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ON SLANT IMMERSIONS INTO KKHLER MANIFOLDS
By SADAHIRO MAEDA, YOSHIHIRO OHNITA AND SEIICHI UDAGAWA

Introduction.

Let ¢ : M—N be an isometric immersion of a Riemannian manifold into an
almost Hermitian manifold with almost complex structure /. Then, ¢ is called
slant if the angle between f(p*(X ) and @«(T,M) is constant for any XeT ,M
and any p=M. The typical examples of slant immersions are Kéhler immer-
sions and totally real immersions, where the slant angles are 0 and /2, respec-
tively. A slant immersion is called proper if it is neither a Kédhler immersion
nor a totally real immersion. In the case where M is a Riemann surface and
N is a Kihler manifold, the slant angle was introduced as the Kdhler angle and
studied by S.S. Chern and J.G. Wolfson [CW]. Examples of slant immersions
of a Riemann sphere S? into a complex projective space CP" were given as
the Veronese sequence of harmonic maps from S%, which are classified in [BO]
and [BJRW] in the case where S? has constant curvature (see also [01]). The
present concept of slant immersion was first introduced and studied by B.Y.
Chen [C]. The examples of proper slant immersions into C* are given in
[C-T]. Recently, Tazawa [T] has given examples of slant immersions into
C™ with any given slant angle. However, there are a few results on slant
submanifolds in CP”. In this case, any general method to check whether given
an immersion is slant or not is not known.

The main purpose of this paper is to study slant submanifolds in CP*. In
Section 1, we give some sufficient conditions for an isometric immersion ¢ of a
compact Kéhler manifold M into a Kihler manifold N to be slant (Theorem
1.2, Proposition 1.3). In Theorem 2.1 of Section 2, we show that the condition
of Theorem 1.2 is satisfied for a G-equivariant isometric immersion of a Kéhler
C-space M with by(M)=1 into CP". In this case, the slant angle is explicitly
given by cos™'(4x|deg(¢p)|/¢ vol(S)), where S is a rational curve of M which
represents a positive generator of H,(M; Z) and ¢ is a (constant) holomorphic
sectional curvature of CP™. Consequently, it turns out that SU(m+1)-equivariant
isometric immersions of CP™ into CPY constructed and treated by the first
and second author ([M], [0O2]) are slant, and that pluriharmonic maps con-
structed in [OU] give many examples of proper slant immersions into CP™.
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In Section 3, we give an extension of a theorem obtained in [MU]. An
isometric immersion ¢ : M—N is called circular geodesic if ¢ sends any geodesic
in M into a circle in N. We here note that “circular geodesic” is equivalent
to “helical geodesic of order 2” regardless of the ambient manifold N (for details,
see [M]). K. Sakamoto [S] classified such immersions in case N is a real
space form. However, in case N is a (non-flat) tomplex space form, the situa-
tion is quite different because of the presence of the complex structure of the
target manifold. All the known examples of circular geodesic submanifolds in
non-flat complex space forms are submanifolds with parallel second fundamental
form, which are known to be Kdihler or totally real. The first author and N.
Sato [MS] proved that there are no other examples of circular geodesic sub-
manifolds in the class of CR-submanifolds. A CR-submanifold is defined by the
condition that its tangent space consists of the holomorphic distribution and the
totally real distribution and the dimension of each distribution is constant over
the submanifold. Hence, a CR-submanifold can not be a proper slant submani-
fold. Therefore, it is reasonable to look for circular geodesic submanifolds in
the class of slant submanifolds. We prove that a circular geodesic slant sub-
manifold with constant scalar curvature in a non-flat complex space form is a
parallel submanifold, hence the immersion must be Kdhler or totally real (Theo-
rem 3.3).

The first author is partially supported by Ishida Foundation.

§0. Preliminaries.

Let ¢ : M—N be an isometric immersion of a Riemannian manifold into a
Riemannian manifold. Let ¢4: TM—TN be the differential of ¢, where TM
and TN are the tangent bundles of M and N, respectively. We often identify
0(X) with X itself, where X&T,M. Suppose that N is an almost Hermitian
manifold with almost complex structure f Then, the slant angle 0 x(p) be-
tween ¢u(X) and ¢«(T,M) is given by

0.1) cos 0 x(p)= (rofouX), Jou(X)y  with |X|=1,

1
|7 Jou(X)
where 7: T, N—¢(Tp,M) is an orthggonal projection; Take an othonormal
basi§ {e;} of TpM. Then we have e J/p(X)=301, {m-Jp(X), p«le.)>ps(e,) and
| e Jox(X)| =cos 0 x(p), where n=dim M, so that (0.1) becomes

0.2) 0520 ¢ (p)= 3 Jou(X), ps(e)y*  for XeT,M with |X|=1.

Next, we return to the general situation that N is a Riemannian manifold.
Let ¥V and V be the Riemannian connection and the induced connection of N
and M, respectively. The second fundamental form ¢ of the immersion is de-
fined by ¢(X, Y)=VyY —V,Y, where X,YeTM. The mean curvature vector
is (1/n)tr o, where g is the Riemannian metric of M, and the mean curvature
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H is the length of the mean curvature vector. If H is identically zero, then
the immersion ¢ is called minimal. For a vector field § normal to M, set Vx€
=—AX+Dy& where —A.X and Dy§ are the tangential and the normal com-
ponents of Vy&, respectively. Then, D is the normal connection of the normal
bundle NM of M. We denote by V the connection on the bundle (R?*TM)QNM.
Then, the covariant derivative of ¢ is defined by

Nxo)Y, Z)=Dx(o(Y, Z)—a(VxY, Z)—a(Y, VxZ).

The second fundamental form is parallel if Vo=0. The immersion ¢ is said to
be (A—) isotropic if |o(X, X)| is equal to a constant A for any unit tangent
vector X at each point, and ¢ is said to be (A—) constant wsotropic if the func-
tion A is constant on M. The polarization argument means that ¢ is A-isotropic
if and only if

0.3) Ka(X, Y), a(Z, W))+<a(X, Z), oY, W)+<a(X, W), oY, Z))
=2(KX, Y XXZ, Wy+<X, ZXY, W)+<X, WY, Z))

for any X, Y, Z, WeTM.

Now, suppose that N=N(¢) is a complex space form ~of constant holomorphic
sectional curvature ¢ with complex structure tensor /. Then, the curvature
tensor R of N(¢) is given by
(0.4) REX,NZ, W

=T KV, 20X, Wy <X, <, Wy+<J¥, 20X, W>
—JR, Zy Y, Wo+2(X, JTJZ, Wy},
where )?, }7, Z, WeTN. Then, the Gauss and Codazzi equations are respec-
tively given by

(0.5) (RX,Y)Z, W)

(Y, ZXX, Wy—<(X, ZXY, Wy+<{JY, ZyJX, W

.:;]mz

—{JX, XY, Wy+2(X, JY ]z, Wy}
(Y, 2), oX, W)y—<a(X, Z), oY, W)},
0.6) Txo)¥, Z)—(Tya)X, Z)
=Sy, XX, DIV +2X, Vi),

where R is the curvature tensor of M and {*}* denotes the normal component
of {#}. Finally, we mention the following result which is necessary in Sec-
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tion 3.

PROPOSITION 0.1 ([MS]). Let M be a submamfold in a complex space form
NE@) of constant holomorphic sectional curvature ¢ with complex structure tensor
J. Then, the following two conditions are equivalent:

(i) M is a circular geodesic submanifold of N(E),

(ii) M s nonzero constant isotropic and the second fundamental form o of
the immersion satisfies

Txo)Y, Z)="- KX, JYYJZHLX, JZ)]Y}+  for any X, Y, ZETM.

NE

§1. Sufficient conditions for the immersion to be slant.

Let ¢: (M, g)—(N, <,>, f) be an isometric immersion. We denote by 8 x(p)
the angle between [o«(X) and ¢«(T,M) for XeT M. Then, at any point of
M, we have

(L.1) 00?0 x= 31 Jou(X), pule)y?  for XeTM with |X|=1,
1=1

where {e;} a local field of orthonormal frames on M and n=dim M. In case
M is a Kdhler manifold, we choose a local field of unitary frames {u;} in such
a way that

1

Sretm),  Jwe="lwm) =1, m),

where [y is a complex structure tensor of M and m=dim¢M, and we set

e, =

pi=0x),  pi=@xU,) for i=1, -, m.

Since cos @ is a continuous function on the unit tangent bundle of M, we may
assume that cos #=0 in case ¢ is slant.

LEMMA 1.1. (I) ¢ is slant with slant angle cos™'c if and only if
(1.2) E_Jl<j¢*(ej), 90*(ez)><j90*(ek), ox(e.)>=c"0;z , 7, k=1, -, n.
where ¢ is a nonnegative constant.

() Suppose that M is an m-dimensional Kihler manifold. If ¢*wy is of
type (1, 1), where wy is the Kdihler form of N, then, ¢ is slant with slant angle
cos~'c if and only if

(1~3) gml<.i¢j’ ¢i><i§oky ¢i>=czajk for j’ k=1: e, M,

where ¢ is a nonnegative constant.
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Proof. (I) Suppose that ¢ is slant with slant angle cos™'¢. Set X=e, in
(1.1). Then we have

i} <j$0*(ej)» px(e))’=cos® 0,,=c’.
Next, set X=(1/+/2)(e;+es) for j#k in (1.1). Then we have
1 1 mo .
c?=c0s?0 y= 5 e 4 5 - El Jpx(ey), pxe)rJpxler), oxle.)y,

so that we have the equation (1.2). Conversely, if the equation (1.2) holds, then,
since cos @ is a continuous function on the unit tangent bundle of M, we can
easily see that ¢ is slant with slant angle cos™'¢c.

() If p*wy is of type (1, 1), then {Jo,, ¢;>=<Jopi, ¢;>=0 for 7, j=1,---, m.
Hence, the equation (1.2) is equivalent to the conditions that, for 7, k=1, .-, m

Re (33 Joi poXfos, g)=c'0n and Im (3 <Jps, X Jpu 9)=0,
which are equivalent to the equation (1.3). q.e.d.

Now, we prove

THEOREM 1.2, Let ¢: M—N be an isometric immersion of an m-dimensional
compact Kdahler manifold with Kdhler form wy into a Kahler manifold with
Kihler form wy. Assume that b(M)=1 and ¢*woy is of type (1,1). Then, the
following three conditions are equivalent.

(i) trpp*oy=+/—lc=constant, where g is the Kihler metric on M,

(il) @*oy=(c/m)wy,

(iii) ¢ zs slant with slant angle cos™ (| c|/m),

Proof. ()=3(ii). If tr,p*@y=+/—1lc=constant, then 37, {fo., pi>=+/—Lc.
Since ¢*wy is a closed real (1, 1)-form and b,(M)=1, we have [¢p*owy]=alwy]
for some real constant a, where wy is the Kihler form of M. Hence, we see
that

<j90i, Q;)=a '\/__laij“' '\/__—Iaiajf:
where f is a real valued function on M. Taking the trace of this equation,
we see that Af is constant, hence f is constant. Therefore, we obtain
ou op=—~/=18,,  for s, j=1, -, m.

which, implies (ii).
(ii)=(ii). This follows from Lemma 1.1.
(iii)=(@{). By Lemma 1.1, we have

m 2
(1.4) S AAp=—rby,  for i, k=1, -, m,
7=1 m
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where A,j=+/—IK fgoz, ¢;>, which is a Hermitian matrix. We choose a unitary
basis {u;} so that A,;=2:0;, with ;&R for i=1, ---, m. Then, (1.4) reads as
Ai=c*/m?, hence 2;==*(c/m) for i=1, ---, m. Thus, v—1tr,p*ey=tr, A is some
constant, which is denoted by ¢. By the implications of (i)=(ii) and (ii)=(iii),
we have A,;=(&/m)d;,, which, together with (1.4), yields |¢|=|&]|, hence chang-
ing the sign of ¢ if necessary, we have tr,p*wy=+/—1c, which is constant
q.e.d.

Remark. (1) In case dim¢M=1, ¢ is slant if and only if tr,¢*wy=constant,
hence we may regard Theorem 1.2 as a natural extension to higher dimensional
case because the assumptions that b,(M)=1 and ¢*wy is of type (1, 1) are auto-
matically satisfied for the case dimcM=1.

(2) Let M be a compact slant submanifold of a Kéhler manifold. If M is
not a totally real submanifold, then we see that M is even dimensional and
H*(M ; R)+0 for i=1, ---, m, where 2m=dim M (see [C]).

An application of Theorem 1.2 will be given in Section 2.

Next, we give an integral inequality of which the equality occurs only
when an immersion is slant under the assumption that b,(M)=1.

Assume that M is an m-dimensional compact Kédhler manifold. Let U,M=
{XeT,M; | X|=1}=5*""'(1) be a unit sphere in T, M and let UM=\U pesU M
be the unit sphere bundle over M. By (1.1), we obtain

vol(S”‘“(l))S
2m

(1.5) SXE0M0052 0xdp= N t.212";1<]~§D>;<(e;~), px(e,))’*1,

where dp is the volume form of UM. The integrand of the right hand side
of (1.5) may be rewritten as follows

(1.6) 2"‘ Joxles), oxle?

= TZ: {<]~S0f, 90i></~905, ¢z>+<fgo,-, i< igp,, ).

1, 1
On one hand, we have
1 = ~ ~ ~
grov=75 3 {(Jou ¢d2 NdZ+2Jpi, 9>d2* NdZ +{ i, p55dz NdF).
Then, a direct computation yields
proxAproNoit=— 2w 5y (o, ixTen o

_<-/§Di’ SD.;><]§D7:: ¢J>'—<i¢i: 9Df><j¢h ¢J->})
which, together with (1.6), implies that
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1.7

(m .3 E ey, pxe)?

=—0*oy ANp*oy NoF*

Z(OM_
mim—1) .5

. w m ~ i 2
+ S 1K o= s S < o0}

where the last term of the right hand side of (1.7) is evaluated from the below
as follows

S ool 1=, E o,

1, =1

1
vol (M)

= voll(M){(mil) !SMS"*‘"”/\“’T}Z’

which, together with (1.5), (1.7) and the nonnegativity of the second term of
the right hand side of (1.7), implies that

_<2m_5
vol (S*™-(1))Jx

{Su %‘( *oy)(u,, u,)*l}

(1.8) cos®*fxdp= __l*{ﬁl_g o*o /\cu"“‘}2
: vn FEE= ol (M) (m—1) Um ™ TN/

1
P *, *, m—2
(m_z)!SMSD Ox \NQ*ON N} " .
The equality in (1.8) holds if and only if ¢*wy is of type (1, 1) and tr,p*oy=
constant. Thus, we have

PROPOSITION 1.3. Let ¢: (M, g)—N be an isometric immersion of a compact
Kihler manmifold with Kihler form wy into a Kdhler mamifold N with Kihler
form wy. Then, we have

2m

W‘Tﬁigkmmy Oxdp= *l—{—lASMgo*wN /\w%—l}z

vol (M) (m—1)!
! * * m—2
—‘mg”g&) a)N/\go Oy N\WOy ",

where the equality holds if and only if ¢*wy is of type (1, 1) and tr,p*wy=
constant. Moreover, if by(M)=1, then the equality holds only if ¢ is slant.

Remark. In the homotopy class of ¢ preserving the volume of M, the right
hand side of the inequality (1.8) is an invariant quantity. This observation is
made more clear by Theorem 2.1 in the next section.



212 SADAHIRO MAEDA, YOSHIHIRO OHNITA AND SEIICHI UDAGAWA

§2. Examples of slant immersions into CP”.

In this section, we give the examples of proper slant immersions of a
Kéhler C-space (that is, a compact simply-connected homogeneous Kédhler mani-
fold) M with b,(M)=1 into a complex projective space CP¥(¢) of constant
holomorphic sectional curvature ¢.

Let ¢ : M=G/K—CP¥(¢) be an isometric immersion. The immersion ¢ is
called G-equivariant if there is a continuous homomorphism p: G—->SU(N+1)
such that

o(g-x)=p(g)p(x) for any xM, geG.

DEFINITION. Let ¢: M—CP¥{¢) be a map from a Kdhler manifold M with
HyM; Z)=Z. Denote by wy and & be the Kidhler forms of M and CP¥(),
respectively. Let S be a positive generator of Hy(M; Z). Then, the degree
of ¢ is defined by

deg (p)= - [p*a1(S),

where [¢*@](S) is the evaluation of the cohomology class [¢*@] represented by
o*@ at S.
We prove

THEOREM 2.1. Let ¢: M=G/K—CP" () be a G-equivariant isometric im-
mersion of an m-dimensional Kihler C-space into a complex projective space with
Kdhler form &@. Then, ¢*@ 1s of type (1, 1) and tr,@=constant, where g is the
Kdahler metric on M. Moreover, if b,(M)=1, then ¢ is slant with slant angle
given by

4r
-1 -
2.1) cos (ldeg(<p)l 6vol(S))
where S 1s a rational curve of M which represents the generator of Hy(M; Z).

Proof. Since ¢*@ is invariant under the action of G, we see that tr,¢*@
=constant. We denote by L and V the Lie derivation and the covariant differ-
entiation on the tensor bundles of M, respectively. Let U, V, W be holomorphic
Killing vector fields on M. Then, since the (2, 0)-part (p*@)*° of ¢*@ is in-
variant under the action of G, we have

0=(La(p*a®)* )V, W)
=T -(g*a)>°(V, W)
=(Vglp*@)* )V, W).

Therefore, (p*@)*° is a holomorphic section of Q*T*M*"°, where T*M*"® is the
holomorphic cotangent bundle of M. Since it is known that the first Chern
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class of a Kahler C-space M is positive, it follows from the vanishing theorem
that (¢*@)* *=(p*@)"*=0. Moreover, if b,(M)=1, it follows from Theorem 1.2
that ¢ is slant. Suppose that ¢*@=cwy. Then cos §=|c|. On the other hand,
we have

4r
by — *
7 deg (¢) Ssgo @

ZXSCG)M
=c vol(S),
which yields (2.1). q.e.d.

Now, we give the examples of proper slant immersions into CP?Y.

Example 1. Let ¢%,: CP™{(n, [))>CPY¥™ () be an SU(m+1)-equivariant
full minimal isometric immersion constructed in [02], where

&(n, )= and {(n, )eZXZ;nzl{=0}.

_omE
20(n—0)+mn
Note that ¢% ; is holomorphic if and only if /=0, ¢7, is anti-holomorphic if and

only if /=n, and ¢7, is totally real if and only if n=2/. By Theorem 2.1,
w1 is slant with slant angle cos~'(|deg (¢% )| -m/2l(n—1)+mn)).

Example 2. Let f%,: CP™C/(p+¢)—CP¥() be an SU(m-+1)-equivariant iso-
metric immersion defined by

(0, o, Zm) —>
s P' q! a am =B =5 =
(zg‘Zg: ) | | 1 |Z()0 "'zmmzou zmm) ) 211;2‘11171,)’
apl v an !N Bo!l - Bul

where N=<m;~p)<m;— q)—]-; 2?:0051:1): 20 /91:‘] and (227 ‘Bi (Oélgm) are

nonnegative integers. Let g: CP™({/(p+q)—>N=CP™/p)xCP™({/q) be a dia-
gonal isometric embedding defined by

8(z0, 5 2n)= 20, Zm 5 2oy s Bm)-
Then, f%, is the composition of the Segre embedding, (the p-th for the first
factor (zo, -, zn) and the g-th for the second factor (Z, -, Zn)) Veronese em-
beddings and g (for details, see (3.1) in [MO]). Then, since deg (f%.o)=p—¢,
it follows from Theorem 2.1 that f%, is slant with slant angle
cos™ (| p—ql/(p+q)).

Before stating the third example of proper slant immersions, we recall the
osculating space method of constructing pluriharmonic maps from complex
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manifolds into complex Grassmann manifolds ((OU]). Denote by G.(C") a com-
plex Grassmann manifold of k-dimensional complex linear subspaces in C*. A
map ¢: M—G,(C™) is identified with the bundle ¢ over M of which the fibre
¢ at xeM is given by ¢(x), which is nothing_ but the pull-back of the uni-
versal bundle over G(C™) by ¢. Let C"*'=MxC™** be the trivial bundle over
M with standard Hermitian holomorphic vector bundle structure. Then, ¢ is a
complex subbundle of C**'. We may define the second fundamental form A¢
of ¢ in C"** and denote by A%, its (1, 0)-part. Let Im A% ,, be the image of
a bundle homomorphism A%, ¢ : TM""Qe—¢p*, where ¢* is the Hermitian
orthogonal complement of ¢ in C"*'. éupf)ose that go— is holomorphic. Set
¢o=¢ and define a sequence_{goi}, inductively, by

e=Im A%3  for 1=1,2, .

By (7.39) in [OUJ], each ¢; defines a pluriharmonic map from M\S,, into
Girwy(C™), where S, is the singularity set of ¢; and k(Y) is a positive integer
which depends on ¢;. Moreover, there is a positive integer » such that ¢, is
an anti-holomorphic map and each ¢; for =1, ---, r—1 is neither holomorphic
nor anti-holomorphic. In case ¢, is an immersion, the pluriharmonic map equa-
tion of ¢, is just the same as

o(Z, W)y=0  for any Z, WeTM"",

Example 3. Let ¢: M=G/K—CP" () be a G-equivariant Kdhler immer-
sion of a Kihler C-space M with b,(M)=1. It is known by [NT] that there
are many examples of such immersions. Set ¢,=¢. Define a sequence {¢;} of
pluriharmonic maps as above for /=0, 1, ---, ». Then, by the G-equivariance
of ¢, we see that each ¢, is also a G-equivariant immersion of M into G, (C™)
and the induced metric by ¢; also defines a Kéahler metric on M. Let
f.: Gex(C")—»CPY be a Plicker embedding and let ¢;=f:°p;: M—>CP¥(©).
Then, by Theorem 2.1, each ¢; for i=1, .-, r—1 is slant with slant angle
cos™!(|deg (¢:)| -(dn /¢ vol(S))), where S is a rational curve of M which repre-
sents a positive generator of Hy(M; Z).

§3. Circular geodesic and slant immersion with
constant scalar curvature.

In this section, suppose that M is an n-dimensional submanifold in a non-
flat complex space form N @) of constant holomorphic sectional curvature &
with complex structure tensor /. Let {e;} (¢=1, ---, n) be a local field of ortho-
normal frames of M.

LEMMA 3.1. Let ¢: M—N(&) be a circular geodesic slant immertion. Assume
that the scalar curvature of M is constant. Then, ¢ is totally real, or the follow-
ing holds -
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@.D i‘: e, a.,p= é {Je,, a;;5=0  for i=1, -, n.
7=1

7=1

where ¢,,=a(e., e;).

Proof. Let t be the scalar curvature of M. Then, by the Gauss equation
(0.5) we have

(3.2) r=%{n(n—l)+3 33 <., Jeyt+ 3 {Kou, a1p—<au,, a.)h.
1, j=1 1, 7=1
On one hand, since ¢ is constant isotropic, we have

(3'3) {<0‘ii: 0j,1>+2<01j; 011>} =n(n+2)22 ,

1

e

7

where 2 is a (non-zero) isotropic constant. It follows from (3.2), (3.3) and the
present assumptions that each of the quantities X3,,,<a,,, 0.,> and 3, <@y, 0;;>
is constant. Using Proposition 0.1 we compute

(3.4) 0=2 T (Tey0es, €), 0.,)=C T les, Jer<Je, 01,0,

3.5) 0=2 2} (T, 0)e., €), a;,>=¢ = <en, JeyJe., a;5>,

where k=1, .-+, n. Since ¢ is slant, we know that

(3.6) S<e,, Jed(Je, exy=s%y  for j, k=1, -, n,

where cos™!|s| is a constant slant angle. Suppose that ¢ is not totally real,

so that s#0. Then, it follows from (3.4), (3.5) and (3.6) that the equation (3.1)
holds. q.e.d.

LEMMA 3.2. Let ¢: M—N() be as in Lemma 3.1. If ¢ is not totally real,
then we have

~

3.7) ons, aen €)= 0w, Jowr+51-s)ey Jeo,

for 7, /=1, ---, n, where cos™'|s| is a constant slant angle. In particular, we
have

(3.8) ’§<0u, ajj>=%(l'—32)n-

Proof. By Lemma 3.1, we know that 2k<]~e1, 0rey=0 for i=1, -, n.
Differentiating this equation covariantly, and using Proposition 0.1, we compute
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0=3 o, aud+ by Je,, (T.,0)es, €x)— S<aus, a1de)

=;<J~0u, 0kk>—kz<0‘kk, 0'jt><f~ez, e
)

+ 2 {5, JenxdJes, Jes— S <er JesxiJes, e<e,, Jeo),

WPich, together with (3.6), yields (3.7). Multiplying the both sides of (3.7) by
{Je,, ;> and summing up with respect to the indices 7 and /, we obtain (3.8).
q.e.d.

Now, we prove

THEOREM 3.3. Let ¢: M—N(@) be a circular geodesic slant immersion. As-
sume that the scalar curvature of M is constant. Then, the second fundamental
form of ¢ is parallel.

Proof. Suppose that ¢ is not totally real. We compute 3, Ree., e;)0r: by
using Lemma 3.1 and Lemma 3.2.

2Ves00

=Zk]{(vej¢7)(ek, e:)+20(V, e, e,,)—% (O, Oymden)

:%{; <, je">]~e”_szef}+%{Za(vejek’ ek)—-%) {Ort, Oymden}.
At a point where V,,e,=0 for 7, =1, ---, n, we have

B VeVe,0ns

= S a, Jeslete,, Jawdlentie, Jeiounl o)

& . v
+§{20(Veivejek» ek)“7§<ew ]ek><.]ek, dlm>em_2<0kk’ 0;m>0'1m},
where we have used (3.1). Then, we obtain

(3.9) %R(et, ej)okk

% ey, Jaudie.—<e,, jﬂjk>fek+<e;, Jey o —<e,, jek>j0‘jk}
% S (e, ferd<Jex, a,n>—<e,, Jeix Jes, aindten
— 3 KGkes Ujm>0'zm {Crr, Uzm>0',7m}’

x>
3
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because ¢,,=¢;; and
;{a(v,iv,jek, €.)— (Ve Nee:, €r)} =5‘,n {R(e,, e;)e;, €n)mr=0.
On the other hand, since R has a particular form (0.4), we have
(3.10) ?R’(e,, e;)a,,,,:—é—(el, Je,> ;]Nokk )
where we have used (3.1). Therefore, multiplying the both of the right hand
sides of (3.9) and (3.10) by <e,, Je,> and summing up with respect to the indices

7 and s, we obtain

(3.11) s g‘,fokk

o] o

o] ™

%{h]<elr je]> Ke,, jdik>_<eu jo'jk>}jek —Zszjg'kk}
—2 Zk {Ori, O;m)<ey, je,>0‘1m ,

.2 m

where we have used (3.1). Then, using (3.7) and (3.11), we compute

s*n k21<0'kk, o

o]

| =

52n1§<.i0‘klz, j0'u>

'—"‘5Szkz<0'kk, o
L

+2 3 {S<on, Joumd+ 5 A—5)en, JedKaum, Jou>

ui,m

=—15"aw, > +2 3 Low, J0 )G im, Jous),

hence

~

(3.12) ‘%Sz(n +2) §l<0kk; o= —2l§ <2k Orkk, jﬂzm>2§0 .

If #<0, then, by (3.8) we have s*=1, so that M is a K&ihler submanifold. If
¢>0, then, by (3.8) and (3.12) we also have s*=1, so that M is a Kdhler sub-
manifold. Thus, we have proved that M is a totally real or a Kéihler submani-
fold. Then, we see that the second fundamental form of ¢ is parallel. q.e.d.

COROLLARY 3.4. Let ¢: M—N(&) be a circular geodesic slant immersion.
Assume that the mean curvature of ¢ is constant. Then, the second fundamental
form of ¢ is parallel.
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Proof. Let H be the mean curvature of ¢. Then, H*=1/n*%, Ko, 0550,
It follows from (3.2) and (3.3) that H is constant if and only if r is constant.
Then, Corollary 3.4 follows from Theorem 3.3. q.e.d.

THEOREM 3.5. Let ¢: M—-N(Z) be a circular geodesic immersion of a sur-
face. Then, the following four conditions are mutually equivalent:

(1) The mean curvature of ¢ 1s constant,

(2) The second fundamental form of ¢ is parallel,

(3) The slant angle (i.e., the Kihler angle) of ¢ is constant,

(4) The scalar curvature of M is constant.

Proof. The equivalences among (2), (3) and (4) are already proved in [MUJ.
We only prove the equivalence between (1) and (3). Since ¢ is constant iso-
tropic (cf. (3.3)), (1) is equivalent to saying that

2o, 0'jj>‘<0'm 0'u>}:2{<0'uy G20 —<0 g, G120}

9

is constant. However, by Proposition 0.1 we have

e {01, 022)—<01s, 012)}:%&'(6’1, .iez>2 for i=1, 2,
hence (1) is equivalent to (3). q.e.d.
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