ON THE FUNCTIONAL EQUATION $f^n = e^{P_1} + \cdots + e^{P_m}$ AND RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY YOJI NODA

Introduction and statement of results

For each positive integer N we set

 $E_N = \{e^{P_1} + \cdots + e^{P_m} \ P_j \in C[z], \deg P_j \leq N_0 = 1, -, m\}, m \in N\}.$

In 1929 J. F. Ritt [4] showed the following theorem.

THEOREM A. Let g_0, g_1, \dots, g_n be elements of E_1 and f be a holomorphic function on $\{z; \omega_1 < \arg z < \omega_2\}$ $(\omega_2 - \omega_1 > \pi)$ satisfying $g_n f^n + g_{n-1} f^{n-1} + \dots + g_0 = 0$. Then $f \in E_1$.

It seems to be natural to ask whether Theorem A is valid with E_1 replaced by E_N ($N \ge 2$). However, if $g_n \ne 1$, the function $f(z) = \sin(\pi z^2)/\sin \pi z$ gives a negative answer to the above question.

Let $g: \mathbb{C} \to \mathbb{P}_m$ be a holomorphic curve of finite order, $D_0, D_1, \dots > D_{m-1}$ be hyperplanes and D_m be a hypersurfac of degree $n \ (\geq 2)$ satisfying $D_0 \cap \cdots \cap D_m - \emptyset$, $g(\mathbb{C}) \cap (D_0 \cup \cdots \cup D_m) = \emptyset$. We ask whether the image of g is contained in the intersection of hypersurfaces of \mathbb{P}_m . This problem is related to the functional equation $f^n + g_{n-1}f^{n-1} + \cdots + g_0 = 0$ $(g_0, \dots, g_{n-1} \in E_N)$ for an entire function /. M. Green [1] treated the first non-trivial case $f^2 = e^{2\varphi_1} + e^{2\varphi_2} + e^{2\varphi_3}$ $(\varphi_1, \varphi_2, \varphi_3 \in \mathbb{C}[z])$ and showed that / is a linear combination of $e^{\varphi_1}, e^{\varphi_2}, e^{\varphi_3}$. He also showed that, if $g: \mathbb{C} \to \mathbb{P}_2$ is a holomorphic curve of finite order omitting the two lines $\{Z_0=0\}$ and $\{Z_1=0\}$ and the conic $\{Z_0^2 + Z_1^2 + Z_2^2 = 0\}$, then the image of g lies in a line or a conic ([1]).

In this paper we shall show the following results.

THEOREM 1. Let P_1, \dots, P_m be polynomials, $N = \max_j \deg P_j, N \ge 2, A_j = P_j^{(N)}(0)/N!(j=1,\dots,m), n (\ge 2)$ be an integer and f be a holomorphic function on $\{z; \omega_1 < \arg z < \omega_2\} (\omega_2 - \omega_1 > \pi/N)$. Assume that $\#\{j \ A_j = v, j = 1, \dots, m\} = 1$ for every vertex v of the convex hull of $\{A_j\}_{j=1}^m$, and that $f^n = e^{P_1} + \cdots + e^{P_m}$ on $\{z; \omega_1 < \arg z < \omega_2\}$. Then f is an element of E_N .

Received April 5, 1991 Revised November 16, 1992.

THEOREM 2. Let f be an entire function, $n(\geq 2)$ be an integer and P_1, \dots, P_4 be polynomials satisfying that $\sum_{j \in J} e^{P_j} \neq 0$ for every subset $J \subset \{1, \dots, 4\}$ with $J \neq \emptyset$ and that $P_j - P_k \neq \text{const.}$ for some $j \neq k$. Assume that $f^n = e^{P_1} + \cdots + e^{P_4}$. Then there are the following two possibilities:

(1) n=2, 3 and $f=e^{P}+e^{Q}$, where P, Q are polynomials.

(2) n=2 and $f=e^{P}R(e^{Q})$, where P, Q are polynomials and $R(w)=w^{2}+\sqrt{2}\sigma w-\sigma^{2}$ with $\sigma\neq 0$.

In Theorem 2 the vertices of the convex hull of $\{A_j\}_{j=1}^4$ do not necessarily satisfy the assumption of Theorem 1. For example, A_1, \dots, A_4 can be on the line segment $\{\alpha + x(\beta - \alpha) \ 0 \le x \le 1\}$ and satisfy $\#\{j; A_j = \alpha\} = 1, \ \#\{j; A_j = \beta\}$ =2. In this case, however, it is verified that, if $A_j = A_k$, then $P_j - P_k = \text{const.}$. In Section 2 we prove a more general result (Theorem 5). From Theorem 2 we obtain the following theorems.

THEOREM 3. Let $g: \mathbb{C} \to \mathbb{P}_2$ be a holomorphic curve of finite order, D_0, D_1 be distinct lines and D_2 be a conic. Assume that $D_0 \cap D_1 \cap D_2 = \emptyset$, $g(\mathbb{C}) \cap (D_0 \cup D_1 \cup D_2) = \emptyset$. Then there is a homogeneous polynomial $Q(w_0, w_1, w_2)$ of degree at most three satisfying $g(\mathbb{C}) \subset \{Q(w_0, w_1, w_2) = 0\}$.

THEOREM 4. Let $g: \mathbb{C} \to \mathbb{P}_3$ be a nonconstant holomorphic curve of finite order satisfying $g(\mathbb{C}) \cap (\{w_0=0\} \cup \{w_1=0\} \cup \{w_2=0\} \cup \{w_0^n + \cdots + w_3^n=0\}) = 0$, where $n (\geq 2)$ is an integer. Then there are homogeneous polynomials $Q_1(w_0, \dots, w_3)$, $Q_2(w_0, \dots, w_3)$ which are relatively prime to each other and satisfy $1 \leq \deg Q_1 \leq 2$, $1 \leq \deg Q_2 \leq 4$ and $g(\mathbb{C}) \subset (\{Q_1(w_0, \dots, w_3)=0\} \cap \{Q_2(w_0, \dots, w_3)=0\})$. Further if $n \geq 4$, then g has the reduced representation (g_0, g_1, g_2, g_3) such that $\{g_j\}_{j=0}^3 = \{a_0, f_1, a_2, e^P\}$ or $\{g_j\}_{j=0}^3 = \{a_0, a_1, a_2e^P, a_3e^P\}$, where a_j 's are constants and P is a polynomial.

The order p of a holomorphic curve $g: C \to P_m$ is defined by $p = \limsup_{r \to \infty} (\log T(r, g)/\log r)$, where T(r, g) is the characteristic function of g. (Let (g_0, g_1, \dots, g_m) be a reduced representation of g. Then we define $T(r, g) = (1/2\pi) \int_{0}^{2\pi} \log (\max_{a} |g_j(re^{i\theta})|) d\theta - \log (\max_{a} |g_j(0)|).$)

Remark. In Theorem 3 we cannot conclude that the degree of $Q(w_0, w_1, w_2)$ is at most two, since the curve $(1, e^z, (1+e^z)e^{z/2})$ satisfies the assumption of Theorem 3 with $D_0 = \{w_0 = 0\}$, $D_1 = \{w_1 = 0\}$, $D_2 = \{w_2^2 - w_0w_1 - 2w_1^2 = 0\}$. (In this case $Q(w_0, w_1, w_2) = w_2^2w_0 - (w_0 + w_1)^2w_1$ and the image lies neither in a line nor in a conic.)

1. Proof of Theorem 1.

For each $\theta \in \mathbf{R}$ and $\alpha \in \mathbf{C}$, the polynomials $P_1(e^{i\theta}z) + \alpha z^N, \cdots, P_m(e^{i\theta}z) + \alpha z^N$ satisfy the hypotheses of Theorem 1 with / replaced by $f(e^{i\theta}z)e^{(\alpha/n)z^N}$. There-

fore we may assume that $\omega_1 < 0 < \omega_2$ and that the following condition (A) is satisfied.

(A) $n(\geq 2)$ is an integer, P_1, \dots, P_m are polynomials, $P_j - P_k \neq const. (j \neq k)$, $N = \max_j \deg P_j, N \geq 2, A_j = P_j^{(N)}(0)/N! (j=1, \dots, m), U$ is the convex hull of $\{A_1, \dots, A_m\}, \{A_1, \dots, A_t\}$ is the set of the vertices of $U, t \geq 2$, $\arg(A_1 - c) < \arg(A_2 - c) < \langle \arg(A_t - c) < \arg(A_1 - c) + 2\pi for \ all \ c \in (\pounds 7 - \{A_1, \dots, A_t\}),$ $\operatorname{Re} A_1 = \operatorname{Re} A_2, \operatorname{Im} A_2 > \operatorname{Im} A_1 and U \subset \{z; \operatorname{Re} z \leq \operatorname{Re} A_1\}.$

For each $\nu \in \{1, \dots, t\}$, let $\{p_{\nu, j}\}$, be the set of polynomials of degree at most N definedd by

(1.1)
$$\exp\left(P_{\nu}/n\right)\left(1+\sum_{j=1}^{\infty}\gamma_{j}\left(\sum_{\mu\in\{1,\dots,m\}-\{\nu\}}\exp\left(P_{\mu}-P_{\nu}\right)\right)^{j}\right)\equiv\sum\exp\left(p_{\nu,j}\right),$$
$$p_{\nu,j}-p_{\nu,k}\neq\text{const.}\ (j\neq k),\qquad \operatorname{Im}\left(p_{\nu,j}(0)\right)\in\left[0,\ 2\pi\right),$$

where $1 + \sum_{j=1}^{\infty} \gamma_j w^j$ is the Taylor expansion of $(1+w)^{1/n}$ (|w| < 1). Put

(1.2)
$$a_{\nu,j} = p_{\nu,j}^{(N)}(0)/N!,$$

$$S_{\nu} = \{ z \ \arg\left((A_{\nu+1} - A_{\nu})/n \right) \leq \arg\left(z - (A_{\nu}/n) \right) \leq \arg\left((A_{\nu-1} - A_{\nu})/n \right) \} \cup \{ A_{\nu}/n \}$$

$$(A_{2} = A_{\nu}, \nu = 1, \dots, t-1),$$

(1.3)

 $S_t = \{ z \text{ arg } ((A_1 - A_t)/n) \leq \arg (z - (A_t/n)) \leq \arg ((A_{t-1} - A_t)/n) \} \cup \{A_t/n\}$ (see Figure 1 and 2).

Put

 $H_1 = \{z \; \operatorname{Re} z < 0\} \cup i \mathbf{R}^+, \quad \text{ft} = \{z \; \operatorname{Re} z < 0\} \cup i \mathbf{R}^-,$

where $i\mathbf{R}^{+} = \{ix : x > 0\}$, $i\mathbf{R}^{-} = \{ix : x < 0\}$. For $\theta \in (0, \pi/2)$ and d > 0, we set

$$G_1(\theta, d) = \{z; 0 < \arg z < \theta, \operatorname{Im} z > d\},$$

$$G_2(\theta, d) = \{z; 0 > \arg z > -\theta, \operatorname{Im} z < -d\}.$$

Further we denote by

C(p)

the leading coefficient of a polynomial p. Note that C(p)=0 if and only if p=0.

LEMMA 1.1. Let p_1, \dots, p_m be polynomials satisfying $C(p_j) \in H_1(j=1, \dots, m)$ or $C(p_j) \in H_2(j=1, \dots, m)$ and $\lambda_1, \dots, \lambda_m$ be positive numbers. Then deg $(\lambda_1 p_1 + \dots + \lambda_m p_m) = \max_j \deg p_j$, and $C(\lambda_1 p_1 + \dots + \lambda_m p_m) \in H_1$ or $C(\lambda_1 p_1 + \dots + \lambda_m p_m) \in H_2$ respectively.

proof. Assume that $C(p_j) \in H_1$ $(j=1, \dots, m)$. Put $D = \max_j \deg p_j$, $/-\{j; \deg p_j = D, j=1, \dots, m\}$, $c = \sum_{j \in J} \lambda_j C(p_j)$. Then we have $c \in H_1$. Further $\lambda_1 p_1 + \cdots + \lambda_m p_m = cz^D + q(z)$, where q is a polynomial of degree at most D-1. Thus $\deg (\lambda_1 p_1 + \cdots + \lambda_m p_m) = D = \max \deg p_j, C(\lambda_1 p_1 + \cdots + \lambda_m p_m) = c \in H_1$.

Let $\nu \in \{1, 2\}$ be fixed. When polynomials p, q satisfy $C(p-q) \in H_{\nu}$, we write $p <_{\nu}q$. Then, by Lemma 1.1, $(C[z], <_{\nu})$ is an ordered set. Further, if $p \neq q$, then $p <_{\nu}q$ or $q <_{\nu}p$. Therefore (CM, $<_1$), (CM, $<_2$) are totally ordered sets. Hence we have the following

LEMMA 1.2. Let $\Pi (\neq \emptyset)$ be a finite subset of CM. Then there are $p_1, p_2 \in \Pi$ such that $C(p-p_1) \in H_1$ for every $p \in \Pi - \{p_1\}$ and that $C(p-p_2) \in H_2$ for every $p \in \Pi - \{p_2\}$.

LEMMA 1.3. Let p be a polynomial of degree $N(\geq 1)$. (1) // Re C(p) < 0, then there are positive numbers K, θ , R such that

 $|\exp p(z)| < \exp(-K'|z|^N)$ on $\{z; |\arg z| < \theta, |z| > R\}.$

(2) // $C(p) \in i\mathbf{R}^+$, then there are positive numbers K', θ'' , d' such that

$$|\exp p(z)| < \exp(-K' |\operatorname{Im} z |z|^{N-1})$$
 on $G_1(\theta', d')$.

(3) // $C(p) \in i\mathbf{R}^-$, then there are positive numbers K", θ ", d", such that

 $|\exp p(z)| < \exp(-K'' \operatorname{Im} z |z|^{N-1})$ on $G_2(\theta'', d'')$.

Proof. We shall prove only (2). Put C(p)=iA(A>0), $q(z)=p(z)-iAz^N$. Then for $\zeta \in (0, \pi/4)$ we have

$$|\exp(p(z))| = |\exp(iAz^{N} + q(z))| = |\exp(iA(x^{N} + iNyx^{N-1} + \dots + (iy)^{N}) + q(z))|$$

$$< \exp(-ANyx^{N-1}(1 + O(y/x)) + B|z|^{N-1}) \quad \text{on } \{|\arg z| < \zeta\},$$

where B is a positive constant and z=x+iy. Thus we have the desired result.

LEMMA 1.4. Let *m* be a positive integer and $\Delta (\neq 0)$ be a subset of $(\mathbb{N} \cup \{0\})^m$. Then there exist $\alpha_1, \dots, \alpha_\tau \in \Delta$ ($\tau < \infty$) such that $\Delta \subset \{\alpha_j + \beta_j = 1, \dots, \tau, \beta \in (\mathbb{N} \cup \{0\})^m\}$.

Proof. By induction on m. For $\alpha_1, \dots, \alpha_p \in (N \cup \{0\})^q (p, q \in N)$ we set

$$\langle \alpha_1, \cdots, \alpha_p \rangle = \{ \alpha_j + \beta; j = 1, -, p, \beta \in (N \cup \{0\})^q \}$$

Further for $\alpha = (\lambda_1, \dots, \lambda_q) \in (N \cup \{0\})^q$ and $\lambda \in N \cup \{0\}$, we denote by (α, λ) the element $(\lambda_1, \dots, \lambda_q, \lambda)$ of $(N \cup \{0\})^{q+1}$. It is easily seen that Lemma 1.4 holds for m=1. Assume that Lemma 1.4 holds for $m=\nu$. Let J be a subset of $(N \cup \{0\})^{\nu+1}$ satisfying the assumption with *m* replaced by $\nu+1$. Put

$$\widetilde{\varDelta} = \{ (\lambda_1, \cdots, \lambda_{\nu}) ; (\lambda_1, \cdots, \lambda_{\nu+1}) \in \varDelta \}.$$

Then, by the induction assumption, there exist $\tilde{\alpha}_1, \cdots, \tilde{\alpha}_{\rho} \in \tilde{\mathcal{A}}$ ($\rho \in N$)such that

$$\tilde{\Delta} \subset \langle \tilde{\alpha}_1, \ldots, \tilde{\alpha}_{\rho} \rangle$$

Let

$$\lambda^{(J)} = \min \{ \lambda_{\nu+1}; (\tilde{\alpha}_{J}, \lambda_{\nu+1}) \in \Delta \} \quad (j=1, \dots, \rho),$$
$$M = \max_{J} \lambda^{(J)},$$
$$\Delta^{(\sigma)} = \{ (\lambda_{1}, \dots, \lambda_{\nu}) \ (\lambda_{1}, \dots, \lambda_{\nu}, \sigma) \in \Delta \} \quad (\sigma=0, 1, -, M).$$

Then, for every $\sigma \in \{0, 1, -, M\}$, there exist $\alpha_1^{(\sigma)}, \cdots, \alpha_{\rho_{\sigma}}^{(\sigma)} \in \Delta^{(\sigma)}$ $(\rho_{\sigma} \in \mathbb{N} \cup \{0\})$ such that

$$\Delta^{(\sigma)} \subset \langle \alpha_1^{(\sigma)} \rangle, \ \cdots, \ \alpha_{\rho_{\sigma}}^{(\sigma)} \rangle \quad (\sigma = 0, \ 1, \ \cdots, \ M).$$

Let $\alpha = (\lambda_1, \dots, \lambda_{\nu+1}) \in \Delta$. Then $(\lambda_1, \dots, \lambda_{\nu}) \in \widetilde{\Delta}$. Thus for some *j* we have tfi, $\dots, \lambda_{\nu}) \in \langle \tilde{\alpha}_j \rangle$. Therefore, if $\lambda_{\nu+1} \geq M$, then $\alpha \in \langle (\tilde{\alpha}_j, \lambda^{(j)}) \rangle$. If $\lambda_{\nu+1} \leq M$, then $(\lambda_1, \dots, \lambda_{\nu}) \in \Delta^{(\lambda_{\nu+1})}$. Thus for some *j* we have $(\lambda_1, \dots, \lambda_{\nu}) \in \langle \alpha_j^{(\lambda_{\nu+1})} \rangle$. Therefore $\alpha \in \langle (\alpha_j^{(\lambda_{\nu+1})}, \lambda_{\nu+1}) \rangle$. Put

$$\begin{aligned} \alpha_{j} = (\tilde{\alpha}_{j}, \lambda^{(j)}) & (j=1, \dots, \rho), \\ \alpha_{\sigma,j} = (\alpha_{j}^{(\sigma)}, \sigma) & 0=1, -, \rho_{\sigma}, \sigma=0, -, M). \end{aligned}$$

Then $\alpha_j \in \Delta$ 0=1. ..., ρ), $\alpha_{\sigma,j} \in \Delta$ 0=1, ..., ρ_{σ} , σ =0, ..., M) and

$$\Delta \subset \langle \alpha_1, \cdots, \alpha_{\rho}, \alpha_{0, 1}, \cdots, \alpha_{M, \rho_M} \rangle.$$

Lemma 1.4 is thus proved.

LEMMA 1.5. Assume that (A) holds. Then $\{a_{\nu,j}\}_j \subset S(\nu=1, \dots, t)$ Further if $\#\{j; A_{\nu}=A_{j}, j=1, \dots, m\}=1$, then $\{a_{\nu,j}\}_j$ has no finite accumulation point.

Proof. We shall give the proof only for $\nu = 1$. From (1.1)-(1.3) we have

FUNCTIONAL EQUATION $f^n = e^{P_1} + e^{P_m}$ AND RIGIDITY THEOREMS

$$\{a_{1,j}\}_{j} \subset \{(A_{1}/n) + \sum_{j \neq 1} \lambda_{j}(A_{j} - A_{1}); \lambda_{j} \in \mathbb{N} \cup \{0\}\} \subset \mathcal{S}_{1}$$

Further if $\#\{j A_1 = A_j, j = 1, \dots, m\} = 1$, then $A_j - A_1 \neq 0$ for any $j \neq 1$. Thus $\{a_{1,j}\}$, has no finite accumulation point (see Figure 1 and 2).

For each polynomial q, we put

$$J_{1} = \{j ; \operatorname{Re} C(p_{1,j}-q) \ge 0, p_{1,j}-q \ne \operatorname{const.}\}, \\ J'_{1} = \{j ; C(p_{1,j}-q) \in i\mathbb{R}^{-}, p_{1,j}-q \ne \operatorname{const.}\}, \\ J''_{1} = \{j ; C(p_{1,j}-q) \in H_{1}, p_{1,j}-q \ne \operatorname{const.}\}, \\ J_{2} = \{j \; \operatorname{Re} C(p_{2,j}-q) \ge 0, p_{2,j}-q \ne \operatorname{const.}\}, \\ J'_{2} = \{j ; C(p_{2,j}-q) \in i\mathbb{R}^{+}, p_{2,j}-q \ne \operatorname{const.}\}, \\ J''_{2} = \{j ; C(p_{2,j}-q) \in H_{2}, p_{2,j}-q \ne \operatorname{const.}\}, \\ J''_{2} = \{j ; C(p_{2,j}-q) \in H_{2}, p_{2,j}-q \ne \operatorname{const.}\}, \\ R_{1}[q] = \sum_{e \neq 1} \exp(p_{1,j}), \; S_{1}[q] = \sum_{e \neq 1' = 1} \exp(p_{1,j}), \; T_{1}[q] = \sum_{e \in I''_{1}} \exp(p_{1,j}), \\ R_{2}[q] = \sum_{j \in J_{2}} \exp(p_{2,j}), \; S_{2}[q] = \sum_{j \in J'_{2}} \exp(p_{2,j}), \; T_{2}[q] = \sum_{j \in J''_{2}} \exp(p_{2,j}), \\ b_{1}(q) = \begin{cases} \exp(p_{1,j}(0)-q(0)) & \text{if } p_{1,j}-q = \operatorname{const.} \text{ for some } j, \\ 0 & \text{if } p_{1,j}-q \neq \operatorname{const.} \text{ for all } 7, \end{cases} \\ b_{2}(q) = \begin{cases} \exp(p_{2,j}(0)-q(0)) & \text{if } p_{2,j}-q \neq \operatorname{const.} \text{ for all } j. \end{cases}$$

Then

$$\sum_{j} \exp(p_{1,j}) = b_1(q)e^q + R_1[q] + S_1[q] + T_1[q],$$

$$\sum_{j} \exp(p_{2,j}) = b_2(q)e^q + R_2[q] + S_2[q] + T_2[q].$$

We see that $b_1(q)=1$ if and only if $q \in \{p_{1,j}\}$ and that $b_2(q)=1$ if and only if $q \in \{p_{2,j}\}_j$. Thus, if $q \in (\{p_{1,j}\}_j - \{p_{2,j}\}_j) \cup (\{p_{2,j}\}_j - \{p_{1,j}\}_j)$, then $b_1(q) \neq b_2(q)$.

LEMMA 1.6. Let q be a polynomial of degree at most N. Assume that (A) holds. If $\#\{j;A_1=A_j, j=1, \dots, m\}=l$ or $\#\{j;A_2=A_j, j=1, \dots, m\}=1$, then we have $S_1[q] \in E_N$ or $S_2[q] \in E_N$ respectively.

Proof. Put

$$\alpha_0 = q^{(N)}(0)/N!,$$

$$\mathcal{L}_1 = \mathcal{S}_1 \cap \{z ; \text{Re } z = \text{Re } \alpha_0, \text{ Im } z \leq \text{Im } \alpha_0\},$$

$$\mathcal{L}_2 = \mathcal{S}_2 \cap \{z \text{ Re } z = \text{Re } \alpha_0, \text{ Im } z \geq \text{Im } \alpha_0\}.$$

Then by the definitions of J'_1 , J'_2

$$\{a_{1,j}, j \in J'_1\} \subset \mathcal{L}_1, \quad \{a_{2,j}; j \in J'_2\} \subset \mathcal{L}_2.$$

Further \mathcal{L}_1 , \mathcal{L}_2 are compact sets (see Figure 3 and 4). Therefore, if $\#\{j; A = A_j, j=1, \dots, m\} = 1$, then by Lemma 1.5 we have $\#\{a_{1,j}; \in J'_1\} < \infty$. Thus $S_1[q] \in E_N$. Similarly, if $\#\{j; A_2 = A_j, j=1, \dots, m\} = 1$, then we have $S_2[q] \in E_N$. Lemma 1.6 is thus proved.

LEMMA 1.7. Let q be a polynomial of degree at most N. Assume that (A) holds and that $S_1[q] \in E_N$, $S_2[q] \in E_N$. Then there exist positive constants $\theta'(q)$, d'(q), h_1 , h_2 such that

$$\begin{split} |e^{-q(z)}S_2[q](z)| \leq &\exp(-h_1|\operatorname{Im} z|) \quad on \ G_1(\theta'(q), \ d'(q)), \\ |e^{-q(z)}S_1[q](z)| \leq &\exp(-h_2|\operatorname{Im} z|) \quad on \ G_2(\theta'(q), \ d'(q)). \end{split}$$

Proof. By the definitions of $S_1[q]$, $S_2[q]$ and Lemma 1.3, we easily have the desired result.

LEMMA 1.8. Let q be a polynomial of degree at most N. Assume that (A) holds, $C(P_{\mu}-P_{1}) \in H_{1}$ for every $\mu \neq 1$ and that $C(P_{\mu}-P_{2}) \in H_{2}$ for every $\mu \neq 2$. Then there exist positive constants $\theta(q)$, d(q), k_{1} , k'_{1} , k_{2} , k'_{2} such that

(1) $|e^{-q(z)}T_1[q](z)| \leq \exp(-k_1|\operatorname{Im} z|) + \exp(-k'_1|z|)$ on $G_1(\theta(q), d(q)),$

FUNCTIONAL EQUATION $f^{n} = e^{P_{1}} + \cdots + e^{P_{m}}$ AND RIGIDITY THEOREMS

(2)
$$|e^{-q(z)}T_2[q](z)| \leq \exp(-k_2|\operatorname{Im} z|) + \exp(-k'_2|z|)$$
 on $G_2(\theta(q), d(q))$

Proof. We shall prove only (1). We may assume $P_1=0$. Then

(1.4) $\deg P_{\mu} \ge 1, \qquad C(P_{\mu}) \in H_1 \quad \text{for every } \mu \neq 1.$

For each $\lambda = (\lambda_2, \lambda_3, \dots, \lambda_m) \in (N \cup \{0\})^{m-1}$ we put

$$\|\lambda\| = \lambda_2 + \lambda_3 + \dots + \lambda_m,$$

$$\delta(\lambda) = \gamma_{\|\lambda\|} \frac{\|\lambda\|!}{\lambda_2 ! \lambda_3 ! \dots \cdot \lambda_m !},$$

$$q^{(\lambda)} = \lambda_2 P_2 + \lambda_3 P_3 + \dots + \lambda_m P_m,$$

where $(1+w)^{1/n} = \sum_{j=0}^{\infty} \gamma_j w^j$ (|w| < 1). Let k be a positive number such that (m-1)k < 1.

Then by (1.4) and Lemma 1.3, for suitable θ , d,

$$|\exp(P_{\mu}(z))| < k$$
 on $G_1(\theta, d)$ $(\mu = 2, -, m)$.

Hence

$$\sum_{j=0}^{\infty} \gamma_j (\sum_{\mu=2}^{m} \exp(P_{\mu}))^j = \sum_{\|\lambda\|\geq 0} \delta(\lambda) \exp(q^{(\lambda)}) ,$$
$$\sum_{j} |\exp(p_{1,j}(z))| \leq \sum_{\|\lambda\|\geq 0} |\delta(\lambda)| |\exp(q^{(\lambda)}(z))| \leq \sum_{\|\lambda\|\geq 0} |\delta(\lambda)| k^{\|\lambda\|} < \infty$$

on $G_1(\theta, \text{ rf})$. Therefore $\sum_{j} \exp(p_{1,j}(z))$ is absolutely convergent and holomorphic on $G_1(\theta, d)$.

Put

Then by Lemma 1.4, there exist $\alpha_1, \dots, \alpha_r \in \mathcal{A}$ satisfying

(1.5)
$$\varDelta \subset \langle \alpha_1, \cdots, \alpha_\tau \rangle .$$

Put

$$\Gamma(\lambda_0, h) = |\delta(\lambda_0)| + \sum_{\|\lambda\| \ge 1} |\delta(\lambda_0 + \lambda)| h^{\|\lambda\|}$$

Then $\Gamma(\lambda_0, h) < \infty$ for all $\lambda_0 \in (N \cup \{0\})^{m-1}$ and all $h \in (0, 1/(m-1))$. By (1.5)

$$\sum_{\substack{j \in J''_1 \\ j = 1}} |\exp(p_{1,j} - q)| \leq \sum_{\substack{\lambda \in \mathcal{A}}} |\delta(\lambda)| |\exp(q^{(\lambda)} - q)|$$

$$\leq \sum_{\substack{j=1 \\ j=1}}^{r} |\exp(q^{(\alpha_j)} - q)| (|\delta(\alpha_j)| + \sum_{\substack{\|\lambda\| \ge 1 \\ \|\lambda\| \ge 1}} |\delta(\alpha_j + \lambda)| |\exp(q^{(\lambda)})|)$$

$$\leq \sum_{\substack{j=1 \\ j=1}}^{r} |\exp(q^{(\alpha_j)} - q)| \Gamma(\alpha_j, k) \quad \text{on } G_1(\theta, d).$$

97

•

Since $C(q^{(\alpha_j)}-q) \in H_1$ and $q^{(\alpha_j)}-q \neq \text{const.}$, by Lemma 1.3 there exist positive constants $\theta(q)$ ($<\theta$), d(q) (>d), k_1 , k'_1 such that

$$\sum_{j=1}^{1} |\exp(q^{(\alpha_j)}(z) - q(z))| \Gamma(\alpha_j, k) < \exp(-k_1 |\operatorname{Im} z|) + \exp(-k'_1 |z|)$$

on $G_1(\theta(q), d(q))$. Thus we have the desired result.

LEMMA 1.9. Let f be a holomorphic function on $\{z; |\arg z| < \omega_0\}$ $(\omega_0 > 0)$. Assume that (A) holds, $\#\{j; A_1 = A_j, j = 1, \dots, m\} = l$, $\#\{j; A_2 = A_j, j = 1, \dots, m\}$ = 1 and that $f^n = e^{P_1} + \cdots + e^{P_m}$ on $\{z; |\arg z| < \omega_0\}$. Then

$$\{p_{1,j}\}_{j} = \{p_{2,j}\}_{j}$$

Proof. Put $W = (\{p_{1,j}\}_j - \{p_{2,j}\}_j) \cup (\{p_{2,j}\}_j - \{p_{1,j}\}_{a})$ assume $W \neq \emptyset$. Then, by Lemma 1.5, $\{\operatorname{Re} a_{\nu,j}; p_{\nu,j} \in W\}$ is a discrete set which is bounded from above. Thus there exists $\alpha_0 \in \{a_{\nu,j}; p_{\nu,j} \in W\}$ which satisfies

(1.6)
$$\operatorname{Re} \alpha_{0} = \max \{ \operatorname{Re} a_{\nu, j} ; p_{\nu, j} \in W \}.$$

Put

$$W' = \{ p_{\nu,j} \in W; a_{\nu,j} = \alpha_0 \}.$$

Then, by Lemma 1.5, $\#W' < \infty$. Thus, by Lemma 1.2, there exists a polynomial q_0 in W' such that

Re
$$C(p-q_0) \leq 0$$
 for every $p \in W'$.

On the other hand, by (1.6), Re $C(p_{\nu,j}-tf_0)=\operatorname{Re}(a_{\nu,j}-\alpha_0)\leq 0$ for every $p_{\nu,j}\in W-W'$. Thus we have

(1.7) Re
$$C(p-q_0) \leq 0$$
 for every $p \in W$.

We define $J_1, J'_1, J''_1, J_2, J'_2, J''_2$ for $q=q_0$. Then by (1.7) we have $\{p_{1,j}; j\in J_1\} \cap W=\emptyset, \{p_{2,j}; j\in J_2\} \cap W=\emptyset$. Therefore, by the definitions of J_1, J_2 and $W, \{p_{1,j}, j\in J_1\} = \{p_{2,j}, j\in J_2\}$ and $\{a_{1,j}, \in J_1\} = \{a_{2,j}, j\in J_2\}$. Further, if $j\in J_1$, then by the definition of J_1 we have $a_{1,j}=\alpha_0$ or $\operatorname{Re} a_{1,j} > \operatorname{Re} \alpha_0$ Thus by Lemma 1.5

$$\{a_{1,j}; j \in J_1\} \subset (\mathcal{S}_1 \cap \mathcal{S}_2 \cap \{z; \operatorname{Re} z \geq \operatorname{Re} \alpha_0\}).$$

Put ff^ccSiFVSsjIte; Re $z \ge \text{Re } \alpha_0$. Since \mathcal{I} is a compact set, by Lemma 1.5 we have $\# \{a_{1,j}; j \in J_1\} < \infty$ (see Figure 5). Thus $R_1 = R_2 \in E_N$.

Let $\theta(q_0)$, $\theta'(q_0)$, $d(q_0)$, $d'(q_0)$ be positive constants for which Lemma 1.7 and 1.8 hold with q replaced by q_0 , and let θ_0 , d_0 be positive constants satisfying $0 < \theta_0 < \min(\omega_0, \theta(q_0), \theta'(q_0))$, $d_0 > \max(d(q_0), d'(q_0))$. Put

$$R = R_1[q_0] = R_2[q_0], \qquad F = (f - R - S_1[q_0] - S_2[q_0] - b_2(q_0)e^{q_0})e^{-q_0}.$$

Then, by Lemma 1.6, F is a holomorphic function on $\{|\arg z| < \omega_0\}$ satisfying

(1.8)

$$F(z) = (b_1(q_0) - b_2(q_0)) - S_2[q_0](z)e^{-q_0(z)} + T_1[q_0](z)e^{-q_0(z)} \quad \text{on } G_1(\theta_0, d_0)$$

$$F(z) = -S_1[q_0](z)e^{-q_0(z)} + T_2[q_0](z)e^{-q_0(z)} \quad \text{on } G_2(\theta_0, d_0)$$

Therefore, by Lemma 1.7 and 1.8, there are positive constants K_1 , K_2 such that for every $y_0 > d_0$ we have

(1.9)
$$|F(x+iy_0)-(b_1(q_0)-b_2(q_0))| \le \exp(-K_1y_0)+o(1) \quad (x \to +\infty),$$
$$|F(x-iy_0)| \le \exp(-K_2y_0)+o(1) \quad (x \to +\infty).$$

Put $L_0 = y_0 \tan^{-1}\theta_0$. Then F is bounded on $\partial \{z; \operatorname{Re} z \ge L_0, |\operatorname{Im} z| \le y_0\}$ and satisfies $|F(z)| < \exp(A|z|^N)$ on $\langle z | \operatorname{Re} z \ge L_0, |\operatorname{Im} z| \le y_0\}$ with a positive constant A Therefore by the Phragmén-Lindelöf theorem (see [3; p. 43]) it is verified that F is a bounded function in $\{z; \operatorname{Re} z \ge L_0, |\operatorname{Im} z| \le y_0\}$. Let $L (> L_0)$ be a positive number. Then

$$\frac{1}{L} \int_{L_0}^{L} F(x+iy_0) dx = \frac{1}{L} \int_{L_0}^{L} F(x-iy_0) dx$$
$$-\frac{i}{L} \int_{-y_0}^{y_0} F(L_0+iy) dy + \frac{i}{L} \int_{-y_0}^{y_0} F(L+iy) dy$$

(see Figure 6).

Since F is bounded on $\{z; \operatorname{Re} z \ge L_0, |\operatorname{Im} z| \le y_0\}$, by using (1.9) we have

$$|b_1(q_0) - b_2(q_0)| \leq \exp(-K_1 y_0) + \exp(-K_2 y_0) + o(1) + O(1/L) \qquad (L \to +\infty).$$

Since $q_0 \in W$, we have $b_1(q_0) \neq b_2(q_0)$. Thus for y_0 sufficiently large, we have a contradiction. Thus $W = \emptyset$, namely $\{p_{1,j}\}_j = \{p_{2,j}\}_j$. Lemma 1.9 is thus proved.

From Lemma 1.5 and 1.9 we have the following

COROLLARY. Under the hypotheses of Lemma 1.9, assume that $S_1 \cap S_2$ is a bounded set. Then f is an element of E_N .

Now we can complete the proof of Theorem 1. For each polynomial p and $\theta \in \mathbf{R}$, we set $(p)_{\theta}(z) = p(ze^{i\theta})$. Then $(\cdot)_{\theta} : \mathbf{C}[z] \to \mathbf{C}[z]$ is a linear bijection which leaves every element of $C (\subset \mathbf{C}[z])$ fixed. Therefore for every $\nu \in \{1, \dots, t\}$ and $\theta \in \mathbf{R}$, we have

$$\exp\left((P_{\nu})_{\theta}/n\right)\left(1+\sum_{j=1}^{n}\gamma_{j}\left(\sum_{\mu\in\{1,\dots,m\}-\{\nu\}}\exp\left((P_{\mu})_{\theta}-(P_{\nu})_{\theta}\right)\right)^{j}\right)=\sum_{j}\exp\left(p_{\nu,j}\right)_{\theta}.$$

Let $\nu \in \{1, \dots, t\}$ be fixed. Then there exists $\theta_{\nu} \in (-\pi/N, \pi/N]$ such that

$$\operatorname{Re} (A_{\nu}e^{iN\theta_{\nu}}) = \operatorname{Re}(A_{\nu+1}e^{iN\theta_{\nu}}), \qquad \operatorname{Im} (A_{\nu}e^{iN\theta_{\nu}}) < \operatorname{Im}(A_{\nu+1}e^{iN\theta_{\nu}}),$$
$$\operatorname{Re} (A_{\mu}e^{iN\theta_{\nu}}) \leq \operatorname{Re} (A_{\nu}e^{iN\theta_{\nu}}) \qquad (\mu=1, -, m).$$

Therefore (A) is fulfilled with P_1 , -, P_m , A_1 , A_2 replaced by $(P_1)_{\theta_\nu}$, -, $(P_m)_{\theta_\nu}$, $A_{\nu}e^{iN\theta_\nu}$, $A_{\nu+1}e^{iN\theta_\nu}$ respectively. Thus, if $\theta_{\nu} \in (\omega_1, \omega_2)$, then by Lemma 1.9 $\{(p_{\nu,j})_{\theta_\nu}\}_j = \{(p_{\nu+1,j})_{\theta_\nu}\}_j$. Therefore $\{p_{\nu,j}\}_j = \{p_{\nu+1,j}\}_j$, $\{a_{\nu,j}\}_j = \{a_{\nu+1,j}\}_j \subset S_{\nu} \cap S_{\nu+1}$. Let $\nu_0 \in \{1, \dots, t\}$ be the integer such that $\{\nu; \theta_{\nu} \in (\omega_1, \omega_2)\} - \{\nu_0, \nu_0 + 1, \dots, \nu_0 + s\}$ (mod t). Then $\{a_{\nu_0,j}\}_j = \{a_{\nu_0+1,j}\}_j = \cdots = \{a_{\nu_0+s+1,j}\}_j \subset (S_{\nu_0} \cap S_{\nu_0+1} \cap \cdots \cap S_{\nu_0+s+1})$. (We set $a_{\nu+t,j} = a_{\nu,j}$, $S_{\nu+t} = S_{\nu}$ ($\nu \in \{1, \dots, t\}$)) Since $\omega_2 - \omega_1 > \pi/N$, $S_{\nu_0} \cap S_{\nu_0+1} \cap \cdots \cap S_{\nu_0+s+1}$ is a bounded set. Thus $\{a_{\nu_0,j}\}_j$ is a finite set Therefore by Lemma 1.5 $\{p_{\nu_0,j}\}_j$ is so. Thus / is an element of E_N . Theorem 1 is thus proved.

2. Proof of Theorem 2.

We begin with the proof of the following

THEOREM 5. Let f be a holomorphic function on $\{z; |\arg z| < \omega_0\} (\omega_0 > 0)$ and g be an element of E_{N-1} . Assume that (A) holds, $\#\{j; A_1 = A_j, j = 1, \dots, m\} = 1$, $\#\{j; A_2 = A_j, 7 = 1, \dots, m\} = 1$ and that $f^n = ge^{P_1} + e^{P_2} + \dots + e^{P_m}$ on $\{z; |\arg z| < \omega_0\}$. Then $g = h^n$ for some $h \in E_{N-1}$.

LEMMA 2.1. Let $n(\geq 2)$ be an integer, P_1, \dots, P_s be polynomials, $P_{\mu}-P_{\nu}\neq$ const. $(\mu\neq\nu)$, $C(P_{\mu}-P_1)\in H_1(\mu=2, \dots, s)$ and $\{r_j\}$, be the set of polynomials defined by

$$\exp(P_1/n)\left(1+\sum_{j=1}^{j}\gamma_j(\sum_{\mu=2}^{j}\exp(P_\mu-P_1))^j\right)\equiv\sum_{j}\exp(r_j),$$

$$r_j-r_k\neq const. \quad (j\neq k), \qquad \operatorname{Im}(r_j(0))\in[0, 2\pi),$$

where $1 + \sum_{j=1}^{\infty} \gamma_j w^j = (1+w)^{1/n}$ (|w| < 1). Let $\Pi (\neq \emptyset)$ be a subset of $\{r_j\}_j$. Then there exists a polynomial $p_0 \in \Pi$ such that

 $C(p-p_0) \in H_1 \quad for every \quad p \in \Pi - \{p_0\}.$

Proof. We may assume $P_1=0$. Then

$$\deg P_{\mu} \geq 1, \qquad C(P_{\mu}) \in H_1 \ (\mu = 2, \ \cdots, \ s).$$

For each polynomial p we set

$$(p)^*(z) = p(z) - p(0)$$
,

and for each $\lambda = (\lambda_2, \cdots, \lambda_s) \in (N \cup \{0\})^{s-1}$

$$q^{(\lambda)} = \lambda_2 P_2 + \cdots + \lambda_s P_s .$$

Then $(\cdot)^*: C[z] \to C[z]$ is a linear mapping. By the definition of $\{r_j\}_{j=1}^{\infty}$ and Lemma 1.1, we have

(2.1)
$$\{(r_j)^*\}_j \subset \{(q^{(\lambda)})^*; \lambda \in (N \cup \{0\})^{s-1}\},\$$

(2.2)
$$\deg q^{(\beta)} \ge 1, \quad C((q^{(\beta)})^*) \in H_1 \quad \text{for every } \beta \neq (0, \dots, 0).$$

Put

(2.3)
$$\Pi^* = \{(p)^*; p \in \Pi\}, \qquad \Delta = \{\lambda; (q^{(\lambda)})^* \in \Pi^*\}.$$

Then by (2.2)

$$\Pi^* = \{ (q^{(\lambda)})^*; \lambda \in \Delta \}.$$

Further by Lemma 1.4 there exist $\alpha_1, \dots, \alpha_\tau \in \Delta$ such that

 $\Delta \subset \langle \alpha_1, \cdots, \alpha_\tau \rangle.$

Put

$$\Pi = \{ (q^{(\alpha_j + \beta)})^*; j = 1, ..., \tau, \beta \in (N \cup \{0\})^{s-1} \}$$

Then

$$(2.4) $\Pi^* \subset \check{\Pi}$$$

By Lemma 1.2 we may assume

$$C(q^{(\alpha_j)}-q^{(\alpha_1)}) \in H_1$$

for every $q^{(\alpha_j)}$ satisfying $(q^{(\alpha_j)})^* \neq (q^{(\alpha_1)})^*$. Note that $C((q^{(\alpha_j+\beta)})^* - (q^{(\alpha_1)})^*) = C((q^{(\alpha_j+\beta)})^* - (q^{(\alpha_j)})^* + (q^{(\alpha_j)})^* + (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* - (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* = C(q^{(\alpha_j+\beta_j)})^* - (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* - (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* - (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* = C(q^{(\alpha_j+\beta_j)})^* - (q^{(\alpha_j)})^* = C(q^{(\alpha_j+\beta_j)})^* = C($

 $C(p-(q^{(\alpha_1)})^*) \in H_1$ for every $p \in \tilde{H} - \{(q^{(\alpha_1)})^*\}$.

Thus by (2.4)

(2.5)
$$C(p-(q^{(\alpha_1)})^*) \in H_1 \text{ for every } p \in \Pi^* - \{(q^{(\alpha_1)})^*\}.$$

Since $\alpha_1 \in \mathcal{A}$, by (2.3) there is an element p_0 of Π such that

 $fo < {}^{\beta}\iota >) * = (/>o) *$

If $p \in \Pi - \{p_0\}$, then deg $(p - p_0) \ge 1$ and $(p)^* \in \Pi^* - \{(p_0)^*\}$. Therefore by (2.5)

$$C(p-p_0) = C((p)^* - (p_0)^*) = C((p)^* - (q^{(\alpha_1)})^*) \in H_1 \text{ for every } p \in \Pi - \{p_0\}.$$

Thus we have the desired result.

LEMMA 2.2. Assume that (A) holds, $\{j \ A_1 = A_j, j = 1, -, m\} = \{1, t+1, \dots, s\}$ $(t+1 \le s \le m), \#\{j; A_2 = A_j, j = 1, \dots, m\} = 1$ and that

$$\exp(P_1) + \sum_{j=l+1}^{s} \exp(P_j) \neq h^n \quad for \ any \ h \in E_N.$$

Let $\{p_{1,j}\}_{j}, \{p_{2,j}\}_{j}$ be defined by (1.1). Then there exists $q_{0} \in (\{p_{1,j}\}_{j} - \{p_{2,j}\}_{j}) \cup (\{p_{2,j}\}_{j} - \{p_{1,j}\}_{j})$ such that

 $R_1[q_0] = R_2[q_0] \in E_N$, $S_1[q_0] \in E_N$, $S_2[q_0] \in E_N$,

where $R_1[q_0]$, $R_2[q_0]$, $S_1[q_0]$, $S_2[q_0]$ are defined in Section 1.

Proof. We may assume

 $P_1=0, \quad C(P_{\mu})\in H_1 \quad (\mu=2, \cdots, m).$

Then

$$\begin{split} N{-}1 &\geq \deg P_{\mu} \geq 1 \qquad (\mu{=}t{+}1, \cdots, s), \\ &\deg P_{\mu}{=}N \qquad (\mu{\in}\{2, \cdots, m\} - \{t{+}1, \cdots, s\}) \end{split}$$

Let $\{r_j\}_j$ be the set of polynomials defined by

$$1 + \sum_{j=1}^{\infty} \gamma_{i} (\sum_{\mu=t+1}^{s} \exp(P_{\mu}))^{j} \equiv \sum_{\mathcal{F}} \exp(r_{j}),$$

$$r_{j} - r_{k} \neq \text{const.} \quad (j \neq k), \qquad \text{Im}(r_{j}(0)) \in [0, 2\pi),$$

where $1 + \sum_{j=1}^{\infty} \gamma_j w^j \neq l + w^{1/n} \ (|w| < 1)$. Then by Lemma 1.1

$$\{p_{1,j}; a_{1,j}=0\} = \{r_j\}_j,$$

where $a_{\nu,j} = p_{\nu,j}^{(N)}(0)/N!$. Put

$$\Pi_{1} = \{p_{1,j}\}, \qquad \Pi_{2} = \{p_{2,j}\},$$

$$\pi_{1} = \{p_{1,j}; a_{1,j} = 0\}, \qquad \pi_{2} = \{p_{2,j}; a_{2,j} = 0\}.$$

By assumption we have $\#\pi_1 = \infty$. Since $\#\{j; A_2 = A_j, j = 1, \dots, m\} = 1$, by Lemma 1.5 $\#\pi_2 < \infty$. Therefore $(\pi_1 - \pi_2) \neq \emptyset$. Thus by Lemma 2.1 there exists $q_1 \in (\pi_1 - \pi_2)$ such that

(2.6)
$$C(q-q_1) \in H_1$$
 for every $q \in (\pi_1 - \pi_2) - \{q_1\}$.

Since $\#(\pi_2 - \pi_1) < \infty$, by Lemma 1.2 there exists $q_2 \in (\pi_2 - \pi_1)$ such that

(2.7)
$$C(q-q_2) \in H_1$$
 for every $q \in (\pi_2 - \pi_1) - \{q_2\}$

whenever $(\pi_2 - \pi_1) \neq \emptyset$. Note that $C(q_1 - q_2) \neq 0$. Put

$$q_0 = \begin{cases} q_1 & \text{if } (\pi_2 - \pi_1) \neq \emptyset \text{ or } C(q_2 - q_1) \in H_1 \text{,} \\ q_2 & \text{if } (\pi_2 - \pi_1) \neq \emptyset \text{ and } C(q_1 - q_2) \in H_1 \end{cases}$$

Then $q_0 \in ((\pi_1 - \pi_2) \cup (\pi_2 - \pi_1)) \subset ((\Pi_1 - \Pi_2) \cup (\Pi_2 - \Pi_1))$. When $q_0 = q_1$ and $(\pi_2 - \pi_1) \neq \emptyset$, we have $C(q-q_0) = C((q-q_2) + (q_2-q_1))$. Thus, by (2.7) and Lemma 1.1,

 $C(q-q_0) \in H_1$ for every $q \in (\pi_2 - \pi_1)$.

When $q_0 = q_2$, we have $C(q-q_0) = C((q-q_1)+(q_1-q_2))$. Thus, by (2.6) and Lemma 1.1,

$$C(q-q_0) \in H_1$$
 for every $q \in (\pi_1 - \pi_2)$.

Therefore, from (2.6), (2.7),

(2.8) $C(q-q_0) \in H_1$ for every $q \in (\pi_1 - \pi_2) - \{q_0\}$,

(2.9) Re $C(q-q_0) \leq 0$ for every $q \in (\pi_1 - \pi_2) \cup (\pi_2 - \pi_1)$.

Since deg $q_0 \leq N-1$, we have $C(p_{1,j}-q_0)=a_{1,j}(\neq 0)$, $C(p_{2,j}-q_0)=a_{2,j}$ for $p_{1,j} \in (\Pi_1-\pi_1), p_{2,j} \in (\Pi_2-\pi_2)$. Note that $A_1=0, A_2 \in i\mathbf{R}^+$. By Lemma 1.5 and (1.3), $a_{1,j} \in (\mathcal{S}_1-\{0\}) \subset H_1, a_{2,j} \in \mathcal{S}_2 \subset \{z ; \operatorname{Re} z \leq 0\}$ for $p_{1,j} \in (\Pi_1-\pi_1), p_{2,j} \in (\Pi_2-\pi_2)$.

Therefore

- (2.10) $C(q-q_0) \in H_1 \quad \text{for every } q \in (\Pi_1 \pi_1),$

Thus, from (2.8)-(2.11), we have

(2.12)
$$C(q-q_0) \in H_1$$
 for every $q \in (\Pi_1 - (\pi_1 \cap \pi_2)) - \{q_0\}$,

(2.13) Re
$$C(q-q_0) \leq 0$$
 for every $q \in (\Pi_1 \cup \Pi_2) - (\pi_1 \cap \pi_2)$.

We define $J_1, J'_1, J''_1, J_2, J'_2, J''_2$ for $q=q_0$ as in Section 1. Then, from (2.13) and the definitions of J_1, J_2 ,

$$\{p_{1,j}, j \in J_1\} = \{p_{2,j}, j \in J_2\} \subset (\pi_1 \cap \pi_2).$$

Since $\#(\pi_1 \cap \pi_2) < \infty$, we have

From Lemma 1.6

$$S_2[q_0] \in E_N$$
.

 $R_1[q_0] = R_2[q_0] \in E_{N-1}$.

Further by (2.12) and the definition of J'_1

Thus

$$\{p_{1,j}; j \in J'_1\} \subset (\pi_1 \cap \pi_2).$$

 $S_1[q_0] \in E_{N-1}.$

Lemma 2.2 is thus proved.

Proof of Theorem 5. We use the notations of Lemma 2.2. Assume that $g \neq h^n$ for any $h \in E_{N-1}$. Then by Lemma 2.2 there exists $q_0 \in (\{p_{1,j}\}_j - \{p_{2,j}\}_j) \cup (\{p_{2,j}\}_j - \{p_{1,j}\}_j)$ such that

$$R_1[q_0] = R_2[q_0] \in E_N, \quad S_1[q_0] \in E_N, \quad S_2[q_0] \in E_N.$$

Therefore Lemma 1.7 and 1.8 hold for those $S_1[q_0]$, $S_2[q_0]$, $T_1[q_0]$, $T_2[q_0]$. Put

$$R = R_1[q_0] = R_2[q_0], \qquad F = (f - R - S[q_0] - S_2[q_0] - b_2(q_0)e^{q_0})e^{-q_0}.$$

Then F is a holomorphic function on $\{|\arg z| < \omega_0\}$ satisfying (1.8), (1.9), and $b_1(q_0) \neq b_2(q_0)$. Thus we have a contradiction as in Section 1. Theorem 5 is thus proved.

Now we prove Theorem 2. Put $N = \max_{j} \deg P_j, A_j = P_j^{(N)}(0) / N(j=1, \dots, 4)$. We may assume that $\#\{A_j\}_{j \ge 2}$. Then we have the following three cases.

Case 1): $\#\{A_j\}_{j=2}$. In this case, from the following Lemma 2.3, we have a contradiction.

LEMMA 2.3. Let $n (\geq 2)$, $N (\geq 1)$ be integers, A_1 , A_2 be distinct constants

and g_1 , g_2 be nonzero elements of E_{N-1} . Then

 $f(z)^n \neq g_1(z) \exp((A_1 z^N) + g_2(z) \exp((A_2 z^N))$

for any entire function f.

Proof. Assume that there exists an entire function / satisfying $f^n(z) = g_1(z) \exp(A_1 z^N) + g_2(z) \exp(A_2 z^N)$. Put

$$F(z) = g_1(z) \exp((A_1 - A_2)z^N)$$
.

Then $T(r, g_2) = o(T(r, F))$ and

$$\Theta(0, F) = \Theta(\infty, F) = 1, \qquad \Theta(-g_2, F) \ge 1 - (1/n).$$

Thus by the second fundamental theorem (see [2; p. 47]) we have a contradiction.

Case 2): $\#\{A_j\}_{j=3}$. Suppose that A_1, \dots, A_4 do not lie on any streight line. Then we may assume that

$$A_1=0, \quad A_2 \in i\mathbf{R}^+, \quad \operatorname{Re} A_3 < 0, \quad \operatorname{Re} A_4 < 0.$$

Define $p_{\nu,j}$, $a_{\nu,j}$ and S_{ν} (ν =1, 2) as in Section 1. Then, by Lemma 1.9, $\{a_{1,j}\}_j = \{a_{2,j}\}_j$. Further from (1.1) we have $\{(P_1/n) \rightarrow \nu(P_2 - P_1) + \log \gamma_{\nu} \quad \nu \in N\} \subset \{p_{1,j}\}_j$. Therefore, by Lemma 1.5, $(S_1 \cap S_2) \supset \{a_{1,j}\}_j \supset \{\nu A_2; \nu \in N\}$. Thus $(S_1 \cap S_2 \cap i\mathbf{R}) \supset \{\nu A_2 \quad \nu \in N\}$. Since $S_1 \cap S_2 \cap i\mathbf{R} = \{ix \quad 0 \le x \le (\operatorname{Im} A_2)/n\}$, this is a contradiction. Thus A_1, \dots, A_4 lie on a straight line. We assume that $A_2 = A_3$ and $A_1 \ne A_2 \ne A_4$ (see Figure 7 and 8).

Subcase 2.1): $A_2 \in \overline{A_1 A_4}$. (We denote by $\overline{\alpha\beta}$ the line segment $\{\alpha + x(\beta - \alpha); 0 \le x \le 1\}$.) First we shall show the following

LEMMA 2.4.

(1) Let Q_1, \dots, Q_m be polynomials satisfying $Q_j - Q_k \neq \text{const.} (j \neq k)$. Then $e^{Q_1} + \dots + e^{Q_m} \equiv 0$.

(2) Let P_1, \dots, P_m be polynomials. Assume that $e^{P_1} + \dots + e^{P_m} = 0$ and that $\sum_{j \in J} e^{P_j} \neq 0$ for any $J \subsetneq \{1, \dots, m\}$ $(J \neq \emptyset)$. Then $(P_1)^* = - = (P_m)^*$. $//e^{P_1} + e^{P_2} = 0$ or $e^{P_1} + e^{P_2} + e^{P_3} = 0$, then we always have $(P_1)^* = (P_2)^*$ or $(P_1)^* = (P_2)^* = (P_3)^*$ respectively. (For each polynomial p we set $(p)^*(z) = p(z) \cdot p(0)$.)

Proof. These are well-known results and immediate consequences of Lemma 1.3. We assume that $Q_1 <_2 Q_2 <_2 - <_2 Q_m$. By Lemma 1.1, $C(Q_j - Q_m) \in H_2$ 0=1, ..., m-1). Thus, by Lemma 1.3, there exist positive constants θ , d such that $|e^{(Q_1-Q_m)}+\ldots+e^{(Q_{m-1}-Q_m)}| < 1/2$ on $G_2(\theta, d)$. Therefore $|(e^{Q_1}+\ldots+e^{Q_m})e^{-Q_m}| > 1/2$ on $G_2(\theta, d)$. Thus (1) is proved. (2) follows from (1).

By Theorem 1 we have $f \in E_N$. We may assume that $A_1, \dots, A_4 \in \mathbf{R}$, $A_1 < A_2 = A_3 < A_4$ and that $P_2 \leq_2 P_3$. Then we have $f = e^{Q_1} + \dots + e^{Q_m}$, where Q_j 's are polynomials of degree at most N satisfying $Q_\mu - Q_\nu \neq \text{const.}$ $(\mu \neq \nu)$, $Q_1 <_2 Q_2 <_2 - <_2 Q_m$ and $Q_j^{(N)}(0)/N! \in [A_1/iA_4/n]$ $(j = 1, \dots, m)$. Put $(e^{Q_1} + \dots + e^{Q_m})^n = \sum_{\mu_1 + \dots + \mu_m = n} n! (\mu_1! \dots \mu_m!)^{-1} e^{\mu_1 Q_1} \dots e^{\mu_m Q_m} = \exp(\tilde{Q}_1) + \dots$

Put $(e^{Q_1} + \dots + e^{Q_m})^n = \sum_{\mu_1 + \dots + \mu_m = n} n! (\mu_1! \dots \mu_m!)^{-1} e^{\mu_1 Q_1} \dots e^{\mu_m Q_m} = \exp(Q_1) + \dots + \exp(\tilde{Q}_k)$, where Q_j 's are polynomials satisfying $\tilde{Q}_{\mu} - Q_{\nu} \neq \text{const.} (\mu \neq \nu), \tilde{Q}_1 <_2$ $\tilde{Q}_2 <_2 \dots <_2 \tilde{Q}_k$ It is easily seen that $m \ge 2$ and

$$\tilde{Q}_1 = nQ_1, \quad \tilde{Q}_2 = (n-1)Q_1 + Q_2, \quad \tilde{Q}_{k-1} = Q_{m-1} + (n-1)Q_m, \quad \tilde{Q}_k = nQ_m.$$

We shall consider the following two cases.

1) $P_2-P_3=$ const.. In this case we have $f^n = e^{P_1} + e^{P_2 + c} + e^{P_4} = \exp(\tilde{Q_1}) + \cdots + \exp(\tilde{Q_k})$ for some constant c. Therefore, by Lemma 2.4, we have k=3, $(n-1)Q_1+Q_2=Q_{m-1}+(n-1)Q_m=P_2+c$. Thus $R \equiv (n-1)(Q_1-Q_m)+(Q_2-Q_{m-1})=0$. If m>2, then $Q_1<_2Q_m$, $Q_2\leq_2Q_{m-1}$ Therefore, by Lemma 1.1, we have $R<_20$. This is a contradiction. Thus m=2, R=(n-2) (Q_1-Q_2) . If n>2, then $R<_20$. This is again a contradiction. Thus $m=n=2, f=e^{Q_1}+e^{Q_2}$.

2) $P_2 - P_3 \neq \text{const.}$ By Lemma 2.4 we have

$$(2.14) P_1 = nQ_1, P_2 = (n-1)Q_1 + Q_2, P_3 = Q_{m-1} + (n-1)Q_m, P_4 = nQ_m.$$

Put $B_j = Q_j^{(N)}(0) / N! (j=1, -, m)$. Then by (2.14)

$$A_1 = nB_1$$
, $A_2 = (n-1)B_1 + B_2$, $A_3 = B_{m-1} + (n-1)B_m$, $A_4 = nB_m$.

Since $A_1 < A_2 = A_3 < A_4$, we have $B_1 < B_2$, $B_{m-1} < B_m$, $B_j \le B_{j+1} \ 0 = 1$, $\dots, m-1$), $(n-1) \ (B_1 - B_m) + (B_2 - B_{m-1}) = 0$. Therefore we have n = m = 2 as in 1). Thus $f = e^{Q_1} + e^{Q_2}$. This implies $e^{P_2} + e^{P_3} = 2e^{(Q_1 + Q_2)}$, $P_2 - P_3 = \text{const.}$, which contradicts the assumption.

Subcase 2.2): $A_2 \notin \overline{A_1A_4}$. We may assume that Re $A_1 = \cdots = \text{Re } A_4$, Im $A_1 > \text{Im } A_4 > \text{Im } A_2 = \text{Im } A_3$. If $P_2 - \text{ft} \neq \text{const.}$, then by Theorem 5 and Lemma 2.3 we have a contradiction. Thus $P_2 - P_3 = \text{const.}$. Therefore this case is reduced to Subcase 2.1).

Case 3): $\#\{A_j\}_j=4$. By Theorem 1 it is verified that $f \in E_N$. As in Case 2), we see that A_1, \dots, A_4 lie on a straight line. We may assume that $A_1, \dots, A_4 \in \mathbb{R}$, $0=A_1 < A_2 < A_3 < A_4$ and $P_1=0$. Then $f=c_1e^{Q_1}+\cdots+c_me^{Q_m}$, where c_j 's are nonzero constants and Q_j 's are polynomials such that $Q_j(0)=0$ $(j=1, \dots, m)$, $\deg Q_j \leq N$ $(j=2, \dots, m)$, $Q_j^{(N)}(0)/N! \in [0, A_4/n]$ (j=1, -, m) and $Q_1 < 2Q_2 < 2 \dots < 2Q_m$.

107

Put $(c_1e^{q_1} + \dots + c_me^{q_m})^n = \exp(\tilde{Q}_1) + \dots + \exp(\tilde{Q}_k)$, where \tilde{Q}_j 's are polynomials satisfying $Q_{\mu} - \tilde{Q}_{\nu} \neq \text{const.}$ $(\mu \neq \nu)$, $Q_1 <_2 Q_2 <_2 <_2 Q_k$. By Lemma 2.4 we have fe=4 and $P_j = \hat{Q}_j(j=1, \dots, 4)$. Since $P_1 = 0$, we have $c_1^n e^{nQ_1} = 1$. Therefore we may assume $c_1 = 1$, $Q_1 = 0$. It is easily seen that ra^2 and

$$(\tilde{Q}_1)^* = nQ_1, \quad (\tilde{Q}_2)^* = (n-1)Q_1 + Q_2, \quad (\tilde{Q}_3)^* = Q_{m-1} + (n-1)Q_m, \quad (\tilde{Q}_4)^* = nQ_m.$$

Thus

(2.15)

$$0 = (P_1)^* = Q_1, \qquad (P_2)^* = (n-1)Q_1 + Q_2 = Q_2,$$

$$(P_3)^* = Q_{m-1} + (n-1)Q_m, \qquad (P_4)^* = nQ_m.$$

Put $B_{j} = Q_{j}^{(N)}(0) / N! (j = 1, -, m)$. Then

(2.16)
$$0 \leq B_{j} \leq B_{j+1} \leq A_{4}/n \quad (j=1, \dots, m-1).$$

Further by (2.15)

$$(2.17) 0=A_1=B_1, A_2=B_2, A_3=B_{m-1}+(n-1)B_m, A_4=nB_m.$$

Since $A_1 < A_2 < A_3 < A_4$, we have $B_1 < B_2$, $B_{m-1} < B_m$.

Assume $m \ge 3$. Let p be the integer such that $B_2 = B_3 = \cdots = B_{\rho} < B_{\rho+1}$. Then

$$\{(\mu_{1}, \dots, \mu_{m}); \sum_{j=1}^{m} \mu_{j}B_{j} \leq B_{2}, \sum_{j=1}^{m} \mu_{j} = n, \mu_{j} \in \mathbb{N} \cup \{0\}\}\$$

= $\{(n, 0, \dots, 0)\} \cup \{(n-1, 0, \dots, 0, 1, 0, \dots, 0); \nu = 0, \dots, \rho - 2\}$

Therefore $(\tilde{Q}_j)^* = Q_j (j=1, \dots, \rho)$ If $\rho \ge 3$, then

$$f^{n} = 1 + e^{P_{2}} + e^{P_{3}} + e^{P_{4}} = 1 + n(c_{2}e^{Q_{2}} + c_{3}e^{Q_{3}} + \dots + c_{\rho}e^{Q_{\rho}}) + \dots + c_{m}^{n}e^{nQ_{m}}.$$

Therefore, by Lemma 2.4, $(P_2)^* = (Q_2)^* = Q_2$, $(P_3)^* = (\tilde{Q}_3)^* = Q_3$. Thus $A_2 = B_2$, $A_3 = B_3$. Hence $A_2 = A_3$. This is a contradiction. Thus $B_2 < B_3$. Similarly $B_{m-2} < B_{m-1}$. Therefore, if $m \ge 3$, then

$$(2.18) \qquad \qquad \theta = B_1 < B_2 < B_3, \qquad B_{m-2} < B_{m-1} < B_m.$$

LEMMA 2.5. There exist positive integers λ_j $(j=2, \dots, m)$ such that

$$(2.19) Q_j = \lambda_j Q_2 (j=2, \dots, m).$$

Proof. By induction on j. For each polynomial Q we set

$$\mu(Q) = \{(\mu_1, \cdots, \mu_m); Q = \sum_{j=1}^m \mu_j Q_j, n = \sum_{j=1}^m \mu_j, \mu_j \in \mathbb{N} \cup \{0\}\}.$$

Put

$$U = \{Q; \sum_{(\mu_1, \dots, \mu_m) \in \mu(Q)} (n!/(\mu_1! \cdots \mu_m!)) c_1^{\mu_1} \cdots c_m^{\mu_m} \neq 0\},\$$
$$V_{\nu} = \{Q; Q = \sum_{j=1}^{\nu} \mu_j Q_j, n = \sum_{j=1}^{\nu} \mu_j, \mu_j \in \mathbb{N} \cup \{0\}\} \quad (\nu = 2, \dots, m)$$

Then by (2.15) $U = \{(P_1)^*, -, (P_4)^*\} = \{0, Q_2, Q_{m-1} + (n-1)Q_m, nQ_m\}$. (2.19) holds trivially for j=2. Assume that (2.19) holds for $j=2, \dots, \nu$ ($\nu < m$). Further assume $Q_{\nu+1} \notin V_{\nu}$. If $(\mu_1, \dots, \mu_m) \in \mu(Q_{\nu+1})$, then there exists an integer $\rho \ge \nu+1$ such that $\mu_{\rho} \ne 0$. Since $Q_{\nu+1} = \sum_{j=1}^{m} \mu_j Q_j = \sum_{j=2}^{m} \mu_j Q_j$, we have $Q_{\nu+1} - \mu_{\rho} Q_{\rho} = \sum_{j=2}^{\rho-1} + \sum_{j=\rho+1}^{m} \mu_j Q_j$. By Lemma 1.1 $0 \le \sum_{j=2}^{2} (\sum_{j=\rho+1}^{j=\rho+1} \mu_j Q_j), (Q_{\nu+1} - \mu_{\rho} Q_{\rho}) \le 20$. Therefore $\mu_2 = - = \mu_{\rho-1}$ $= 0, \ \mu_{\rho+1} = - = \mu_m = 0, \ Q_{\nu+1} = \mu_{\rho} Q_{\rho}$. Hence $\mu_{\rho} = 1, \ \rho = \nu + 1$. Thus

$$\mu(Q_{\nu+1}) = \{(n-1, \underbrace{0}_{\nu-1}, 1, 0, -, 0)\}.$$

Therefore $\#\mu(Q_{\nu+1})=1$. Thus $Q_{\nu+1} \in U$. On the other hand, by (2.16) and (2.18), we have $B_2 < B_3 \leq B_{\nu+1}$, $B_{\nu+1} \leq B_m$, $0 < B_{m-1}$. (We assume $m \geq 3$.) Therefore $0 < B_2 < B_{\nu+1} < (B_{m-1}+(n-1)B_m) < nB_m$. Hence $Q_{\nu+1} \in U$. This is a contradiction. Thus $Q_{\nu+1} \in V_{\nu}$. By the induction assumption we have $V_{\nu} \subset \{\lambda Q_2; \lambda \in N \cup \{0\}\}$. Hence there is a positive integer $\lambda_{\nu+1}$ such that

$$\hat{Q}_{\nu+1} = \lambda_{\nu+1} Q_2$$

Lemma 2.5 is thus proved.

By Lemma 2.5 there are polynomials \mathcal{P} , \mathcal{R} satisfying that

$$f = \mathscr{P}(\exp(Q_2)), \quad f^n = \mathscr{R}(\exp(Q_2)).$$

By Lemma 2.5 $B_m - B_{m-1} = \lambda (B_2 - B_1)$ with $\lambda = \lambda_m - \lambda_{m-1}$. Similarly $B_2 - B_1 = \lambda' (B_m - B_{m-1})$ with a positive integer λ' . Thus $B_2 - B_1 = B_m - B_{m-1}$. Therefore from (2.17) we have $A_4 - A_3 = B_m - B_{m-1} = B_2 - B_1 = A_2 - A_1$. This implies that, if t > 3, then $\Re^{(\nu)}(0) = 0$ ($\nu = 2$, -, t - 2). Therefore $\Re(w) = d_4 w^t + d_3 w^{t-1} + d_2 w + 1$, where $t \ge 3$ and r_y 's are nonzero constants.

LEMMA 2.6. Let \mathcal{P} , \mathcal{R} be polynomials and $n(\geq 2)$ be an integer such that

(2.20)
$$\mathscr{Q}^n = \mathscr{R}, \qquad \mathscr{R}(w) = d_4 w^t + d_3 w^{t-1} + d_2 w + 1,$$

where $t \ge 3$ and $rf^{\circ}O$ for every ν . Then there are the following two possibilities: (1) n=3 and $\mathcal{P}(w) = \rho(w-\sigma)$ with $p, \sigma \ne 0$.

(2)
$$n=2$$
 and $\mathcal{P}(w) = \rho'(w^2 + \sqrt{2\sigma'}w - \sigma'^2)$ with $\rho', \sigma' \neq 0$.

Proof. Let a be a zero of \mathcal{P} . Then $\mathcal{R}(\alpha) = \mathcal{R}'(\alpha) = 0$, This yields

$$(t-1)d_4d_2\alpha^2 + ((t-2)d_3d_2 + td_4)\alpha + (t-1)d_3 = 0.$$

Therefore \mathcal{P} has at most two distinct zeros α_1, α_2 .

Case 1): $\alpha_1 = \alpha_2$. Put $\sigma = tfj - \alpha_2$. In this case $\mathcal{P}(w)^n = \tau(w - \sigma)^{s_n} - \mathcal{R}(w)$, where τ is a constant and $s = \deg \mathcal{P}$. From (2.20) we have t - sn = 3. Thus s = 1, n = 3. Therefore we have the desired result.

Case 2): $\alpha_1 \neq \alpha_2$. In this case

(2.21)
$$\mathscr{P}(w)^{n} = \tau'(w - \alpha_{1})^{n u}(w - \alpha_{2})^{n v} = \mathscr{R}(w)$$

where τ' is a constant and u, v are positive integers. On the other hand, from (2.20), we have

$$\mathfrak{R}''(w) = \zeta w^{t-3}(w-\eta)$$

with ζ , $\eta \neq 0$. Assume $n \geq 4$, then raw-2^2 and $nv-2 \geq 2$. From (2.21), (2.22) we have a contradiction. Thus $n \leq 3$. Similarly we have u = 1 or v = l. Assume that u=1, $v \geq 2$. Then, from (2.21) and (2.22), we obtain n+nv=t, nv-2=t-3. Thus n=1. This is a contradiction. Similarly u-1 whenever v=1. Thus u=v=1. If n=3 and u=v=1, then from (2.21) we have t=6. On the other hand (2.21) and (2.22) imply t=4. This is a contradiction. Thus n=2, u=v=1 and t=4. Therefore

$$\mathcal{P}(w) = \rho'(w^2 - (\alpha_1 + \alpha_2)w + \alpha_1\alpha_2),$$

where p' is a nonzero constant. Since t=4, from (2.20) and (2.21), the coefficcient of w^2 of $\mathcal{P}(w^2)$ is equal to 0. Thus $(\alpha_1+\alpha_2)^2+2\alpha_1\alpha_2=0$. Hence

$$\mathcal{P}(w) = \rho'(w^2 + \sqrt{2} \sigma' w - \sigma'^2),$$

where σ' is a nonzero constant. Lemma 2.6 is thus proved.

Lemma 2.5 and 2.6 complete the proof of Theorem 2.

3. Proof of Theorem 3.

Let $g=(g_0, g_1, g_2)$, where g_j 's are entire functions without common zeros. We may assume that $D_0 = \{w_0=0\}$, $D_1 = \{w_1=0\}$. Let $P(w_0, w_1, w_2)$ be a homogeneous polynomial of degree two such that $D_2 = \{P(w_0, w_1, w_2)=0\}$. Then, by the assumption, for suitable polynomials q_0, q_1, q

$$g_0 = e^{q_0}, \quad g_1 = e^{q_1}, \quad P(g_0, g_1, g_2) = e^{q}.$$

Since $D_0 \cap D_1 \cap D_2 = \emptyset$, there exist constants a_0 , fli, $a_2 (a_2 \neq 0)$, b_0 , b_1 , b_2 such that $P(w_0, w_1, w_2) = (a_0w_0 + a_1w_1 + a_2w_2)^2 - (b_0w_0^2 + b_1w_1^2 + b_2w_0w_1)$. Since D_2 is not a line, we have $(b_0, b_1, b_2) \neq (0, 0, 0)$. Put

$$G = a_0 g_0 + a_1 g_1 + a_2 g_2$$
.

Then

$$(3.1) G^2 = b_0 e^{2q_0} + b_1 e^{2q_1} + b_2 e^{(q_0 + q_1)} + e^q d^{-1}$$

If $q_0-q_1=$ const., then $g_0=cg_1$ with a nonzero constant c. Thus, in what follows, we assume that $q_0-q_1 \neq$ const.. Further we may assume, without loss of generality, that

$$\deg t \mathrm{fo}^{\wedge} \deg q_1, \qquad C(q_0) \neq C(q_1)$$

If $ft_{\beta}=ft_{1=0}$, $b_2 \neq 0$, then from (3.1) $G^2=b_2e^{q_0+q_1}+e^q$. Thus by Lemma 2.3 we have $G^2=ce^{q_0+q_1}$ with a constant $c \ (\neq b_2)$. Thus

$$(a_0g_0+a_1g_1+a_2g_2)^2=cg_0g_1, \qquad c\neq b_2.$$

Similarly, if $b_0=b_2=0$, $b_1\neq 0$, then $G^2=b_1e^{2q_1}+e^q$. Thus $G^2=c'e^{2q_1}$, $c'\neq b_1$. Therefore

$$a_0g_0 + a_1g_1 + a_2g_2 = \sqrt{c'g_1}, \quad c' \neq b_1.$$

If $ft_{1=e}ft_{2=0}$, $b_0 \neq 0$, then $G^2 = b_0 e^{2q_0} + e^q$. Thus $G^2 = c'' e^{2q_0}$, $c'' \neq b_0$. Therefore

$$a_0g_0+a_1g_1+a_2g_2=\sqrt{c''}g_0, \qquad c''\neq b_0.$$

Thus, in what follows, we assume that $\#\{j; f_{v}=0, -0, 1, 2\} \leq 1$.

LEMMA 3.1. Let

$$\varphi_0 = b_0 e^{2q_0}, \qquad \varphi_1 = b_1 e^{2q_1}, \qquad \varphi_2 = b_2 e^{q_0 + q_1}, \qquad \varphi_3 = e^q.$$

Assume that there exists a subset J of $\{0, 1, 2, 3\}$ satisfying# $J \ge 2$ and $\sum_{j \in J} \varphi_j = 0$. Then there are the following three possibilities

1)
$$(a_0g_0+a_1g_1+a_2g_2)^2=b_2g_0g_1, \quad b_2\neq 0,$$

- 2) $a_0g_0 + a_1g_1 + a_2g_2 = \sqrt{b_0g_0}$, $b_0 \neq 0$,
- 3) $a_0g_0 + a_1g_1 + a_2g_2 = \sqrt{b_1g_1}, \quad b_1 \neq 0.$

Proof. We may assume that $\varphi_{j} \neq 0$ for all $\in J$. We shall consider the following three cases.

1) #J=2. Put $J=\{j_2, j_3\}$. Then by Lemma 2.4 $\varphi_{j_2}/\varphi_{j_3}=\text{const.}$. If $j_2, j_3 \in \{0, 1, 2\}$, then $q_0-q_1=\text{const.}$. This is a contradiction. Thus we have $J \ni 3$. Let j_0 , j_1 be integers such that $\{j_0, j_1\}=\{0, 1, 2\}-/$. Then from (3.1) $\varphi_{j_2}+\varphi_{j_3}=0$, $G^2=\varphi_{j_0}+\varphi_{j_1}$. If $\varphi_{j_0}\neq 0$ and $\varphi_{j_1}\neq 0$, then by Lemma 2.3 $\varphi_{j_0}/\varphi_{j_1}=\text{const.}$. Thus $q_0-q_1=\text{const.}$. This is a contradiction. Thus $\varphi_{j_n}=0$ or $\varphi_{j_1}=0$. Therefore one of the following three cases holds: $G^2=b_0g_0^2$ ($b_0\neq 0$), $G^2=b_1g_1^2$ ($b_1\neq 0$), $G^2=b_2g_0g_1(b_2\neq 0)$. Thus we have the desired result.

2) #J=3. Since $\#(\{0, 1, 2\} \cap J) \ge 2$, by Lemma 2.4 we have $\varphi_j/\varphi_k=\text{const.}$ for some $j, k \in \{0, 1, 2\}$. Thus $q_0-q_1=\text{const.}$. This is a contradiction.

3) #J=4. We may assume, without loss of generality, that $\sum_{j \in J'} \varphi_j \neq 0$ for

any $J' \subseteq J$ $(J' \neq \emptyset)$. Since $\#(\{0, 1, 2\} \cap J) \ge 2$, by Lemma 2.4 we have a contradiction as above.

In what follows, we assume that

(3.2)
$$\sum_{j \in J} \varphi_j \neq 0 \quad \text{for any } J \subset \{0, 1, 2, 3\} \text{ satisfying } \#J \ge 2.$$

By Lemma 2.3 and (3.2), we have deg $q_0 = \deg q_1 \ge \deg q$. Put

$$N = \deg q_0 = \deg q_1,$$

$$A_1 = 2q_0^{(N)}(0)/N!, \qquad A_2 = 2q_1^{(N)}(0)/N!,$$

$$A_3 = (q_0 + q_1)^{(N)}(0)/N!, \qquad A_4 = q^{(N)}(0)/N!.$$

Then $A_1 \neq A_2$, $A_3 = (A_1 + A_2)/2$. Therefore $\# \{A_j\}_{j=1}^4 = 3$ or 4.

Case 1): $b_0b_1b_2 \neq 0$. In this case, we shall consider the following two subcases.

Subcase 1.1): $\#\{A_j\}_{j=1}^4=3$. There are the following three possibilities.

1) $A_4 = A_1$. In this case, by Theorem 2, $G^2 = ce^{2q_0} + b_1e^{2q_1} + b_2e^{q_0+q_1}$ with a constant $c \ (\neq b_0)$. By (3.2) we have $c \neq 0$. Therefore, by Theorem 2, $G = \sqrt{c}e^{q_0} + \sqrt{b_1}e^{q_1}$. Thus

$$(a_0 - \sqrt{c})g_0 + (a_1 - \sqrt{b_1})g_1 + a_2g_2 = 0, \quad c \in \{0, b_0\}$$

2) $A_4 = A_2$. In this case we have $G^2 = b_0 e^{2q_0} + c' e^{2q_1} + b_2 e^{q_0+q_1}$ with a constant $c' \in \{0, b_1\}$. Therefore, by Theorem 2, $G = \sqrt{b_0} e^{q_0} + \sqrt{c'} e^{q_1}$. Thus

$$(a_0 - \sqrt{b_0})g_0 + (a_1 - \sqrt{c'})g_1 + a_2g_2 = 0, \quad c' \in \{0, b_1\}.$$

3) $A_4 = A_3$. In this case we have $G^2 = b_0 e^{2q_0} + b_1 e^{2q_1} + c'' e^{q_0+q_1}$ with a constant $c'' \notin \{0, b_2\}$. Therefore, by Theorem 2, $G = \sqrt{b_0} e^{q_0} + \sqrt{b_1} e^{q_1}$. Thus

$$(a_0 - \sqrt{b_0})g_0 + (a_1 - \sqrt{b_1})g_1 + a_2g_2 = 0$$

Subcase 1.2): $\# \{A_j\}_{j=1}^4 = 4$. In this case, by Theorem 2, $G = e^{P}(e^{2Q} + \sqrt{2}\sigma e^{Q} - \sigma^2)$ with polynomials *P*, *Q* and a nonzero constant σ . Thus, by Lemma 2.4 and (3.1), we have $\{A_1, \dots, A_4\} = \{2\alpha, 2\alpha + \beta, 2\alpha + 3\beta, 2\alpha + 4\beta\}$, where $\alpha = P^{(N)}(0)/N!$, $\beta = Q^{(N)}(0)/N!$. This contradicts $A_1 \neq A_2$, $A_3 = (A_1 + A_2)/2$ (see Figure 9).

$$2\alpha \quad 2\alpha + \beta \qquad 2\alpha + 3\beta \quad 2\alpha + 4\beta$$

Fig. 9.

Case 2): $b_0=0$, $b_1b_2\neq 0$. In this case

(3.3)
$$G^2 = b_1 e^{2q_1} + b_2 e^{(q_0 + q_1)} + e^q$$

By Lemma 2.3 and (3.2), we have $A_2 \neq A_3 \neq A_4$. Therefore, by Theorem 2, we see that there are the following three possibilities.

1) $G = \sqrt{b_1} e^{q_1} + de^{q/2} \ (d \in \{\pm 1\})$. We have $(G - \sqrt{b_1} e^{q_1})^2 = e^q$. Therefore by (3.3) $2\sqrt{b_1}G - 2b_1e^{q_1} - b_2e^{q_0} = 0$. Thus

$$(2\sqrt{b_1}a_0-b_2)g_0+2(\sqrt{b_1}a_1-b_1)g_1+2\sqrt{b_1}a_2g_2=0.$$

2) $G = \sqrt{b_2} e^{(q_0+q_1)/2} + d'e^{q/2} (d' \in \{\pm 1\})$. Since $b_1 e^{2q_1} = 2d'\sqrt{b_2} e^{(q_0+q_1+q_2)/2}$, we have $e^q = (b_1^2/(4b_2))e^{s_1-q_0}$. Therefore, from (3.3), $G^2 = b_1 e^{2q_1} + b_2 e^{(q_0+q_1)} + (b_1^2/(4b_2)) e^{s_1-q_0}$. Thus $G^2 e^{q_0} = ((b_1^2/(4b_2))e^{2q_1} + b_1 e^{(q_0+q_1)} + b_2 e^{2q_0})e^{q_1} = ((b_1/(2\sqrt{b_2}))e^{q_1} + \sqrt{b_2} e^{q_0})^2 e^{q_1}$. Therefore

$$4b_2g_0(a_0g_0+a_1g_1+a_2g_2)^2 = (2b_2g_0+b_1g_1)^2g_1$$

3) $G = \sqrt{b_1} e^{q_1} + \sqrt{b_2} e^{(q_0 + q_1)/2}$. We have $(G - \sqrt{b_1} e^{q_1})^2 = b_2 e^{q_0 + q_1}$. Thus

 $(a_0g_0+(a_1-\sqrt{b_1})g_1+a_2g_2)^2=b_2g_0g_1.$

Case 3): $b_2=0$, $b_0b_1\neq 0$. In this case

$$G^2 = b_0 e^{2q_0} + b_1 e^{2q_1} + e^q$$
.

There are the following three possibilities as above.

1) $G = \sqrt{b_0}e^{q_0} + \sqrt{b_1}e^{q_1}$. We have

$$(a_0 - \sqrt{b_0})g_0 + (a_1 - \sqrt{b_1})g_1 + a_2g_2 = 0$$
.

2) $G = \sqrt{b_0} e^{q_0} + de^{q/2}$ $(d \in \{\pm 1\})$. We have $(G - \sqrt{b_0} e^{q_0})^2 = e^q = G^2 - b_0 e^{2q_0} - b_1 e^{2q_1}$. Thus $2\sqrt{b_0} G e^{q_0} = 2b_0 e^{2q_0} + b_1 e^{2q_1}$. Therefore

$$2\sqrt{b_0}g_0(a_0g_0+a_1g_1+a_2g_2)=2b_0g_0^2+b_1g_1^2.$$

3) $G = \sqrt{b_1} e^{q_1} + d' e^{q/2}$ $(d' \in \{\pm 1\})$. We have

$$2\sqrt{b_1}g_1(a_0g_0+a_1g_1+a_2g_2)=b_0g_0^2+2b_1g_1^2.$$

Case 4): $b_1=0$, $b_0b_2\neq 0$. In this case there are the following three possibilities as in Case 2).

1) $G = \sqrt{b_0} e^{q_0} + d e^{q/2} (d \in \{\pm 1\})$. We have

$$2(\sqrt{b_0}a_0 - b_0)g_0 + (2\sqrt{b_0}a_1 - b_2)g_1 + 2\sqrt{b_0}a_2g_2 = 0.$$

2) $G = \sqrt{b_2} e^{(q_0 + q_1)/2} + d' e^{q/2} (d' \in \{\pm 1\})$. We have

$$4b_2g_1(a_0g_0+a_1g_1+a_2g_2)^2 = (b_0g_0+2b_2g_1)^2g_0$$

FUNCTIONAL EQUATION $f^n = e^{P_1} + \cdots + e^{P_m}$ AND RIGIDITY THEOREMS

3)
$$G = \sqrt{b_0} e^{q_0} + \sqrt{b_2} e^{(q_0 + q_1)/2}$$
. We have

$$((a_0 - \sqrt{b_0})g_0 + a_1g_1 + a_2g_2)^2 = b_2g_0g_1.$$

Theorem 3 is thus proved.

4. Proof of Theorem 4.

Let $g = (g_0, g_1, g_2, g_3)$, where g_j 's are entire functions without common zeros. Then, for suitable polynomials q_0 , q_1 , q_2 , q_3 ,

$$g_0 = e^{q_0}, \quad g_1 = e^{q_1}, \quad g_2 = e^{q_2}, \quad g_0^n + g_1^n + g_2^n + g_3^n = e^{q_2}.$$

Thus

(4.1)
$$g_3^n = e^q - e^{nq_0} - e^{nq_1} - e^{nq_2}.$$

Put

 $q_{-1} = (q + i\pi)/n$.

Then

(4.2)
$$g_3^n = -\sum_{j=-1}^{2} \exp(nq_j)$$

LEMMA 4.1. Assume that there exists a subset $| (\neq \emptyset)$ of $\{-1, 0, 1, 2\}$ satisf ying

$$\sum_{q\in J}\exp\left(nq_{j}\right)=0.$$

Then g has the reduced representation (h_0, h_1, h_2, h_3) such that $\{h_j\}_{j=0}^3 = \{a_0, \text{fli}, a_2, e^P\}$ or $\{h_j\}_{j=0}^3 = \{a_0, a_1, a_2e^P, fls^{P}\}$, where a_j 's are constants and P is a polynomial.

Proof. Since $\#J \ge 2$, we shall consider the following three cases.

1) #J=2. Put $J = \{j_{-1}, j_0\}$. Let j_1, j_2 be integers such that $\{i_1, j_2\} =$ $\{-1, 0, 1, 2\} - J$. Then from (4.2)

$$\exp(nq_{j_{-1}}) + \exp(nq_{j_0}) = 0,$$

$$g_3^n = -\exp(nq_{j_1}) - \exp(nq_{j_0}).$$

Then by Lemma 2.3 and 2.4

$$(q_{j_{-1}})^* = (q_{j_0})^*, \quad \text{te}_{-1})^* = (^{\circ}_{2})^*, \quad g_3 = c \exp(q_{j_1}),$$

where $(p)^*(z) = p(z) + p(0)$ for each polynomial p, and c is a constant. Since g is not a constant, $(q_{J_1})^* \neq (q_{J_1})^*$. Thus we have the desired result.

2) #/=3. Put $J = \{j_{-1}, j_0, j_1\}$ Let j_2 be an integer such that $\{j_2\} =$ $\{-1, 0, 1, 2\} - J$. Then from (4.2)

 $\exp(nq_{j_1}) + \exp(nq_{j_1}) + \exp(nq_{j_1}) = 0, \qquad g_3^n = -\exp(nq_{j_2}).$

Thus by Lemma 2.4

$$toO^{*}=(fco)^{*}=foi^{>*>} g_{3}=c \exp fo_{2}$$

with a constant c. Since g is not a constant, $(q_{J_1})^* \neq (q_{J_2})^*$. Thus we have the desired result.

3) #J=4. In this case we may assume, without loss of generality, that $\sum_{j \in J'} \exp(nq_j) \neq 0$ for any $J' \subsetneq \{-1, 0, 1, 2\}$ $(J' \neq \emptyset)$. Then from (4.2)

$$\exp(nq_{j_1}) + \cdots + \exp(nq_{j_2}) = 0$$
, $g_{3^n} = 0$.

Thus by Lemma 2.4

$$(q_{j_{-1}})^* = \cdots = (q_{j_2})^*, \quad g_3 = 0.$$

Thus g is a constant. This is a contradiction. Lemma 4.1 is thus proved.

If $n \ge 4$, then by Theorem 2 $\sum_{j \in J} \exp(nq_j) = 0$ for some $J \subset \{-1, 0, 1, 2\}$ $(J \ne 0)$.

Therefore, in this case, Theorem 4 follows from Lemma 4.1. Thus, in what follows, we assume that $n \leq 3$ and

(4.3)
$$\sum_{j \in J} \exp(nq_j) \neq 0 \quad \text{for any } J \subset \{-1, 0, 1, 2\}, \quad J \neq \emptyset.$$

Since g is not a constant, $q_j - q_k \neq \text{const.}$ for some $j, k \in \{-1, 0, 1, 2\}$ with $j \neq k$. We have the following two cases.

Case 1): $q_j - q_k = \text{const.}$ for some $j, k \in \{-1, 0, 1, 2\}$ with $j \neq k$. In this case, by Theorem 2, we have n=2. We shall consider the following two subcases.

Subcase 1.1): $q_{-1} - ft_{\beta} = \text{const. for some } j_0 \in \{0, 1, 2\}$. Let i_1, j_2 be integers such that $\{i_1, j_2\} = \{0, 1, 2\} - \{j_0\}$. From (4.1) we have

$$g_{3}^{2} = b \exp(2q_{j_{0}}) - \exp(2q_{j_{1}}) - \exp(2q_{j_{2}})$$

with a constant $b(\neq -1)$. By (4.3) we have $b\neq 0$. Then, by Theorem 2, there are the following three possibilities.

1) $g_3 = \sqrt{b} \exp(q_{j_0}) + id \exp(q_{j_1}) \ (d \in \{\pm 1\})$. In this case we have $-\exp(2q_{j_2}) = 2id \sqrt{b} \exp(q_{j_0} + q_{j_2})$. Thus

$$\begin{cases} \sqrt{b} g_{j_0} + idg_{j_1} - g_3 = 0 \\ ig_{j_2}^2 - 2d \sqrt{b} g_{j_0} g_{j_1} = 0 , \end{cases} \quad b \in \{0, -1\}.$$

2) $g_3 = \sqrt{b} \exp(q_{j_0}) + id' \exp(q_{j_2}) \ (d' \in \{+1\})$. In this case we have $-\exp(2q_{j_1}) = 2id'\sqrt{b} \exp(q_{j_0} + q_{j_2})$. Thus

FUNCTIONAL EQUATION $f^n = e^{P_1} + \cdot + e^{P_m}$ AND RIGIDITY THEOREMS 115

$$\begin{cases} \sqrt{b} g_{j_0} + i d' g_{j_2} - g_3 = 0\\ i g_{j_1}^2 - 2 d' \sqrt{b} g_{j_0} g_{j_2} = 0, \end{cases} \quad b \in \{0, -1\}.$$

3) $g_3 = id'' \exp(q_{j_1}) + id''' \exp(q(d'', d''' \in \{+1\}))$. In this case we have $b \exp(2q_{j_0}) = -2d''d''' \exp(q_{j_1} + q_{j_2})$. Thus

$$\begin{cases} id''g_{j_1} + id'''g_{j_2} - g_s = 0\\ bg_{j_0}^2 + 2d''d'''g_{j_1}g_{j_2} = 0, \end{cases} \quad \text{fteMO}, -1\}.$$

Subcase 1.2): $q_{j_0} - q_{j_1} = \text{const.}$ for some $j_0, j_1 \in \{0, 1, 2\}$ with $j_0 \neq j_1$. Let j_2 be an integer such that $\{j_2\} = \{0, 1, 2\} - \{j_0, j_1\}$ Then $-\exp(2q_{j_0}) - \exp(2q_{j_1}) = c \exp(2q_{j_1})$ with a constant $c(\neq -1)$. By (4.3) we have $c \neq 0$. Thus $g_{j_0} = \sqrt{-1-c} g_{j_1}$. Further from (4.1)

$$g_{3}^{2} = c \exp(2q_{j_{1}}) - \exp(2q_{j_{2}}) + \exp(q)$$

Thus, by Case 3) in Section 3, there are the following three possibilities:

1)
$$\begin{cases} -\sqrt{c} g_{j_1} - \sqrt{-1} g_{j_2} + g_3 = 0 \\ g_{j_0} - \sqrt{-1-c} g_{j_1} = 0, \end{cases} \qquad c \notin \{0, -1\}, \\ 2) \qquad \begin{pmatrix} 2 \sqrt{c} g_{j_1} g_3 - 2c g_{j_1}^2 + g_{j_2}^2 = 0 \\ \frac{1}{2} g_{j_0} - \sqrt{-1-c} g_{j_1} = 0, \end{cases} \qquad c \notin \{0, -1\}, \\ 3) \qquad \begin{cases} 2\sqrt{-1} g_{j_2} g_3 - c g_{j_1}^2 + 2g_{j_2}^2 = 0 \\ g_{j_0} - \sqrt{-1-c} g_{j_1} = 0, \end{cases} \qquad c \notin \{0, -1\}. \end{cases}$$

Case 2): $q_j - q_k \neq \text{const.}$ for every $j, k \in \{-1, 0, 1, 2\}$ with $j \neq k$. In this case, by Theorem 2, we have n=2, 3.

Subcase 2.1): n=2. In this case we have

$$g_3^2 = e^q - e^{2q_0} - e^{2q_1} - e^{2q_2}$$

By Theorem 2

$$g_3 = e^P (e^{2Q} + \sqrt{2} \sigma e^Q - \sigma^2),$$

where P, Q are polynomials and σ is a nonzero constant. Thus by Lemma 2.4

$$\{e^{q}, -e^{2q_{0}}, -e^{2q_{1}}, -e^{2q_{2}}\} = \{e^{2P+4Q}, 2\sqrt{2}\sigma e^{2P+3Q}, -2\sqrt{2}\sigma^{3}e^{2P+Q}, \sigma^{4}e^{2P}\}.$$

We may assume $e^q = e^{2Q+4P}$ or $e^q = 2\sqrt{2}\sigma e^{2P+3Q}$. Let (i_0, j_1, j_2) be the permutation of (0, 1, 2) which satisfies

$$-\exp(2q_{j_0}) = \sigma^4 e^{2P}, \qquad -\exp(2q_{j_1}) = -2\sqrt{2}\sigma^3 e^{2P+Q}.$$

We may assume $g_{j_0} \equiv i$. Then $\sigma^4 e^{2P} \equiv 1$. Put

$$p = Q - \log \sigma$$
.

Then

$$g_{3} = d_{3}(e^{2p} + \sqrt{2}e^{p} - 1), \qquad \{e^{q}, -\exp(2q_{j_{2}})\} = \{e^{4p}, 2\sqrt{2}e^{3p}\}, \\ -\exp(2q_{j_{1}}) = -2\sqrt{2}e^{p},$$

where $d_3 \in \{\pm 1\}$. Now we have the following two cases.

1) $e^q = e^{4p}$. In this case we have $-\exp(2q_{j_2}) = 2\sqrt{2}e^{3p}$. Thus

$$\begin{split} g_{j_0} = i, \qquad g_{j_1} = d_1 (2\sqrt{2})^{1/2} e^{p/2}, \\ g_{j_2} = i d_2 (2\sqrt{2})^{1/2} e^{3p/2}, \qquad g_3 = d_3 (e^{2p} + \sqrt{2} e^p - 1), \end{split}$$

where $d_1, d_2 \in \{\pm 1\}$. Therefore

$$\begin{cases} 2\sqrt{2}g_{j_0}^2 + \sqrt{2}g_{j_1}^2 + i\ 2\sqrt{2}d_3g_{j_0}g_3 - id_1d_2g_{j_1}g_{j_2} = 0\\ g_{j_1}^3 - i\ \sqrt{2}d_1d_2g_{j_0}^2g_{j_2} = 0. \end{cases}$$

2) $e^q = 2\sqrt{2} e^{sp}$. In this case we have $-\exp(2q_{j_2}) = e^{sp}$. Thus

$$g_{j_0} = i, \qquad g_{j_1} = d_1 (2\sqrt{2})^{1/2} e^{p/2},$$

$$g_{j_2} = i d_2 e^{2p}, \qquad g_3 = d_3 (e^{2p} + \sqrt{2} e^p - 1),$$

where $d_1, d_2 \in \{\pm 1\}$. Therefore

$$\begin{cases} 2g_{j_0}^2 + g_{j_1}^2 - id_2g_{j_0}g_{j_2} + i \ 2d_3g_{j_0}g_3 = 0 \\ g_{j_1}^4 - 8d_2g_{j_0}^3g_{j_2} = 0 . \end{cases}$$

Subcase 2.2): n=3. In this case we have

$$g_{3}^{3} = e^{q} - e^{3q_{0}} - e^{3q_{1}} - e^{3q_{2}}$$
.

By Theorem 2

$$g_3 = e^P (1 + e^Q)$$

with polynomials P, Q. Thus by Lemma 2.4

$$\{e^{q}, -e^{3q_{0}}, -e^{3q_{1}}, -e^{3q_{2}}\} = \{e^{3P+3Q}, 3e^{3P+2Q}, 3e^{3P+Q}, e^{3P}\}.$$

We may assume $e^q = e^{3P+3Q}$ or $e^q = 3e^{3P+2Q}$. Let (j_0, j_1, j_2) be the permutation of (0, 1, 2) which satisfies

$$-\exp(3q_{j_0})=e^{sP}$$
, $-\exp(3q_{j_1})=3e^{sP+Q}$.

We may assume $g_{j_0} \equiv -1$. Then $e^{sP} \equiv 1$ and

$$g_3 = \omega_3(1 + e^Q)$$
, $\{e^q, -\exp(3q_{j_2})\} = \{e^{sQ}, 3e^{sQ}\}$, $-\exp(3q_{j_1}) = 3e^Q$,

where $\omega_3 \in \{1, e^{\pm i 2\pi/3}\}$. We have the following two cases.

1) $e^q = e^{3Q}$. In this case $-\exp(3q_{J_2}) = 3e^{2Q}$. Thus

 $g_{j_0} = -1, \quad g_{j_1} = \sqrt[q]{3} \omega_1 e^{Q/3}, g_{j_2} = \sqrt[q]{3} \omega_2 e^{2Q/3}, \quad g_3 = \omega_3 (1 + e^Q),$

where $\omega_1, \omega_2 \in \{-1, e^{\pm i \pi/3}\}$. Thus

 $\begin{cases} \sqrt[3]{9}\omega_1\omega_2g_{j_0}^2 + \sqrt[3]{9}\omega_1\omega_2\omega_3^2g_{j_0}g_3 + g_{j_1}g_{j_2} = 0\\ \omega_1\omega_2g_{j_1}^2 - \sqrt[3]{3}g_{j_0}g_{j_2} = 0. \end{cases}$

2) $e^q = 3e^{2Q}$. In this case $-\exp(3q_{J_2}) = e^{3Q}$. Thus

$$g_{J_0} = -1, \quad g_{J_1} = \sqrt[3]{3} \omega_1 e^{Q/3}, \quad g_{J_2} = \omega_2 e^Q, \quad g_3 = \omega_3 (1 + e^Q),$$

where $\boldsymbol{\omega}_1, \, \boldsymbol{\omega}_2 \in \{-1, \, e^{\pm \imath \pi/3}\}$. Thus

$$\begin{cases} \omega_2 g_{j_0} - g_{j_2} + \omega_2 \omega_3^2 g_3 = 0 \\ \omega_2 g_{j_1}^3 + 3 g_{j_0}^2 g_{j_2} = 0. \end{cases}$$

Theorem 4 is this proved.

References

- [1] M. GREEN, On the functional equation $f^2 = e^{2\varphi_1} + e^{2\varphi_2} + e^{2\varphi_3}$ and a new Picard theorem, *Trans. Amer. Math. Soc.* 195 (1974), 223-230.
- [2] W. K. HAYMAN, Meromorphic Functions. Clarendon Press, Oxford, 1964.
- [3] R. Nevanlinna, Analytic Functions, Springer, 1970.
- [4] J.F. RITT, Algebraic combinations of exponentials, Trans. Amer. Math. Soc. 31 (1929), 654-679.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO, 152, JAPAN