)
(resp. 'hwe(R)) if weI',(R) and Scw=0 for almost all (P)-weakly dividing cycles
(resp. weakly dividing cycles) c.

We note that if w<I'(R), then S |w| <oo for almost every weakly dividing
[4
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cycle and (P)-weakly dividing cycle c.
We know that the class [, w.(R) is a closed subspace in [',(R), and that
the orthogonal decomposition

Fh(R)=FI{1v\t(R)+*Fhwe(R)

holds ([7]). By the similar argument, we can prove that (P)I ", .(R) is a closed
subspace of I',(R) and the following

PROPOSITION 4.1. I'(R)=(P) in(R)+*(P) 1 we(R).

5. Periods along the harmonic boundary.

Let V be a union of a finite number of regular subregions of R with
disjoint closures. By a regular region we mean one which is relatively
compact and bounded by a finite number of disjoint analytic curves. Suppose
that R—V is connected. Let I", be a subspace of I",. We say that g=I (R
—V) if ¢ is a harmonic differential on a neighborhood of (R—V)UdV and o=
I'.(R-V).

Let (0, A—0) be a partition of A. For ¢=I",(R—V), we shall define the
period of ¢ along 4.

LEMMA 5.1. Let G be a subregion of R with piecewise analytic boundary.
Let ¢ be a harmonic differential on a neighborhood of G\UAG such that €I,(G)

and Saalal<oo. If GNA=@, then Saao'=0.

Proof. Let G be the double of G along dG. If G is compact, then the
statement clearly holds. Hence, we assume that G is noncompact. Since G
has no Green’s function, there exists an exhaustion {2,} of G such that @,
is symmetric with respect to dG and

1img lg]|=0.
02,nG

n—oo

Since

= y

a+g
S 30pnG 36nn

we have Saaa=o. n

DEFINITION. Let (0, A—0) be a partition of A and v;=v§Y be an HBD-
function on R—V such that vs=1 on é and vs=0 on (A—d)\UadV. We call v; a
generalized harmonic measure of d on R—V

Set G,={peR; vs(p)>r} for 0<r<1l. Then G, is a weakly dividing
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cycle such that G,NA=d and G,cR—V. By Lemma 2.1, we have the following

LEMMA 5.2. Let o[ (R—V). Then

— *
S aa,"—(d”"’ O)r-v
for almost all 0<r<1.

DEFINITION. For ¢=/l",(R—V), we define the period of ¢ along J as

— — *
550_ gaaro‘ (dvas U)R—Vr
where r is the value for which Lemma 5.2 holds.

PROPOSITION 5.3. Let (3, A—0d) be a partition of A and c¢=03G be a weakly

dwiding cycle such that GNA=6 and GER—V. Let eel'W(R—V) with Sc|0l<
co. Then for almost all 0<r<1,

i o=lo.
Gy ¢

Proof. There is a BD-function w such that w=1 on 4, w=0on R—G and
harmonic on G. Then the harmonic part of the Royden decomposition of w
on R—V is the generalized harmonic measure v of 6 on R—V. By Lemma
5.1, for almost all 0<r<1,

SO‘=S U=S . 1
[3 d{w>r) G,

THEOREM 5.4. Let (P)=(P: 0y, ---, 0y) be a partition of A and oI, (R).
Then a= (P wR) if and only if Ss =0 for all ;.
7
Proof. Let v,=vf;” be the generalized harmonic measure of d, on R—V,
that is, v;€ HBD(R—V) such that v,=1 on 4, and v,=0 on (A—d,)\JdV. We
extend v, on R so that v,=0 on V. Let v,=w;+p,; be the Royden decomposi-

tion of v, on R. Then w, is a generalized harmonic measure on R such that
w,=1 on §, and 0 on A—3J,. Since (dp;, 0)rg=0 for s=I"1(R), we have

(dw,, 0)rg=(dv,, 0)g-v -

Hence, (P)I"#n(R) being generated by {dw;}(1<7<N) proves the assertion. =

6. (P)L.,-operator.

Let V be a union of a finite number of relativel_y compact regular subregions
of R with disjoint closures. We assume that #—V is connected.
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THEOREM 6.1. Let f€C?@V) and (P)=(P: 6., -+, 0x) be a partition of the
harmonic boundary A. There exists a unique function us HBD(R—V) satisfying
the follwoing conditions:

)] ulov=r,
@ u=constant on 8, 1<;<N),
©) S *du=0 (1<7<N).

dj

Proof. (Uniqueness) Suppose that u,, u,& HBD(R—V) satisfying (1), (2), (3).
Then u,—u,=0 on 9V and u,—u, is constant on each 9,. Let v;=v " is a
generalized harmonic measure of d, on R—V. Then (3) implies

[, *du—u=(dv,, du—uDev=0 (=jN).

Since u,—u, is a linear combination of {v;}, we conclude that u,—u,=0 on
R-V.
(Existence) The matrix whose (¢, j)-element is defined by

[, *dv,=(dvi, dva-y
i
is symmetric and positive definite. In fact, for real variables x,, ---, xy,

Sxdv| = 3 xx(dvi, dvarz0
7= R-V 7=

7 1

and the equality holds if and only if 2,x;dv;=0, i.e. x,=0 for all ;.
Let Hf e HBD(R—V) such that Hf=f on 0V and 0 on A. Consider the
function u=Hf+3 cv, where ¢, are real constants. Then

;é cjgai*dv,zgﬁi*du _Sai*d Hf.

There exist ¢y, -+, ¢y such that Sﬁ.*du=0(1_<__i§N). Therefore, there exists
u satisfying (1), 2) and 3). ®m ~°
We denote the function u in Theorem 6.1 by (P)L.f.

THEOREM 6.2. Thg operator (P)L, from C®@V)to HBD(R—V) is a normal
operator. That is, (P)L, s a linear operator salisfying the following conditions:

) P)L.flw=T,
) minf <(P)L.f smaxf,

3) gav*d((P)z1 £)=0.
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Proof. 1t is easy to see that (P)L, is a linear operator and satisfies (1).

We prove (2). Let (P)Zlf::c, on d,. Itis clear that (P)L,1=1. Therefore,
it is sufficient to see that if f=0 then all ¢, are non-negative. Suppose that
there exists a ¢;<0. We may assume that ¢, is the minimum value of (PYL.f
on A. Let 0={psA; (P)L,f=c;}. Then 8 is a union of some parts of the
partition (P). For ¢>0, let G.={p=R; (P)L.f(p)<c;+¢}. Then, for almost
all sufficiently small ¢>0, 0G, is a weakly dividing cycle such that G.N\A=3,
and G.cR—V and

[raPLin=={ _ *aPLin<0.

Thus there exists a part 8, of (P) such that Sa *d((P)L.f)<0. This contradicts
the property (3) in Theorem 6.1. *

Finally we prove (3). Let »,=v§" be the generalized harmonic measure
of 4, on R—V. By the following Lemma, we have

R-V

[, P Lp==(d(1- Bv,), d(PL.1)

Il

((§) antn),

N .
3, ra@Ln=0. m
J=1 Bj

LEMMA 6.3 ([7]). Suppose that ve HD(R—V) and v=0 on A. Then

(dv, ®)p-v= —S

viw
av

for any wsI',(R—V).

PROPOSITION 6.4. For every feCe(@V),
[P L. Dlkv=—, f*d(PL.S).

Proof. We recall that (P)L,f=Hf+3Ycv, in the proof of Theorem 6.1.
Then by Lemma 6.3,

[4(PYLNh-r=(dHS, d(P)LfMa-y+ 3 edv, d(PYLaf ey
==, B d(PIL) Ze|, (P Laf)

=—{, FaPLp). =
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7. Refinement of partions.

DEFINITION. Let (P)=(P: 0y, -+, 0y) and (P)=(P’: o}, -+, 0%) are parti-
tions of A. We say that (P’) is a refinement of (P) if each &) is a subset of
some 0;.

LEMMA 7.1. If (P’) is a refinement of (P) then
1d(P)L o)l z-v=ld(P)LLf)r-v
for every f=Ce@V).

Proof. Let u=(P)L.,f and w'=(P’)L.f. Let vj=v% " be the generalized
J
harmonic measure of d; on R—V. Then u—u'=3% cjv}, for some ci(1< 7S M)
and
M
(du—u’), du')p_y= Zlcjg *du'=0.
=

&

J

Hence
(du, du)p_y=Ildu’| kv
and
Ol du—du'|g-v=Idulf-v—Idu'l[E-v.
Thus

ldullz-y=ldu'|z-y. =

8. [ .,-operator.
DEFINITION. We define a constant
kr-y=kp-v([)=Inf{[d(P)L\f)|z-v},

where the infimum is taken over all finite partitions (P) of A.

Since |dLofllr-v=|dv||g-y for any ve HBD(R—V) with v|s=/f, it follows
that kz.»>0 for every non-constant function f (see [12], [14], [15] for L,-
operator).

PROPOSITION 8.1. There exist a sequence of partitions {(P,)} of A and uc
HBD(R—V) such that

M (Prs1) is a refinement of (P,) (n=1,2, --),
@ ldullg-y=kr-v,
©) ulgy=r,

@) 1d(P)Lif)—dullpy —> 0 (n—c0).
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Proof. There is a sequence of partitions (P,) such that ||d(Pu)Lif)z-r—
kp-y(n—oo). By Lemma 7.1, we may assume that (P,.,) is a refinement of
(P,) (n=1,2, ---). Let u,=(P,)L.:f. By the same argument as in Lemma 7.1,
for n<m,

ldun—dunlz-v=Iduallz-r—ldumlk-v.

Hence, there exists a u= HBD(R—V) such that u|z=f, |du,—dulzg-y—0 (n—
) and [dullp-y=~kg-y. W

We note that # does not depend on the choice of a sequence of partitions
in Proposition 8.1. In fact, suppose that {(P7)} is another sequence of partitions
such that |d(P,)L.f|r-v—Kr-y (n—o0) and (P4.,) is a refinement of (P}) (n=
1,2, ). Let uy=(P,)L.f and u’=lim,..u4. There is a sequence of partitions
{(P$} such that (PZ.,) is a refinement of (P%) and (P”) is a refinement of
both (P,) and (P,) (n=1, 2, ---). Let u”=lim.cu” =lim,-.(P?)L,f. By the
same argument as in Lemma 7.1, (d(uh—u,), dur)r-y=0. Since |[dup—du”||z-v
—0 and IIdu,,——dulln_y—>0

(du”, du)p-y=lim(duy,, du,)r-v
=Liml]du$i||12e-v= ldu”]l3-v.

Hence
0=Zlldu”—dullp-v=Idullz-v—|du"|3-»=0.

Thus, u=wu”. Similarly, u=u’.

For any we HD(R), there exists a unique HD-function Ip_,(w) on R—V
such that Ip_y(w)=w on A and [r_y(w)=0 on V. We call Ip_,(w) the inex-
tremisation of w to R—V. It is clear that [r_, is a linear operator.

LEMMA 8.2 ([71). If usHD(R) with duc¢y(R) then dIp_y(w) iR —V).

THEOREM 8.3. For every f&C®@V), there exists a unique function ue
HBD(R—YV) satisfying the following conditions -

@ ulaw=r,

(2) there exist a harmomic function ugm on R with duimel'in(R) and a
Dirichlet potential p on R such that

U=Uin+p
on R—V and

©) Sa*du=0

for any partition (8, A—3d) of A consisting of two parts.
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Proof. (Existence) We use the notation #,=(P,)L,f and « in Proposition
8.1 and its proof. We have already proved (1).

We prove (2). Let Hf e HBD(R—V) such that Hf=f on oV and Hf=0
on A. Since u,—Hf=0 on oV, d(u,—Hf)= I'{n(R—V). Hence d(u—Hf)e

im(R—V). We set u,—Hf=0and u—Hf=0 on V so that u,—Hf, u—Hf <

BD(R). The Royden decomposition gives u,—Hf =w,+¢,, u—Hf=w+q, where
Wy, wEHBD(R) and q,, gBD,(R). Since dw,=['in(R) and |dw,—dw|zr—0,
we have dwel'in(R). We can extend Hf to a BD,-function on R so that
u=w-+(¢g+Hf) on R—V. Denoting w by uzim and ¢+ Hf by p gives (2).

Finally, we shall prove (3). Let v;=v¥~" be a generalized harmonic measure
of § on R—V. By the note following Proposition 8.1, we may assume that
each (P,) is a refinement of (§, A—d). Then

Sa*du=(du5, duypy=lim(dvs, du)av=0.

(Uniqueness) Let u=uzin+p and u’=u’ﬁ\+ p’ satisfy (1), (2) and (3). Then
u—u’=IR_V(u{\m—u"{\). By Lemma 8.2, d(u—u")e '{in(R—V). There is a

sequence {w,} of HBD-functions on R—V each w, being a linear combination
of generalized harmonic measures with finite Dirichlet integral on R—V, w,|s
=0 and ||dw,—d(u—u")|g-r—0. While, by (3), we have (dw,, d(u—u’))p_yr=0.
Hence du—du’=0. m

We denote the function # by L,f. Then |dL.fllz-v=rtr_v(f).

THEOREM 8.4. The operator L, from C®@V) to HBD(R—V) is a normal
operator. That is, L, is a linear operator satisfying the following conditions:

@ Liflow=f,
) minf < L.f smaxf,

®) Sav*dli, f=0.

Proof. We use the notation (P,)L, in Proposition 8.1. By Theorem 6.2,
(P,)L, are normal operators. By Proposition 8.1, (P,)L.f converges to L.f
uniformly on every compact subset of R—V. Hence (1), (2) and (3) hold. m

9. An extremal property.

For every ve HBD(R—V) there exists a unique HBD-function E(v) on R
such that E(w)=v on A. We call E(v) the extremisation of v (see [7], [8]). It
is clear that E is a linear operator and satisfies the following
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LEMMA 9.1. Let ve HBD(R—V) and v=w+p on R—V, where we HBD(R)
and pBD(R). Then E)=w. Moreover, if v=0 on oV then I y(E@))=v
on R—V.

THEOREM 9.2. Let f<=C®@V). The function L.f minimizes |dvlp-y in
vEHBD(R—V) such that vigy=f and dEW)I in(R).

Proof. Let veHBD(R—V) such that v|;3y=f and dE@w)el'in(R). Since
dE@)—dE(L,f) € T'im(R), dIz-v(EQ)—E(L.\f))=dw— L.f) e I'tn(R —V) by
Lemma 8.2. Hence there is a sequence {w,} of HBD-functions on R—V such
that each w, is a linear combination of generalized harmonic measures with
finite Dirichlet integral, equals 0 on 8V and |dw,—(dv—dL,f)|z-v—0. Since
(dwn, df,lf)g_yz:O, (dv, dZ!f)R-Vzudzlf”I%—W Hence, ”dV”R—VZ”def”R—V- n

10. Regular operators.
An operator L from C“@V) to HBD(R—V) is called a regular operator if
@ Lflsowv=Ff,
@ (dLf, dLnv=—|, f*dLg
for any f, geC°@V) ([17]).

THEOREM 10.1. Let (P) be a finite partition of A. Then (P)L, and L, are
regular operators.

Proof. It is sufficient to prove that (P)L, satisfies (2). Let Hf€ HBD(R—
V) such that Hf=f on dV and Hf=0on A. Then d((P)L,f—Hf)sin(R—V).
Hence
(d((P)L,f—Hf), d(P)Lig)r-r=0.
Thus
(d((P)L.f), d(P)L.)r-v=(dHf, d(P)L.g))r-v

=—{, /P Lig). m

11. Modulus functions.

Let V, and V, be two relatively compact regular subregions of R with
disjoint closures. We assume that R—V, UV, is connected. Let f=0 on oV,
and f=10n3V,. Then | *dL.f=IdL.fl-v,,>0. Set g=Cr/| *dLNL..

0 0

av

THEOREM 11.1. There exists a unique HBD-function §, on R—V,JV, such
that
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1) G1lav,=0,

2) 41| av,=ky=constant,

3) zx(qx!avovavl)=(71 on R—V, UV,
4) Savo*d@1=2n .

We call §, L,-modulus function on R—V UV, with respect to aV, and aV,.
The constant e*! is called the I,-modulus of R—V,UV, with respect to 9V,
and oV ,.

We denote usual L,-modulus function for L,-operator by g, (see [15]).
That is, g, satisfies (1), (2), 4) of Theorem 11.1 and L(¢:lsv,uor,)=¢1 On R—
VoUVi If qilov,=k,, e*1 is called the L,-modulus of R—V, UV, with respect
to dV, and oV,.

12. An example.

Now, we consider a two sheeted branched covering surface of the unit
disk. Let D be the unit disk and {a.}, {b,} be sequences of positive numbers
such that 0<a,<by<a,<b, <+ <a,<bp<--- and lim,_e a,=lim,_-b,=1. Con-
sider the region obtained from D by deleting the closed intervals [a,, b,] (n=
0,1, ---). Join two such copies, one being D, and another being D,, crosswise
along [a,, b,] (n=0,1, ---), so as to obtain a 2-sheeted branched covering
surface R of D. Denote by = the projection from R onto D. In [6], we
show that the number of components of the harmonic boundary A of R is at
most 2. Moreover, if intervals [a,, b,] are sufficiently small then A consists
of two components and if gaps (b, a,4,) are sufficiently small then A is con-
nected. (See [6, p. 639] for precise estimations.)

Let U be the sufficiently small disk with center 0 in D so that z=*(U) con-
sists of two disjoint disk V, in D, and V, in D,.

Denote by aD, the boundary of D, corresponding to {|z]| =1} —{1}(£=0, 1).
Note that every HBD-function u on R—V,\UV, is uniquely determined by the
boundary values on aV,UdV,\JdD,\JaD,. Moreover, if ducl'in(R—V,UV,)
then u is constant on dV,, dV,, D, and 0D, respectively ([6]).

Let = be the nontrivial covering transformation of R. Let ¢ be the anti-
conformal automorphism of R which preserves the sheets D,, D, and is identical
with the mapping z—Z on each sheet.

Let f=0 on 6V, and 1 on aV,. Since R has one Stoilow ideal boundary
component, L,=()L, for the identity partition (/)=(A). Let L,f=F on A.
Since (L.f)er=L,(1—f)=1—L,f, k=1—Fk. Hence k=1/2.

Further, (L.f)°¢por=1—L,f. Hence L,f=1/2 on \U,[a,, b.].

If A is connected, then L,f=L,f. If A is not connected, then L,f+L,f.
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Proof. We shall prove the latter half. Contraly to the assertion, suppose
that L, f=L,f. Then L,f=1/2 on A, hence on 8D,\JdD,, and L,f=1/2 on
Uzl @a, ba].

If A is not connected then there exists ve HBD(R—V,UV,) such that v=0
on dV, oV, oD, and v=1 on dD,. Then dveli{n(R—V,JV,). Therefore,
(dv, dilf)ﬂ_y=0. While,

(dv, dﬁlf)a—v=(d”’ d(zlf—%»n-v

(I:,f— %)*dv

Sa(VouVI)

:%(Sa%*dv~gavl*dv>>0.

For, v|p,—v|p, is considered as an HBD-function on D—U—\U,[a,, b,] whose
boundary values equals 0 on (\U,[a,, b,])\UoU and equals 1 on dD—{1}. This
is a contradiction. m

In the latter case, by Lemma 7.1 and its proof, we have |dL,f|lz-vur,>
“dLl,f”R—VoUV,- Therefore, k1>k1.
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