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SURFACES OF FINITE TYPE WITH CONSTANT

MEAN CURVATURE

BY T H . HASANIS AND T H . VLACHOS

Abstract

Which surfaces in the Euclidean space Ez with constant mean curvature
are of finite type? We show that a 3-type surface has non constant mean
curvature. Moreover, among surfaces of revolution with constant mean
curvature the only ones which are of finite type are: the plane, the sphere,
the catenoid and the circular cylinder.

1. Introduction.

Finite type submanifolds were introduced by B.-Y. Chen in [1]. These can
be regarded as a generalization of minimal submanifolds. From the class of
finite type submanifolds the 2-tyρe are those that attracted the interest and it
is a striking fact that almost all the results concerned with 2-type spherical
submanifolds. In [6] it was proved that every 2-type hypersurface M of Sn+1

has non-zero constant mean curvature in Sn+ί and constant scalar curvature.
On the other hand, it was proved ([3], [4]) that every 3-type spherical hyper-
surface has non-constant mean curvature. As far as we know nothing is
known about 3-type hypersurfaces of a Euclidean space En+\ with constant
mean curvature.

It is well known that the minimal surfaces, the ordinary spheres and the
circular cylinders in the Euclidean space E3, are at most of finite 2-type.
Moreover all these have constant mean curvature.

As it is known there is an abundance of surfaces of constant mean curva-
ture in the Euclidean space E\ Among them are certain of the surfaces of
revolution, called Delaunay surfaces. Moreover, Wente [9] demonstrated the
existence of an immersed torus of constant mean curvature and Kapouleas [7]
has shown that there also exist compact immersed surfaces with constant mean
curvature of every genus g^3.

In this article, we ask the following geometric question:
"Which surfaces in E3 with constant mean curvature are of finite type?"
After some preliminaries we prove the following two theorems, which

answer partially the question.
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THEOREM 1. A 3-type surface (not necessarily compact) in the Euclidean
space Ez has non constant mean curvature.

THEOREM 2. Let M be a surface in the Euclidean space Ez, which is a
surface of revolution with constant mean curvature. Assume M is of finite type;
then M is an open piece of an ordinary sphere, a plane, a catenoid or a circular
cylinder.

2. Preliminaries.

Let M be a hypersurface of a Euclidean space En+1. It is well known
that the position vector field x and the mean curvature vector field H of M
satisfy

(2.1) Ax = -nH,

where Δ stands for the Laplace operator of the induced metric (with sign con-
ventions such that Δ=~- d2/dx2 on the real line E).

The hypersurface M is said to be of k-type if its position vector field can
be written as

χ — χo + Xl + χ2+ ... +χkf

where x0 is a constant vector, xu •••, xk are non-constant maps satisfying
Axt=λtxt, i—\, •••, k and all eigenvalues {λu •••, λk\ are mutually different.
In particular, if one of {λu •••, λk} is zero, then M is said to be of null k-type.

It is obvious that for a surface of &-type we have

(2.2) Akx

(2.3) AkB

where σt is the i-th elementary symmetric function of λu •••, λk.
From now on we refer to some preliminaries useful for the proof of

theorems.
We choose an origin O^En+1, denote by x the position vector of M, and

set \x\=r for the corresponding distance function. Let N be the unit normal
vector field of M. The support function p of M is defined as p=(x, N}. We
decompose the position vector x of M in a component normal to M, and a
component xτ tangent to M:

(2.4) x = xτ+pN.

It is obvious that

(2.5) x Γ =- |grad r\

Let 7 be the induced connection on M and A be the Weingarten map. Dif-
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ferentiating (2.4) in the direction of a tangent vector X and using the formulae
of Gauss and Weingarten we obtain (see for example [5]) the following formulae

(2.6) lxxτ=X+pAX

and

(2.7) Λxτ=-gmάp.

Moreover, by easy computations one finds

(2.8) Ar2=-2n-2npH

and

(2.9) άp

where H and S stand for the mean curvature and the square of the length of
the second fundamental form.

Assuming that M has constant mean curvature and is of 3-type, and com-
puting AR and A2R one finds

(2.10) Aίl=HSN

(2.11) A2S=2HA gmάS+H(AS+S2)N.

Moreover, since M is of 3-type, we have

(2.12) Atff=(λι+λt+

Taking into account (2.10) and comparing the tangential and normal components
of A2H in (2.11) and (2.12) we obtain the following useful equations

(2.13)

and

(2.14) AS+S2=(λ i+it+ijs- (U+Wi+U)- ^φ- P -
nti

Remark 2.1. Note that the constant H is non-zero. In fact, if H=0, then
M must be of 1-type as implies from (2.1). Moreover, in equations (2.13) and
(2.14), the vector field xτ and the support function p correspond to a suitable
origin 0<^En+1, so that x = Xι+x2+xz.

At this point we mention a well known result (see for example [8], Theo-
rem 3.1.3), which plays a conspicuous part in the proof of the Theorem 1.

LEMMA 2.1. Let M be a surface in Ez with constant mean curvature H. Let
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K be the Gaussian curvature, and A the Laplacian with respect to the induced
metric on M. Then, in a neighborhood of a non-umbilic point, K satisfies the
following equation

(2.15) Δ \og(H2-K)=-AK.

Remark 2.2. Our Δ has opposite sign of that in [8].

Now, let x(s, 0)=(/(s)cos0, /(s)sin0, g(s)), s e / , O<0<2;r, be the position
vector of a regular surface of revolution M in the Euclidean space Ez, where
the smooth curve (/(s), g(s)) is the profile curve C parametrized by the arc
length and / is a real interval. Since M i s a regular surface we may assume
that /(s)>0, everywhere on /. The first fundamental form of M is ds2+
f\s)dθ2 and so its Laplacian operator Δ is given by

" ~ f(s) ds ds2 Pis) dθ2 '

where /'(s) denotes the derivative of /(s).
As it is known the curvature function k(s) of C and the principal curva-

tures ki(s, θ), k2(s, θ) of M are given by

Ks)=ns)g"(s)-f"(s)g'(s), *i(s, θ)=k(s) and Us, 0)=jζ^>

respectively. So, for the mean curvature H(s, θ) of M we have

(2.16)

Since, (/ /(s)) 8+(^'(s)) 2=l, by using Frenet's formula we, easily, obtain

(2.17) /"( s )=-fc( s )£'(s) and ^(s)=fe(s)/ /(s).

At this point we prove the following lemma which is useful in the proof of
Theorem 2.

LEMMA 2.2. Let M be a regular surface of revolution with profile curve C
as above. If M has constant mean curvature c, then

(2.18) ^

where cx is a constant. Moreover, we have

(2.19) g'(s)=cf(s)--

Proof. Since H(s, θ)=c, we have from (2.16)
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(2.20) g'(s)=2cf(s)-k(s)f(s).

Differentiating (2.20) and using the second of (2.17) we obtain

-%-((k(s)-c)f\s))=0
as

or
(Ks)-c)f\s)=cl9

where cx is a constant of integration. Now from (2.20) by using (2.18) we
obtain (2.19).

We are ready to prove the theorems.

3. Proof of theorem 1.

Let M be a 3-type surface in E\ If M had constant mean curvature H,
then H is non-zero (see Remark 2.1). From now on, we assume that M has
non-zero mean curvature H. For brevity's sake we set λ——{λλλ2λ^/AH). We
distinguish the following two cases:

CASE I. λ=0; that is M is of null 3-type. In that case (2.13) becomes
A gradS=0. From this we conclude that S is constant and so the Gaussian
curvature K of M must be constant. In fact, if gradS is non-zero in an open
set UaM, then the principal curvatures on U are the constants 0 and 27/; that
is S is a constant. Since surfaces in Ez with non-zero constant mean curvature
and constant Gaussian curvature are either of 1-type or of 2-type, because these
are spheres or right circular cylinders (see [2]), we conclude that this case is
impossible.

CASE II. λφO. In that case (2.13) and (2.14) become

(3.1) A grzdS=λxτ

and

(3.2) άS+S*=(λι+λt+λ*)S-(kλιλ%+λιλ*+λM+2λp.

Because of (3.1) and since A satisfies its own characteristic equation we obtain

(3.3) 2λHxτ-λAxτ=KgradS,

from which, by using (2.5) and (2.7) one finds

(3.4) #gradS=grad (λp+λHr2).

Taking the divergence of both sides of (3.4) and bearing in mind the Gauss
equation 2K=4H2-S we get
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(4//2-S)ΔS+1 gradS 12=2λAp+2λHAr2.

The last equation, by using (2.8) and (2.9) becomes

(3.5) (4#2-S)ΔS+1 gradS 12= -4λH+2λpS-8λH2p.

Moreover, from (2.15) by a suitable manipulation we obtain

(3.6) (S-2H2)AS+1 gradS 12=2(S-4i72)(S-2//2)2.

The subtraction of (3.5) from (3.6) yields

(S-3H2)AS=(S-4H2)(S-2H2)2+2λH-λpS+4λH2p,

from which by using (3.2) we obtain

(3.7) 2S'-(λ1^λ2+λs+

-3λpS+10λH2p-3H2(λίλ2+λίλ,+λ2λ3)+2λH-16H6=Q.

From (3.7) we find

(3.8) a gmdS+β grad/>=0,

where we set

(3.9) a=6S*

and

(3.10) β=l0λH2-3λS.

If β vanishes identically on an open subset UCLM, then S should be constant
on U, a contradiction (as in Case I). Thus, we may suppose that β is non-zero
on M. Now, from (3.8) by using (2.7), (3.1) and (3.3) one finds

. _ aλ+βK
ΛXτ~ 2βH Xτ'

If xτ is identically zero on an open subset F c M , then V should be a sphere
and thus of 1-type, a contradiction. This shows that xτ is in a principal direc-
tion with corresponding principal curvature {aλ+βK)/2βH. Therefore, the other
principal curvature is 2H— (aλJrβK)/2βH and thus we have for the Gaussian
curvature

aλ+βK
2βHK~~ 2βH V 2βH

or

(3.11) β2K2+2aβλK+a2λ2-4aβλH2=0.
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Solving (3.7) with respect to p and setting in (3.9) we find, from (3.9) and
(3.10), a and β as functions of S. Substituting a and β in (3.11), and bearing
in mind the Gauss equation 2K=4H2—S, we get the following polynomial
equation for S

where μ6=(1089/4)Λ4 is non-zero. This shows that 5 is constant, a contradic-
tion, and the proof is completed.

4. Proof of theorem 2.

Suppose that M is a regular surface of revolution with constant mean cur-
vature c as in paragraph 2. Assuming that M is of finite &-type (k^l), we
conclude that its position vector x(sf 0)=(/(s) cos#, /(s)sίn#, g(s)) satisfies the
following equation (equation 2.2)

(4.1) Akx(s, θ)-σAk-ιx(s, ^ ) + +(-l)*- 1σ,_ 1Δx(s, 0)+(-l)*<r*(*(s, θ)-xo)

= 0

where στ(i=l, •••, k) are some constants. From (4.1) we obtain

or

(4.2) Δ*

By computing Ag(s) and A2g(s) one finds

Ag(s)=-2cf'(s)
(4.3)

where P 2 ( 0 = d + Λ 4 is a polynomial of degree 4. In these computations we
take into account the relation (2.19) and (f'(s))2+(g'(s))2=l.

By a straightforward computation we prove the following:

(4.4)

where P^O^l/2 and Pm+i(t) is a polynomial of degree 4m with constant coeffi-
cients. Moreover, denoting by const (Pm+i(0) the constant term of Pm+ι(t) one
finds

const (Pm + 1(0)=(4m-3)(4m-2)d const (Pm(0),
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from which we obtain

(4.5) const (Pm+1(0)=5.6.9.10 (4m-3)(4m-2)c2

1

m,

Setting (4.3) and (4.4) in (4.2) we find

(4.6) 4c/'(s)Q(/(s))=0,

where

It is obvious that

(4.7) const (0(ί))=const(P*+1(0) •

We distinguish the following two cases.

CASE I. Assume that c/'(s)=0 on /. Then either c=Q or /(s) is constant
on /. If c—0, then M is a minimal surface and since it is a surface of revolu-
tion we conclude that M is an open piece of a plane or a catenoid. If /(s) is
constant on /, then M is an open piece of a circular cylinder.

CASE II. Assume that cf'(s)Φθ on an open interval /<=/. Then /(s) is
non constant on / and from (4.6) we have that (?(/(s))=0 on / , which means
that the polynomial Q(t) has infinite zeros. So, the constant term of Q(t) and
thus of Pm+ί(t) must be zero. Thus, c ^ O . Hence, from (2.18) we obtain
ki(s, Θ)=k2(s, θ)—c) that is all points of M, for S G / , are umbilics. So, M
must be a sphere since cφO.

This completes the proof of Theorem 2.
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