SURFACES OF FINITE TYPE WITH CONSTANT MEAN CURVATURE

By Th. Hasanis and Th. Vlachos

Abstract

Which surfaces in the Euclidean space E^{3} with constant mean curvature are of finite type? We show that a 3-type surface has non constant mean curvature. Moreover, among surfaces of revolution with constant mean curvature the only ones which are of finite type are: the plane, the sphere, the catenoid and the circular cylinder.

1. Introduction.

Finite type submanifolds were introduced by B.-Y. Chen in [1]. These can be regarded as a generalization of minimal submanifolds. From the class of finite type submanifolds the 2 -type are those that attracted the interest and it is a striking fact that almost all the results concerned with 2-type spherical submanifolds. In [6] it was proved that every 2 -type hypersurface M of S^{n+1} has non-zero constant mean curvature in S^{n+1} and constant scalar curvature. On the other hand, it was proved ([3], [4]) that every 3-type spherical hypersurface has non-constant mean curvature. As far as we know nothing is known about 3 -type hypersurfaces of a Euclidean space E^{n+1}, with constant mean curvature.

It is well known that the minimal surfaces, the ordinary spheres and the circular cylinders in the Euclidean space E^{3}, are at most of finite 2-type. Moreover all these have constant mean curvature.

As it is known there is an abundance of surfaces of constant mean curvature in the Euclidean space E^{3}. Among them are certain of the surfaces of revolution, called Delaunay surfaces. Moreover, Wente [9] demonstrated the existence of an immersed torus of constant mean curvature and Kapouleas [7] has shown that there also exist compact immersed surfaces with constant mean curvature of every genus $g \geqq 3$.

In this article, we ask the following geometric question:
"Which surfaces in E^{3} with constant mean curvature are of finite type?"
After some preliminaries we prove the following two theorems, which answer partially the question.

Received October 26, 1992.

Theorem 1. A 3-type surface (not necessarily compact) in the Euclidean space E^{3} has non constant mean curvature.

Theorem 2. Let M be a surface in the Euclidean space E^{3}, which is a surface of revolution with constant mean curvature. Assume M is of finite type; then M is an open prece of an ordinary sphere, a plane, a catenoid or a curcular cylinder.

2. Preliminaries.

Let M be a hypersurface of a Euclidean space E^{n+1}. It is well known that the position vector field x and the mean curvature vector field \vec{H} of M satisfy

$$
\begin{equation*}
\Delta x=-n \vec{H}, \tag{2.1}
\end{equation*}
$$

where Δ stands for the Laplace operator of the induced metric (with sign conventions such that $\Delta=-d^{2} / d x^{2}$ on the real line E).

The hypersurface M is said to be of k-type if its position vector field can be written as

$$
x=x_{0}+x_{1}+x_{2}+\cdots+x_{k},
$$

where x_{0} is a constant vector, x_{1}, \cdots, x_{k} are non-constant maps satisfying $\Delta x_{2}=\lambda_{2} x_{2}, i=1, \cdots, k$ and all eigenvalues $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ are mutually different. In particular, if one of $\left\{\lambda_{1}, \cdots, \lambda_{k}\right\}$ is zero, then M is said to be of null k-type.

It is obvious that for a surface of k-type we have

$$
\begin{align*}
& \Delta^{k} x-\sigma_{1} \Delta^{k-1} x+\cdots+(-1)^{k} \sigma_{k}\left(x-x_{0}\right)=0 \tag{2.2}\\
& \Delta^{k} \vec{H}-\sigma_{1} \Delta^{k-1} \vec{H}+\cdots+(-1)^{k} \sigma_{k} \vec{H}=0, \tag{2.3}
\end{align*}
$$

where σ_{\imath} is the \imath-th elementary symmetric function of $\lambda_{1}, \cdots, \lambda_{k}$.
From now on we refer to some preliminaries useful for the proof of theorems.

We choose an origin $O \in E^{n+1}$, denote by x the position vector of M, and set $|x|=r$ for the corresponding distance function. Let N be the unit normal vector field of M. The support function p of M is defined as $p=\langle x, N\rangle$. We decompose the position vector x of M in a component normal to M, and a component x_{T} tangent to M :

$$
\begin{equation*}
x=x_{T}+p N . \tag{2.4}
\end{equation*}
$$

It is obvious that

$$
\begin{equation*}
x_{T}=\frac{1}{2} \operatorname{grad} r^{2} . \tag{2.5}
\end{equation*}
$$

Let ∇ be the induced connection on M and A be the Weingarten map. Dif-
ferentiating (2.4) in the direction of a tangent vector X and using the formulae of Gauss and Weingarten we obtain (see for example [5]) the following formulae

$$
\begin{equation*}
\nabla_{X} x_{T}=X+p A X \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
A x_{T}=-\operatorname{grad} p \tag{2.7}
\end{equation*}
$$

Moreover, by easy computations one finds

$$
\begin{equation*}
\Delta r^{2}=-2 n-2 n p H \tag{2.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta p=n\left\langle x_{T}, \operatorname{grad} H\right\rangle+n H+p S \tag{2.9}
\end{equation*}
$$

where H and S stand for the mean curvature and the square of the length of the second fundamental form.

Assuming that M has constant mean curvature and is of 3-type, and computing $\Delta \vec{H}$ and $\Delta^{2} \vec{H}$ one finds

$$
\begin{gather*}
\Delta \vec{H}=H S N \tag{2.10}\\
\Delta^{2} \vec{H}=2 H A \operatorname{grad} S+H\left(\Delta S+S^{2}\right) N \tag{2.11}
\end{gather*}
$$

Moreover, since M is of 3 -type, we have

$$
\begin{equation*}
\Delta^{2} \vec{H}=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) \Delta \vec{H}-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right) \vec{H}-\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{n} \vec{x} \tag{2.12}
\end{equation*}
$$

Taking into account (2.10) and comparing the tangential and normal components of $\Delta^{2} \vec{H}$ in (2.11) and (2.12) we obtain the following useful equations

$$
\begin{equation*}
A \operatorname{grad} S=-\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{2 n H} x_{T} \tag{2.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta S+S^{2}=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) S-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)-\frac{\lambda_{1} \lambda_{2} \lambda_{3}}{n H} p . \tag{2.14}
\end{equation*}
$$

Remark 2.1. Note that the constant H is non-zero. In fact, if $H=0$, then M must be of 1-type as implies from (2.1). Moreover, in equations (2.13) and (2.14), the vector field x_{T} and the support function p correspond to a suitable origin $O \in E^{n+1}$, so that $x=x_{1}+x_{2}+x_{3}$.

At this point we mention a well known result (see for example [8], Theorem 3.1.3), which plays a conspicuous part in the proof of the Theorem 1.

Lemma 2.1. Let M be a surface in E^{3} with constant mean curvature H. Let
K be the Gaussian curvature, and Δ the Laplacian with respect to the induced metric on M. Then, in a neighborhood of a non-umbilic point, K satısfies the following equation

$$
\begin{equation*}
\Delta \log \left(H^{2}-K\right)=-4 K \tag{2.15}
\end{equation*}
$$

Remark 2.2. Our Δ has opposite sign of that in [8].
Now, let $x(s, \theta)=(f(s) \cos \theta, f(s) \sin \theta, g(s)), s \in I, 0<\theta<2 \pi$, be the position vector of a regular surface of revolution M in the Euclidean space E^{3}, where the smooth curve $(f(s), g(s))$ is the profile curve C parametrized by the arc length and I is a real interval. Since M is a regular surface we may assume that $f(s)>0$, everywhere on I. The first fundamental form of M is $d s^{2}+$ $f^{2}(s) d \theta^{2}$ and so its Laplacian operator Δ is given by

$$
\Delta=-\frac{f^{\prime}(s)}{f(s)} \frac{\partial}{\partial s}-\frac{\partial^{2}}{\partial s^{2}}-\frac{1}{f^{2}(s)} \frac{\partial^{2}}{\partial \theta^{2}}
$$

where $f^{\prime}(s)$ denotes the derivative of $f(s)$.
As it is known the curvature function $k(s)$ of C and the principal curvatures $k_{1}(s, \theta), k_{2}(s, \theta)$ of M are given by

$$
k(s)=f^{\prime}(s) g^{\prime \prime}(s)-f^{\prime \prime}(s) g^{\prime}(s), \quad k_{1}(s, \theta)=k(s) \quad \text { and } \quad k_{2}(s, \theta)=\frac{g^{\prime}(s)}{f(s)},
$$

respectively. So, for the mean curvature $H(s, \boldsymbol{\theta})$ of M we have

$$
\begin{equation*}
2 H(s, \theta)=k(s)+\frac{g^{\prime}(s)}{f(s)} \tag{2.16}
\end{equation*}
$$

Since, $\left(f^{\prime}(s)\right)^{2}+\left(g^{\prime}(s)\right)^{2}=1$, by using Frenet's formula we, easily, obtain

$$
\begin{equation*}
f^{\prime \prime}(s)=-k(s) g^{\prime}(s) \quad \text { and } \quad g^{\prime \prime}(s)=k(s) f^{\prime}(s) \tag{2.17}
\end{equation*}
$$

At this point we prove the following lemma which is useful in the proof of Theorem 2.

Lemma 2.2. Let M be a regular surface of revolution with profile curve C as above. If M has constant mean curvature c, then

$$
\begin{equation*}
k(s)=c+\frac{c_{1}}{f^{2}(s)}, \tag{2.18}
\end{equation*}
$$

where c_{1} is a constant. Moreover, we have

$$
\begin{equation*}
g^{\prime}(s)=c f(s)-\frac{c_{1}}{f(s)} \tag{2.19}
\end{equation*}
$$

Proof. Since $H(s, \theta)=c$, we have from (2.16)

$$
\begin{equation*}
g^{\prime}(s)=2 c f(s)-k(s) f(s) \tag{2.20}
\end{equation*}
$$

Differentiating (2.20) and using the second of (2.17) we obtain

$$
\frac{d}{d s}\left((k(s)-c) f^{2}(s)\right)=0
$$

or

$$
(k(s)-c) f^{2}(s)=c_{1},
$$

where c_{1} is a constant of integration. Now from (2.20) by using (2.18) we obtain (2.19).

We are ready to prove the theorems.

3. Proof of theorem 1.

Let M be a 3 -type surface in E^{3}. If M had constant mean curvature H, then H is non-zero (see Remark 2.1). From now on, we assume that M has non-zero mean curvature H. For brevity's sake we set $\lambda=-\left(\lambda_{1} \lambda_{2} \lambda_{3} / 4 H\right)$. We distinguish the following two cases:

CASE I. $\lambda=0$; that is M is of null 3-type. In that case (2.13) becomes $A \operatorname{grad} S=0$. From this we conclude that S is constant and so the Gaussian curvature K of M must be constant. In fact, if grad S is non-zero in an open set $U \subset M$, then the principal curvatures on U are the constants 0 and $2 H$; that is S is a constant. Since surfaces in E^{3} with non-zero constant mean curvature and constant Gaussian curvature are either of 1-type or of 2 -type, because these are spheres or right circular cylinders (see [2]), we conclude that this case is impossible.

CASE II. $\lambda \neq 0$. In that case (2.13) and (2.14) become

$$
\begin{equation*}
A \operatorname{grad} S=\lambda x_{T} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta S+S^{2}=\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right) S-\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)+2 \lambda p . \tag{3.2}
\end{equation*}
$$

Because of (3.1) and since A satisfies its own characteristic equation we obtain

$$
\begin{equation*}
2 \lambda H x_{T}-\lambda A x_{T}=K \operatorname{grad} S \tag{3.3}
\end{equation*}
$$

from which, by using (2.5) and (2.7) one finds

$$
\begin{equation*}
K \operatorname{grad} S=\operatorname{grad}\left(\lambda p+\lambda H r^{2}\right) \tag{3.4}
\end{equation*}
$$

Taking the divergence of both sides of (3.4) and bearing in mind the Gauss equation $2 K=4 H^{2}-S$ we get

$$
\left(4 H^{2}-S\right) \Delta S+|\operatorname{grad} S|^{2}=2 \lambda \Delta p+2 \lambda H \Delta r^{2} .
$$

The last equation, by using (2.8) and (2.9) becomes

$$
\begin{equation*}
\left(4 H^{2}-S\right) \Delta S+|\operatorname{grad} S|^{2}=-4 \lambda H+2 \lambda p S-8 \lambda H^{2} p . \tag{3.5}
\end{equation*}
$$

Moreover, from (2.15) by a suitable manipulation we obtain

$$
\begin{equation*}
\left(S-2 H^{2}\right) \Delta S+|\operatorname{grad} S|^{2}=2\left(S-4 H^{2}\right)\left(S-2 H^{2}\right)^{2} . \tag{3.6}
\end{equation*}
$$

The subtraction of (3.5) from (3.6) yields

$$
\left(S-3 H^{2}\right) \Delta S=\left(S-4 H^{2}\right)\left(S-2 H^{2}\right)^{2}+2 \lambda H-\lambda p S+4 \lambda H^{2} p,
$$

from which by using (3.2) we obtain

$$
\begin{align*}
2 S^{3}- & \left(\lambda_{1}+\lambda_{2}+\lambda_{3}+11 H^{2}\right) S^{2}+\left\{\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)+3 H^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+20 H^{4}\right\} S \tag{3.7}\\
& -3 \lambda p S+10 \lambda H^{2} p-3 H^{2}\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right)+2 \lambda H-16 H^{6}=0 .
\end{align*}
$$

From (3.7) we find

$$
\begin{equation*}
\alpha \operatorname{grad} S+\beta \operatorname{grad} p=0 \tag{3.8}
\end{equation*}
$$

where we set

$$
\begin{align*}
\alpha= & 6 S^{2}-2 S\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+11 H^{2}\right)+\left(\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}\right) \tag{3.9}\\
& +3 H^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)+20 H^{4}-3 \lambda p
\end{align*}
$$

and

$$
\begin{equation*}
\beta=10 \lambda H^{2}-3 \lambda S \tag{3.10}
\end{equation*}
$$

If β vanishes identically on an open subset $U \subset M$, then S should be constant on U, a contradiction (as in Case I). Thus, we may suppose that β is non-zero on M. Now, from (3.8) by using (2.7), (3.1) and (3.3) one finds

$$
A x_{T}=\frac{\alpha \lambda+\beta K}{2 \beta H} x_{T} .
$$

If x_{T} is identically zero on an open subset $V \subset M$, then V should be a sphere and thus of 1-type, a contradiction. This shows that x_{T} is in a principal direction with corresponding principal curvature $(\alpha \lambda+\beta K) / 2 \beta H$. Therefore, the other principal curvature is $2 H-(\alpha \lambda+\beta K) / 2 \beta H$ and thus we have for the Gaussian curvature

$$
K=\frac{\alpha \lambda+\beta K}{2 \beta H}\left(2 H-\frac{\alpha \lambda+\beta K}{2 \beta H}\right)
$$

or

$$
\begin{equation*}
\beta^{2} K^{2}+2 \alpha \beta \lambda K+\alpha^{2} \lambda^{2}-4 \alpha \beta \lambda H^{2}=0 . \tag{3.11}
\end{equation*}
$$

Solving (3.7) with respect to p and setting in (3.9) we find, from (3.9) and (3.10), α and β as functions of S. Substituting α and β in (3.11), and bearing in mind the Gauss equation $2 K=4 H^{2}-S$, we get the following polynomial equation for S

$$
\sum_{i=0}^{6} \mu_{i} S^{i}=0
$$

where $\mu_{6}=(1089 / 4) \lambda^{4}$ is non-zero. This shows that S is constant, a contradiction, and the proof is completed.

4. Proof of theorem 2.

Suppose that M is a regular surface of revolution with constant mean curvature c as in paragraph 2. Assuming that M is of finite k-type ($k \geqq 1$), we conclude that its position vector $x(s, \theta)=(f(s) \cos \theta, f(s) \sin \theta, g(s))$ satisfies the following equation (equation 2.2)

$$
\begin{align*}
& \Delta^{k} x(s, \theta)-\sigma_{1} \Delta^{k-1} x(s, \theta)+\cdots+(-1)^{k-1} \sigma_{k-1} \Delta x(s, \theta)+(-1)^{k} \sigma_{k}\left(x(s, \theta)-x_{0}\right) \tag{4.1}\\
& =0
\end{align*}
$$

where $\sigma_{\imath}(i=1, \cdots, k)$ are some constants. From (4.1) we obtain

$$
\Delta^{k} g(s)-\sigma_{1} \Delta^{k-1} g(s)+\cdots+(-1)^{k-1} \sigma_{k-1} \Delta g(s)+(-1)^{k} \sigma_{k}\left(g(s)-g_{0}\right)=0
$$

or

$$
\begin{equation*}
\Delta^{k+1} g(s)-\sigma_{1} \Delta^{k} g(s)+\cdots+(-1)^{k-1} \sigma_{k-1} \Delta^{2} g(s)+(-1)^{k} \sigma_{k} \Delta g(s)=0 \tag{4.2}
\end{equation*}
$$

By computing $\Delta g(s)$ and $\Delta^{2} g(s)$ one finds

$$
\begin{equation*}
\Delta g(s)=-2 c f^{\prime}(s) \tag{4.3}
\end{equation*}
$$

$$
\Delta^{2} g(s)=-4 c f^{\prime}(s) \frac{P_{2}(f(s))}{f^{4}(s)}
$$

where $P_{2}(t)=c_{1}^{2}+c^{2} t^{4}$ is a polynomial of degree 4. In these computations we take into account the relation (2.19) and $\left(f^{\prime}(s)\right)^{2}+\left(g^{\prime}(s)\right)^{2}=1$.

By a straightforward computation we prove the following:

$$
\begin{equation*}
\Delta^{m+1} g(s)=-4 c f^{\prime}(s) \frac{P_{m+1}(f(s))}{f(s)^{4 m}}, \quad m \geqq 0 \tag{4.4}
\end{equation*}
$$

where $P_{1}(t)=1 / 2$ and $P_{m+1}(t)$ is a polynomial of degree $4 m$ with constant coefficients. Moreover, denoting by const $\left(P_{m+1}(t)\right)$ the constant term of $P_{m+1}(t)$ one finds

$$
\operatorname{const}\left(P_{m+1}(t)\right)=(4 m-3)(4 m-2) c_{1}^{2} \text { const }\left(P_{m}(t)\right), \quad m \geqq 1
$$

from which we obtain

$$
\begin{equation*}
\operatorname{const}\left(P_{m+1}(t)\right)=5 \cdot 6 \cdot 9 \cdot 10 \cdots(4 m-3)(4 m-2) c_{1}^{2 m}, \quad m \geqq 2 \tag{4.5}
\end{equation*}
$$

Setting (4.3) and (4.4) in (4.2) we find

$$
\begin{equation*}
4 c f^{\prime}(s) Q(f(s))=0 \tag{4.6}
\end{equation*}
$$

where

$$
Q(t)=P_{k+1}(t)-\sigma_{1} P_{k}(t) t^{4}+\cdots+(-1)^{k-1} \sigma_{k-1} P_{2}(t) t^{4^{k-4}}+(-1)^{k} \frac{\sigma_{k}}{2} t^{4 k} .
$$

It is obvious that

$$
\begin{equation*}
\operatorname{const}(Q(t))=\operatorname{const}\left(P_{k+1}(t)\right) . \tag{4.7}
\end{equation*}
$$

We distinguish the following two cases.
Case I. Assume that $c f^{\prime}(s)=0$ on I. Then either $c=0$ or $f(s)$ is constant on I. If $c=0$, then M is a minimal surface and since it is a surface of revolution we conclude that M is an open piece of a plane or a catenoid. If $f(s)$ is constant on I, then M is an open piece of a circular cylinder.

CASE II. Assume that $c f^{\prime}(s) \neq 0$ on an open interval $J \subset I$. Then $f(s)$ is non constant on J and from (4.6) we have that $Q(f(s))=0$ on J, which means that the polynomial $Q(t)$ has infinite zeros. So, the constant term of $Q(t)$ and thus of $P_{m+1}(t)$ must be zero. Thus, $c_{1}=0$. Hence, from (2.18) we obtain $k_{1}(s, \theta)=k_{2}(s, \theta)=c$; that is all points of M, for $s \in J$, are umbilics. So, M must be a sphere since $c \neq 0$.

This completes the proof of Theorem 2.

References

[1] Chen, B.-Y., Total Mean Curvature and Submanifolds of Finite Type, World Scientific publisher, 1984.
[2] Chen, B.-Y., Surfaces of finite type in Euclidean 3-space, Bull. Soc. Math. Belg. Ser. B, 39 (1987), 243-254.
[3] Chen, B.-Y., 3-type surfaces in S^{3}, Bull. Soc. Math. Belg. Ser. B, 42 (1990), 379-381.
[4] Chen, B.-Y. and Li, S. J., 3-type hypersurfaces in a hypersphere, Bull. Soc. Math. Belg. Ser. B, 43 (1991), 135-141.
[5] Hasanis, Th. and Koutroufiotis, D., A property of complete minimal surfaces, Trans. Amer. Math. Soc. 281 (1984), 833-843.
[6] Hasanis, Th. and Vlachos, Th., Spherical 2-type hypersurfaces, J. Geometry 40 (1991), 82-94.
[7] Kapouleas, N., Compact constant mean curvature surfaces in Euclidean threespace, J. Diff. Geom. 33 (1991), 683-715.
[8] Palais, R.S. and Terng, C. L., Critical Point Theory and Submanifold Geometry, Lecture Notes in Math. 1353, Springer-Verlag, 1988.
[9] Wente, H., Counter-example to the Hopf conjecture, Pac. J. Math. 121 (1986), 193-244.

Department of Mathematics, University of loannina, 45110 Ioannina,
Greece

