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Introduction.

It was almost fifty years ago that M. Schiffer [11] introduced the notion
of span to study the theory of conformal mapping—or the theory of univalent
functions if one would like to call it—of multiply connected plane domains
along the line of Grotzsch and Grunsky. The notion has since been playing
an important role in the theory of conformal mapping of planar Riemann
surfaces. To deal with nonplanar Riemann surfaces equally, we shall have to
take account of holomorphic mappings (into other Riemann surfaces) as well as
holomorphic functions, and also have to generalize the notion of span. While
the study of holomorphic mappings in its full generality is still immature, the
theory of conformal embeddings (—injective holomorphic mappings) suffices for
our purposes. More specifically, if we confine ourselves to those mappings
which embed an open Riemann surface of finite genus into closed ones of the
same genus, considerably satisfactory results could be expected. We have
shown some of them in the preceding papers [12]-[15], on which the present
article is based.

By the phrase "of low genus" we mean "either of genus zero or of genus one".
We first consider the case of genus one. To state the preparatory facts briefly
and clearly, it is convenient to introduce the term "an open torus", which simply
means an open Riemann surface of genus one. Meanwhile we keep the classical
terminology "a torus" means a closed Riemann surface of genus one as usual.
Sometimes the term "a closed torus" will be also used for the same purpose.
A compact continuation of an open torus is, roughly speaking, a conformal em-
bedding of the open torus into a closed torus which induces the prescribed
correspondence between their canonical homology bases. We have shown in
[13], among other things, that the set of moduli of the compact continuations
of an open torus is a closed disk in the upper half plane, and that the diameter
of this moduli disk gives a close analogue of Schiffer's span. Although the
present work has been motivated by the investigation of open tori, the method
does work, in principle, also for planar Riemann surfaces and yields new results
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for these surfaces as well. For instance, we establish a quantitative refinement
of the classical area theorems due to Gronwall, Bieberbach, Grδtzsch, Grunsky
and others (cf. [3], [5], [6], [9], and [10]). See the end of the next paragraph.

We begin the present paper by introducing another span, which is defined
to be the hyperbolic diameter of the moduli disk. It is reasonable to call it the
"hyperbolic span" of the surface, and the former one in [13] the "euclidean
span". The hyperbolic span depends on nothing other than the open torus
itself. We then prove a generalization of Grunsky's theorem to the case of
open tori: Complementary area is maximized by a conformal embedding of
the open torus into the (closed) torus whose modulus lies at the euclidean center
τ* of the moduli disk. Actually we prove more. Let τ be a point of the moduli
disk, and consider the class of compact continuations of the open torus onto
the (closed) torus with modulus τ. Then, there exists a compact continuation
which maximizes the complementary area in the class. We show furthermore
that the maximum complementary area aτ for τ depends solely on the distance
of τ from τ* (i.e., aτ is constant on each euclidean concentric circle), and that
\ a τ \ ~ ί \ d τ \ is, up to a multiplicative constant, the Poincare metric of the moduli
disk. The corresponding theorem for plane domains also holds, where the first
coefficient of the regular part of a univalent meromorphic function plays a
similar role as the modulus does for open tori. This is what we announced
above.

We then prove the hyperbolic version of our area theorem. If we consider
the ratio of the complementary area to the total surface area instead of the
complementary area itself, we have a similar theorem: The area ratio is
maximized at the hyperbolic center of the moduli disk, and the hyperbolic con-
centric circles have the same properties for the area ratio as the euclidean
concentric circles do for the complementary area. It would be worth while
noting that the corresponding theorem for plane domains does not exist, since
the disk of coefficients of univalent functions has no natural structure as a
hyperbolic disk and the (euclidean) area of the image domain is always infinite.
However, we can regard the coefficient disk as a spherical disk—a disk with
respect to the spherical metric—, and this observation gives rise to another
span, the "spherical span", of a plane domain and a new extremal problem.
The spherical span is defined also for open tori and we have similar results
in this case.

We finally discuss some consequences of our results. The first application
is an inequality for the univalent meromorphic functions on a minimal slit
domain in the sense of Koebe. The inequality is usually proved by other
methods—for example, by the method of extremal length ([6]) or by using the
Rengel inequality ([17]). The corresponding result for open tori can be also
proved. These theorems yield an estimate of Schiffer's and the euclidean spans.
As another consequence of our results we prove: If an open torus is realized
on a closed torus as a subregion whose area is less than a half of the total
area, then the complementary area cannot be maximum. The last fact shows
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that the conformal embedding obtained by K. Strebel ([16]) cannot be charac-
terized as a compact continuation whose modulus is the euclidean center of the
moduli disk.

A word for the naming of theorems and lemmas. "THEOREM Xn" (n=0, 1)
means that the theorem concerns with plane domains or tori, according as n —
0 or n=l.

1. Preliminaries.

Let R be an open torus (i.e., an open Riemann surface of genus one) and
%— {α, b\ a fixed canonical homology basis of R modulo dividing cycles (cf . [1]).
Consider a triplet (R', %', i r ) consisting of a (closed) torus R' ', a canonical
homology basis ΊL'=\af, b'} of R' and a conformal embedding i' of R into R'
such that i'(ά) (resp. i'(b)} is homologous to the cycle af (resp. b'). Two such
triplets (R', ΊJ ', i'} and (R" ', %" ', i") shall be called equivalent if there is a con-
formal mapping / of R' onto R" with f*i'—i". Each equivalence class is called
a compact continuation of (R, T) and denoted by [/?', %', 2']. We often say that
*' is a conformal mapping of (R, I) into (R' , %') and write as i' : (R, %)->(/?', %')•

As is well known, each compact continuation [/?', %', zv] carries a unique
holomorphic differential ψf whose a '-period is 1. It will be called the normal
holomorphic differential on (/?', Γ) (or on [/?', Γ, ι']). The differential 0' in-
duces a natural metric \φ'\ on /?'. We may and do assume that the cycle a'
is a geodesic on (Rf, %') with respect to the metric.

Denote by C(R, X) the set of compact continuations of (R, T). For [#',%', *']
eC(/?, X) let r[/?', X', ι'] denote the modulus of the marked torus (Rf, %'), to
which we refer as the modulus of [/?', %', ί'] (see [13]). We denote by W(R, ΐ)
the set of moduli of the compact continuations of (R, I) :

The set 9Jl(/?, I) obviously lies in the upper half plane H. We are con-
cerned with euclidean and hyperbolic properties of Wl(R, X). We begin with
the following theorem, which characterizes the euclidean properties of ^l(R, I).
For a proof of this theorem, see [13]. Part of the theorem was proved by
Grotzsch ([4]).

THEOREM Ax. ( I ) ^(R, I) is a closed disk (which may degenerate to a
singleton); there exist τ*<E:H and pi^R such that O^p^Imr* and

(II) To each boundary point of $R(R, %) corresponds a single element of
C(R, T). Furthermore, if the function
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parametrizes d$R(R, %) and [flr(t>, %r«>, *r«>], K r c ί > = { α r < f > , kco
continuation corresponding to the point τ(ί), ί/zβw /?r«>VrcoGR)
u /wc/z /s α zm/0n 0/ geodesic parallel segments making an angle πt/2 with α rcn

(111) The endiάean radius pί of y$i(R,T) vanishes if and only if R belongs

to 0AD.

Theorem A! contains a generalization of Koebe's general uniformization
theorem— which is often referred to as the fundamental theorem in the theory
of conformal mapping (cf., e.g., [3], [6])— to surfaces of genus one. From
the viewpoint of the continuation theory of Riemann surfaces, Theorem AI
gives a refinement of Heins' theorem (cf. [13]) which states that the principal
moduli of the compact continuations are bounded. For general cases of higher
genera, see [12]. The uniqueness problem of the compact continuations can
be also dealt with by Theorem Alf (III). For example, we can prove the
theorems of Nevanlinna-Mori and of Oikawa : A Riemann surface of finite
genus admits a unique (in the sense of Nevaiήhma or Oikawa respectively)
compact continuation if and only if it belongs to the class OAD> For these
topics, see [14] and [15].

For later references, we state here the prototype of Theorem A! for planar
domains, which is due to Koebe, de Possel, Grδtzsch and others. Cf. [6] and
[11]. To do so, suppose that a plane domain G and a reference point ζeG are
given. We do not lose generality to assume ζ^oo. We consider the set F(G, ζ)
of (normalized) compact continuations of G to C. More precisely, F(G, ζ) con-
sists of univalent meromorphic functions / on G which have a single simple
pole at ζ with residue 1. Furthermore, we identify two functions in F(G9 ζ)
if their difference is constant. According to our earlier work an element of
F(G, ζ) should have been written as [C, oo, /]. However, we may and do
actually use the simpler notation / instead. Each function /eF(G, ζ) has a
Laurent expansion

about ζ.

Let Λ(G, ζ) denote the set of coefficients κf :

Λ(G, ζ)-{κ(=C κ=κf for some /e=F(G, 0} .

We recall that the class F(G, ζ) corresponds to the class Σ7(G) in [6] (see Def.
1.3), which coincides with Σo in [9] (cf. p. 13) if G is the domain C\{ z\<l}.

THEOREM A0. ( I ) ft(G, ζ) is a (possibly degenerate) closed disk

Λ(G, ζ)={ιc£ΞC\\κ-κ*\^pQ} with /c*eC and p0^Q .

(II) To each boundary point of Λ(G, ζ) corresponds a single element of
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F(G, ζ). Furthermore, if

κ(t)=κ*+p0e
πit,

parametrizes d$(G, ζ) and if [C, oo, /^o] denotes the compact continuation cor-
responding to the point κ(t), then C\fκ^(G) is a compact plane set of null area
which is a union of parallel segments making an angle πt/2 with the real axis.

(Ill) The radius ρQ of $(G, ζ) vanishes if and only if G belongs to OAΐ>.

No explanation will be needed for the correspondence between Theorems
A 0and AI. There are, however, some differences between these two theorems;
a typical and the most definitive one of them is that R(G, ζ) never lies in the
upper half plane H.

In the following sections we aim to study the relationship between the
euclidean, hyperbolic, or spherical structure of ^(R, I) and the complementary
area of the embedded surface in its compact continuations. See, in particular,
Theorems Bx and Ci. Theorem Bx will suggest in turn a new result on planar
Riemann surfaces (Theorem B0 in Section 6).

2. The euclidean, hyperbolic, and spherical spans.

The diameter 2p0 of the disk Λ(G, ζ) is called by M. Schiffer (see [11]) the
span of the plane domain G. It depends on the reference point ζ as well as
the domain G. Hence, we write it as σ(G, ζ). Theorem A0 (III) above indicates
one of the characteristic properties of <τ(G, ζ). Another characterization of
σ(G, ζ) was given by H. Grunsky. See [5] and [8] cf. also Corollary B0

below. J.A. Jenkins ([7]) used the extremal length method to show other
aspects of σ(G, ζ).

We have already pointed out in [13] (see also [14]) that 2/01 plays the
same role in the study of open Riemann surfaces as Schiffer's span does in
the classical study of plane domains. The diameter 2pl depends not only on
the surface R but also on the choice of the canonical homology basis t of R.
Hence, we rewrite 2/0ι as σE(R, X) and call it the euclidean span of (R, %). The
name and the subscript suggest the euclidean structure of ^(R, X). Following
this convention, we rewrite r* and ρ1 as τ%—τ^(R, %) and pE=ps(R, X) respec-
tively. Similarly, we rewrite K*, ρQ and σ(G, ζ) as κ%=κ%(G9 ζ), pE=pε(Gf ζ)
and σE(G, ζ) respectively. We observe σE(R, χ)=Imτ(l)--Imτ(0)=(l/ι)[τ(l)-r(0)]
and σE(G, Q=κ(ΰ)-κ(ΐ).

Now, as we remarked earlier, the set Wl(R, T) always lies in H, which we
may consider in a well known fashion the hyperbolic plane. Furthermore,
9ft(/?, T) is a hyperbolic disk, and hence it makes sense to refer to the hyperbolic
diameter of Wl(R, T). We call the (hyperbolic) diameter of 9R(#, X) the hyper-
bolic span of R. The hyperbolic span is determined solely by the surface R
it is invariant under any change of canonical homology bases of R. Indeed,
if the canonical homology basis χ= {α, b} of R(moddR) is replaced with another
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, then αi, bl are represented as

fli— ma-\-nb

bι—m' 'a + rib

with m, m', n, n'^Z and mn'-m'n=l. Thus the moduli disk $ί(#, I,) is the
image of the moduli disk yft(R, X) under the unimodular transformation

^ riτ+m'nτ-\-m '

so that their hyperbolic diameters are equal. The hyperbolic span is more
intrinsic than the euclidean. We denote by aH(R} the hyperbolic span of R.

We denote by dH(zlf z2) the hyperbolic distance of two points zlf z2^H. It
is given by the formula

Λ ,9 , N_inQ>H\ZI, Zz) — lo
ι — Z2\ — \Zι — Z2\

See, [2], p. 130, for instance. Let us denote by τ&=τJK/?, X) and pH=pπ(R)
the hyperbolic center and the hyperbolic radius of $K/?, X), respectively. We
have then

and

Finally, we observe that ft(G, ζ) and 3β(/?, X) are disks with respect to the
spherical metric on the Riemann sphere. We use the subscript S to mean that
we consider the spherical metric. For example, τH=τ%(R, X) and κ%=κH(G, ζ)
denote the spherical centers of Wl(R, X) and ft(G, ζ) respectively. We call the
spherical diameter of ft(G, ζ) (resp. W(R, X)) the spherical span of (G, ζ) (resp.
(/?, X)) and denote it by σs(G, ζ) (resp. σs(R, X)). For later use we recall here
that the spherical distance between two points zίf z2 is given by

Note that each of our spans—euclidean, or spherical, or hyperbolic—concerns
the degeneration of analytic functions more closely than that of harmonic func-
tions, as Theorem A t (III) shows. Note also that we need neither reference
point nor any fixed local parameter.

In what follows, we always assume that σH(R) > 0 —or equivalently:
ff£C#,X)>0 or σ$(R, X)>0 for every canonical homology basis X. Otherwise, all
the theorems below would be trivial. For the same reason the plane domain
G is supposed to satisfy σE(G, ζ)>0, ζ being a point of G.
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3. The euclidean span and the Area Theorem.

Let ( R , I ) be as before and [/?7, r, ί7]eΞC(#, 30- As we have already
remarked, a marked torus (Rf, 1') has a natural metric which is induced by the
normal holomorphic differential on it. In the rest of this paper we always
understand the term "area" as the area with respect to this natural metric.
For any [#', χ7, iv]e=C(/?, %), we denote by

r, /']
the total area of R', and by

«[*', Z', f']

the (outer) area of R'\i'(R). We also consider the ratio

=α[/?/, Γ,

Obviously, y4, a, and S give rise to mappings of C(R, 1C) into R+, the set of
nonnegative real numbers, and satisfy the following inequalities:

OrgαHfl 7 , Γ, i'-]<A\_R', %', ιv], O^S[/?7, r, *']<!

for all [#', r, ι7]eC(#, 30. In [13] we have proved the boundedness of A on
yft(R, 30; Theorem A! actually solves the extremal problem of maximizing and
minimizing A[R' , X', i'~] in C(R, T). Now we consider similar extremal problems
for a and S. To state our problems more precisely, we set for any τ<^Wl(R, I)

Cτ(R, *)={[/?', r, ι7]eC(/?, J0|r[/?7, X x, ιv]=τ} .

In other words, CT(J??, 30 stands for the set of all possible conformal embeddings
V : (R, 1C)-*(R', Γ), where (R', %') is the marked torus with modulus τ. We
consider the extremal problems of maximizing a and S in Cτ(R, 30. We note
that it makes little sense, because of Theorem A1 (II), to consider the problem
of minimizing a in C(R, 30 . Actually we can prove that

, *)} =0

for each re=3R(/?, %).
Let

α r:
and

Clearly, aτ and 5r are functions of τe9W(J?, 3C), which vanish on the boundary
of ^(7?, 3Q. We will show that ar and Sτ are respectively attained by a unique
compact continuation in Cr(/?, 3C). We show furthermore that the function aτ

(resp. 5T) does not depend on the particular location of τ but depends solely
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on the euclidean (resp. hyperbolic) distance of the point τ from the euclidean
(resp. hyperbolic) center of $R(R, T). We can also write these functions in
closed form, which yields a close relationship among the complementary area
of conformal embeddings, the spans of (R, #), and the geometric structures
of the moduli disk Wl(R, I). A classical theorem of Grunsky and its generaliza-
tions also follow.

In this and the subsequent two sections we discuss the problem from the
euclidean viewpoint. We will also obtain a theorem for planar surfaces (The-
orem BO in Section 6), which is a direct, but new in part, generalization of the
theorem of Grunsky (see [5] cf. also [6], [10]).

If we observe a similar extremal problem for the function S, we will
obtain a new area theorem. This theorem may be called the absolute area
theorem, since the quantities appearing in the theorem— the area ratio S, the
hyperbolic span σH(R), and the hyperbolic distance — depend nothing other than
the surface R. These topics will be studied in Sections 7 and 8.

First, concerning the function aτ we have

THEOREM Bi. (Area Theorem). ( I ) For each re9Jϊ(#, T) there is a unique
£/?r, %τ, *r]€=Cr(/?, 50 such that a[_Rτ, %rt /r]=αr.

(II) aτ is a function of a single real variable τ—τ%\ in other words, it is
constant on the enclidean concentric circle {τ\ \τ—τ%\—rE} for each ΓE, Q^rE^pε.
It holds furthermore

pϊ(R, T)-rl
aτ 2ps(R, *) *

We immediately have the following

COROLLARY BI. ( I ) There is a unique compact continuation in C(R, I) that
maximizes a[_R' , ΊJ ', ιv] in the whole class C(R, %).

(II) // [RE, Ϊ.E, is] is the compact continuation of (R, I) that maximizes a,
then the modulus of \_RE, IE, IE] is the euclidean center r$ of

(III) a\R*9 IE, **] = (l/4)**(/?, T).
(IV) σs(R, *)^4α[tf', Γ, /'] for all [/?', Γ, ί']e=C(Λ, *).

Remark. The expression of aτ is noteworthy. It shows that the maxi-
mum complementary area is essentially the reciprocal of the Poincare metric
of the "hyperbolic space" <m(R, I).

4. Some lemmas.

For the proof of Theorem Bx we need several lemmas. To state them,
take a boundary point r of yR(R, T) and let t be a real number for which r—
τ(t)=τ%-\-pEe^~ιmπl holds. For convenience' sake we extend the domain of
definition from the interval (—1, 1] onto the whole real numbers by the perio-



126 MASAKAZU SHIBA

dicity. The number t is thus determined up to an additive constant 2w,
r(f ')=?(**) if and only if t'=t"(mod2). Let [/?r«>, %r«>, *r«>] be the compact
continuation of (R, 30 corresponding to τ(ί). Cf. Theorem AI (II). Let 0rCί) be
the normal holomorphic differential on [/?Γ(o, #rcυ, *τco] and 0τCo the pullback
of φrw by ίrco : (R, *M/?T(0, Zrco).

LEMMA 1 ([12] cf. also [13], Lemma 4 and Theorem Γ). For any
boundary point τ(t) = τ| + ^ecί~1/2)7Γt 0/ 9ft (#, 30 f/ze harmonic differential

πίί/γr(o] *'s distinguished in the sense of Ahlfors [1].

Remark. Some other important characterizations of the differentials 0« can
be found in [12] and [13].

On the other hand, for the interior points of Wl(R, 30, we have

LEMMA 2. Let τ be an interior point of 3R(/?, 30. Then
( i ) £Λ0r0 exist diametrically opposite points τ(t) and τ(t+l) on the circle

33R(/?, 3C) αwrf α rβα/ number ξ with 0<£^l/2 swc/z ί/iαί

( i i ) ί/z^re βΛ /sίs a compact continuation [J?τ, %Γ, ίJ^Cτ(/?, %) swc/z ί/zαί

is ίΛe pullback of the normal holomorphic differential on [Rτt Xτ, ιr]

Proof. The second assertion was proved in Section 6 of [13], while the
first is obvious by elementary geometrical considerations. Π

The following lemma shows how to compute the total area A\_R', I', z'] of
[#x, T, z']<ΞC(#, T) and the complementary area α[/?7, Γ, ιv] of the embedded
surface i'(R) in the torus (R', T). It plays a similar role in the present work
as the classical area principle (cf. [3], [9]) does in the theory of univalent
functions. See Lemma 30 in Section 5, too. The proof is not difficult, and is
hence omitted.

LEMMA 3j. Let \_R', Γ, Γ]eC(#, 30 with %'={a',b'}. Let φ' be the normal
holomorphic differential on (R' , Γ) and φ' its pullback to (R, T) by i' : (R, 30-»
(R't Xx). Then the following identities hold.

AIR', Γ, i/]=Imτ[/?/, Γ, t']=lm( φ'=Im{ φ' .
Jb' J b
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LEMMA 4! (cf. Lemma 5 in [13]). Let ωίf ωz be square integrable holomor-
phic differentials on R. Suppose furthermore that the a-period of a)ι vanishes and
Im[e"7Γίί/2ω2] is distinguished. Then

(α>ι, O)Z)R—— '

LEMMA 5. For any

holds.

Proof. We set ω=(φτ^+φτW)/2 - eπit(φτ^-φτ^)/2. The period of ω
along the cycle a is obviously 1. Furthermore,

Im[*-'"'Vl=Im[-
πit/2__-πit/2

7C , p , -. . 7ϋ

—cosTΓ"? lm |_^r(o)J—sin~^~
Δ Δ '

Since Im[0T(0)] and Im[i0TO)] are distinguished harmonic differentials by Lemma
1, so is the differential Im[e~πit/zώ]. Hence, by a uniqueness theorem (cf.
Lemma 4 in [13]) we know that ω=φτu), which is to be proved. Π

5. Proof of the Area Theorem.

We first show (I). Since Cτ(R, X) consists of a single element if τ e
d$R(R, 30, it suffices to assume that τ is an interior point of ^l(R, T). The
existence and the uniqueness of a compact continuation of (R, X) which max-
imizes a in the class Cτ(R, X) follow immediately. In fact, let t, ζ^R, \_Rτ, Xτ, iτ~]
^Cτ(R, X), and φτ—ξ 0r<o+(l—£) 0rα+ί> be as in Lemma 2. For any [T?',^, ιv]
<=Cτ(R, X), let φ' be the pullback of φ', the normal holomorphic differential
on \_R', T', i'~\, to (R, X) via ιv: (R, %)->(7?/, 3CO- By a well known general prop-
erty of the Dirichlet norm we have then

^-φτf φτ)R=\\φ'\\2

R-\\φr\\2

R,

since by Lemmas 1, 2 and 4

r«^

=0.
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Lemma 3 now yields

α[#r, *r, *r]^α[/?', *', ί'] for all [/?', Γ, j'

so that a\Cτ(R, I) attains its maximum for the compact continuation [/?<-, #r,*r]
Moreover, the equality holds if and only if φ'=φτ on R, and this implies the
uniqueness of a compact continuation £/?', %', z'] that maximizes α; if φ'=φτ

on 7?, there exists a conformal mapping / of (R', I') onto (7?Γ, %τ) with f*i'=iτ.
To prove (II), we use Lemma 5 and rewrite φτ as

We use Lemma 4 again to obtain

-2f) cos 7rί} Λ- {(2r~2ί-l)+(l-2ί) cos πt} A,

where we set ^40=^[^rco), ^rco, 2Γ(0)] and Al=A\_Rτ^t XT(o, ^CD] for simplicity.
Since the a- and ^-periods of φτ are respectively 1 and

and Reτ(0)=Rer(l), the total surface area A[_Rτ, %τ, iτ~] of [/?τ, %Γ, ι'Γ] is equal to

" " —

-

Hence, by Lemma 3, we have

α[/?r, Zr, ίJ=

Setting

we have

Since AI— AQ— 2pE(R, T), we finally have

and the theorem is proved. Π
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Remark. It seems interesting to prove Theorem BI (II) more directly—/, e.
without employing the differentials φτ. We would then have a new insight
into the Poincare metric.

6. Planar Riemann surfaces.

Now we look back to the case of planar surfaces. As in Section 1, suppose
that G is a plane domain and ζ is a fixed point of G. (The necessary modifica-
tions for general planar surfaces are trivial.) As before, we also assume that
ζ^oo. If this is the case, each /eF(G, ζ) embeds the domain G into the
Riemann sphere C and the image domain G/ has an infinite euclidean area, so
that it makes no sense to consider the euclidean area function which corresponds
to A. However, the complementary area of G'=f(G)—i.e., the outer area of
C\G' — is always finite, which we denote by δ[f^=δ[_C, oo, /]. We consider,
for any fixed *e$(G, ζ), the class

FK(G, 0:=/eF(G, O I / ( * ) = - + * ( * - ζ ) + about

and
ί.:=sup{ί [/]![£, oo, /]<=F.(G, ζ)} .

THEOREM B0. ( I ) For any κ<=®(G, ζ) there exists a unique element fκ in
FK(G, ζ) which maximizes <5[/] in the class FK(G, ζ).

(II) The maximum δκ is a function of a single variable \K—KE . That is,
it 2S constant on each concentric circle

and is equal to

pE

where Q^rE^ρE—σE(G, 0/2.

We can immediately deduce the following classical theorem of Grunsky :

COROLLARY B0 ([5], [6], [8]). ( I ) There exists a unique element [C, oo, /#]
which maximizes δ[/] in F(G, ζ).

(II) The Laurent expansion of the extremal function fE about ζ is of the
form

(Ill)

(IV) σE(G9 0^(2/ττ)3[/] for all f^F(G, ζ).
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Part ( I ) of Theorem B0 is already known, provided that K lies on the hori-
zontal diameter of $(G, ζ). See [8], p. 367. Part (II) is, on the contrary, new.
We will later give a simple application of (II). The proof of Theorem B0 is
quite similar to that of Theorem Ble Indeed, the prototypes of Lemmas 1, 2
and 5 can be found in any standard books (see [6], for example), and the
following well known lemma will substitute for Lemma 3ι.

LEMMA 30 (cf., e.g., [5]). For any f^F(G, ζ) the identity

holds. (The right hand side is of course defined as the limit of integrals over
dGn, where {Gn}n=ι is an exhaustion of G by subdomains with regularly em-
bedded boundary.)

Furthermore, Lemma ^ should be replaced with the following lemma, whose
proof is purely computational.

LEMMA 40. Let f(z)=l/(z-ζ)-}-al(z-ζ)-i-a2(z-ζ)2+"'^F(Gf ζ) and suppose
that lm[e-πίt/2df] is distinguished. Let g(z)=b,+b,(z-ζ)+b2(z-ζY+ ••• be a
holomorphic function on G with a finite Dirichlet integral. Let ε>0 be so small
that Dε:={zϊΞC\\z-ζ>\^ε}c:G, Then

(dg, df)G\Dε=2πe-πίtbl-2π Σ mά^bmε2m .
m = ί

Now Theorem B0 follows at once if we apply Lemmas 1, 2, 30, 40 and 50 to
compute the Dirichlet integral \\df—dfκ\\G\Ds and let ε->0, / being a generic
element of FK(G, ζ). D

Remark. One of the important aspects of Theorem B0 is, just like that of
Theorem B! the reciprocity relationship between the maximum complementary
area and the Poincare density (at each point of the coefficients disk ff(G, ζ)).
Also, as in the case of tori, it would be interesting to give a more diret proof
of Theorem B0 (II).

7. The hyperbolic span and the Absolute Area Theorem.

Going back to the case of genus one, we now consider another extremal
problem. We try to maximize the area ratio S first of all in each set Cτ(R, %),
τe$ί(#, %), and then in the whole set C(R, %). We will obtain a theorem
analogous to Theorem B! in the present case, however, we use the hyperbolic
geometry of the moduli set Wl(R, 7.) instead of the euclidean geometry. There
is no counterpart of the theorem in the planar case because of the following
two reasons. Firstly the function A is no longer finite on F(G, ζ), so that the
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function S has no obvious meaning secondly $(G, ζ) is not a hyperbolic disk,
since it never lies in the upper half plane. We can of course regard β(G, ζ)
as a disk with respect to the spherical metric on the extended /c-plane. Then
we have a spherical version of Theorem B0. See Theorem D0 in Section 9.

Now the solution of the extremal problem above is as follows.

THEOREM d (Absolute Area Theorem). ( I ) For any fixed τ^^R(R, X)
there exists a unique element in Cτ(R, T) which maximizes the area ratio S\_Rf ,1' ,i'~\
in the class.

(II) The maximum is constant on each hyperbolic concentric circle

and the constant is equal to

cosh ρH— cosh
sinh ρH

where Q<rH^pH=0H(R}/2»

COROLLARY d. ( I ) There is a unique element in C(R, T) which maximizes

(II) // \_Rn, ΊLHy ΪH} denotes the compact continuation of (R, T) that maximizes
the function S in C(R, T), then τ[_RH, *H, /*]=?£.

(III) StRH, IH, ί*]=tanh (σff(R)/4).
(Ill') a{.RH, IH, fV]=Im r£ tanh (σH(R)/4) .
(IV) ^W^4tanh-1S[^/, Γ, *'] for all [/?', *', i'](=C(/?, X).

We call Theorem d the Absolute Area Theorem, since it concerns with
the ratio of two areas, A[_R', %', i'~\ and a[_Rf, %', i'~\, which is independent of
the particular choice of the canonical homology basis. The other quantities
such as σH(R) and rH are also independent of %.

8. Proof of the Absolute Area Theorem and the corollary.

Let τ<=yR(R, I) and let rH = dH(τ, τ%). In virtue of Theorem BI, we know
that the maximum Sτ of S[_R' , ΊL' , i'~\ in the class Cτ(R, T) is attained again by
[/?r, lτ, ιr], since every [/?', I', iv]eCr(J?, I) has the same area

lmτ=: A.

Hence we have only to compute the ratio aτ/A to know the value Sτ. For
simplicity we set

j=lmτj 0-0, 1), As=lmτt,
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and

Obviously
AI>AE>AH>AO,

and it is well known (cf. [2], p. 130, for example) that

We also see

since AE=(Al+AQ)/2 and Λ#=\Λ4ιΛ> On the other hand, setting

/=Re(τ-τί),

and noting that Reτ|=Reτ^, we have by simple geometric considerations

\τ-τ*H\z=(A-AHY+l*
and

from which we immediately have

rE=-

Consequently

so that we have by Theorem B! (II)

p|-r| _ AE-AH-q\AE+AH}

This equation shows that Sτ—aτ/A depends only on q, or equivalently, only
on the hyperbolic distance rH

To obtain an expression of Sτ in terms of rH and pH, we use the follow-
ing lemma.

LEMMA 6.

.2
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Proof. Direct computations. Π

Now we continue the proof of Theorem Ci. Lemma 6 yields

cosh2-^--cosh2-^-
2 _ cosh ρH—cosh rH

Thus we have proved the theorem. Π

The corollary now follows at once. Indeed, the maximum of S in the whole
class C(R, I) is obviously attained for rH—0, that is, at the hyperbolic center
τ%, and the maximum is equal to

2 '

which proves the corollary. D

9. The spherical span and an extremal problem.

We now discuss some properties of the spherical span. For this purpose,
let G and ζ be as before and set

where f ( z ) = \/(z-Q+Kf(z-Q + ...^F(G, Q

THEOREM D0. ( I ) For any fixed κ&R(G, ζ) there exists a unique element
in FK(G, ζ) which maximizes Δ[/] in this class.

(II) The maximum is constant on each spherical concentric circle {κ^C\
ds(κ, Ksϊ^rs} and the constant is equal to
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Assertion ( I ) is almost trivial. To prove assertion (II), we first note the
following lemma, whose proof is straightforward and hence omitted.

LEMMA 7. Let c<=C and r>0. Then the eudidean center and the eudidean
radius of the spherical circle (z<^C\ds(z, c)—r} are given by

(1+ c 2)tan|-
and

respectively.

Now, let /ee$(G, ζ). We recall that κ% and ps denote the spherical center
and the spherical radius of the disk Λ(G, ζ) respectively. For simplicity we set

and

Then, we have |*-«$|/|H-**f |=?. This identity yields

where θ—argκ^. Hence we have

PE

π

PE

2- 141

Applying Lemma 7 to the circle d$(G, ζ), we now have

from which assertion (II) follows immediately. Π

As a counterpart to the classical theorem of Grunsky and its refinement
(see Corollary B0) we have now the following

COROLLARY D0. ( I ) There exists α unique element £C, oo, /#] which max-



EUCLIDEAN, HYPERBOLIC, AND SPHERICAL SPANS 135

imizes Δ[/] in F(G, ζ).
(II) The Laurent expansion of the extremal function fs about ζ is of the

form

1

(III)
(ΠΓ)
(IV) σs(G, 02^4 tan-1 (Δ.[/]/ττ) /or α// /e=F(G, ζ).

It is now apparent that similar results for a\_R', I' ', *']/{!+ 1 *"[/?', Γ, *']
[/?', %', ί']e$!H(/?, 30, can be obtained by the same argument.

10. Applications of the Area Theorems.

We will give three theorems which readily follow from Theorems B0 and
BI. The first application is the following classical theorem (see £6], pp. 83-84;
[17], pp. 760-762). Jenkins used the method of extremal length to prove the
theorem, while Tsuji used the Rengel inequality for the same purpose.

THEOREM E0. Let G^ be an extremal horizontal slit domain and suppose
thai f maps G^ con formally onto a domain G' containing oo whose (euclidean)
complementary area is δ. If f(z)—z+κ/z-{ — about oo, then

R..S-JL.

More generally we have

THEOREM Eί. For any /eFΛ(G, ζ)

Proof. It follows immediately from Theorem B0 that

PE

Since pE=Re(κ(0)— κ$) and \κ— κί\ ^Re(/c— jcί), we have

3[/]^2;r Re[/c(0)-A:] .

The other inequality is similarly proved. D

As a counterpart of Theorem E0 we have
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THEOREM E,. Let τ^m(R, I) and [/?', Γ, zv] e Cr(#, *). Then the com-
plementary area a\_R' ', X', *'] satisfies the inequality

lmτ(0)+«Cfi', X7, Π^lmτ^lmτ(l)-αCK'. χ/> Π -

Theorem E0 implies the estimate of the Schiffer span which has been
already proved. See assertion (IV) in Corollary B0. Similarly assertion (IV) of
Corollary B! immediately follows from Theorem El above.

We finally remark an almost direct but curious consequence of the Area
Theorem (Theorem BO. Note that there is no counterpart of this theorem
for plane domains.

THEOREM Fj. Let [RE, XE, *'*](= [#r*, Xr|, *'rf]) be the compact continuation

of (/?, χ) that maximizes α[/?', I', Γ] in the class C(R, X). Then the complemen-
tary area is less than the image area

In other words - Let T be a torus, X a closed subset of T such that T\X is
connected and of genus one. Suppose furthermore that the area of T\X does not
exceed the area of X. Then there exist another torus T' and a closed subset X'
of Tf such that T\X is conformally equivalent to T'\X' and that the area of Xf

is greater than that of X.

Proof. Since A[RE, %B, *'*]= Imrί>p(B=2α[#j?, 1E, is] by Corollary B!, we
have the assertion. D

11. The Strebel continuation.

Let now R be the interior of a compact bordered Riemann surface of genus
one. We also refer to R, extending the conventional usage, as a finite open
torus. In [16] Strebel proved that there exists a conformal mapping is of R
into a torus Rs such that each component of Rs\is(R) is either a disk or a point.
The torus Rs is essentially unique. Althogh his main interest was to give a
normal form of a finite open torus, we can regard his result as a theorem in the
framework of continuation problems: If we attach suitable canonical homology
bases I and %s to R and Rs respectively, we have a compact continuation
[Rs, Is, is] of (/?, χ). We call [J?5, Xs, ι5] the Strebel continuation of (R, T).
It is interesting to specify the Strebel continuation in the set C(R, I). For
example, we ask where the modulus of (βs, Xs) ^ in the moduli disk y&(R, X).
Although we suspect that r[/?s, Us, is']=τ%, we content ourselves at present
by the following claim:

The modulus of the Strebel continuation of a finite open torus cannot be
characterized as the euclidean center of the moduli disk.
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To see this we have only to observe a torus with a large disk removed
and to apply the last theorem.
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