ON THE FUNCTIONAL EQUATION $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ AND RIGIDITY THEOREMS FOR HOLOMORPHIC CURVES

BY Yoji NODA

Introduction and statement of results

For each positive integer N we set

$$
\left.E_{N}=\left\{e^{P_{1}}+\cdots+e^{P_{m}} \quad P_{j} \in \boldsymbol{C}[z], \operatorname{deg} P_{j} \leqq N 0=1,-, m\right), m \in \boldsymbol{N}\right\} .
$$

In 1929 J. F. Ritt [4] showed the following theorem.
THEOREM A. Let $g_{0}, g_{1}, \cdots, g_{n}$ be elements of E_{1} and f be a holomorphic function on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}\left(\omega_{2}-\omega_{1}>\pi\right)$ satisfying $g_{n} f^{n}+g_{n-1} f^{n-1}+\cdot \cdot+g_{0}=0$. Then $f \in E_{1}$.

It seems to be natural to ask whether Theorem A is valid with E_{1} replaced by $E_{N}(N \geqq 2)$. However, if $g_{n} \neq 1$, the function $f(z)=\sin \left(\pi z^{2}\right) / \sin \pi z$ gives a negative answer to the above question.

Let $g: \boldsymbol{C} \rightarrow \boldsymbol{P}_{m}$ be a holomorphic curve of finite order, $D_{0}, D_{1}, \cdots>D_{m-1}$ be hyperplanes and D_{m} be a hypersurfac of degree n ($\geqq 2$) satisfying $D_{0} \cap$. $\cap D_{m}-\varnothing, g(\boldsymbol{C}) \cap\left(D_{0} \cup \cdots \cup D_{m}\right)=\varnothing$. We ask whether the image of g is contained in the intersection of hypersurfaces of \boldsymbol{P}_{m}. This problem is related to the functional equation $f^{n}+g_{n-1} f^{n-1}+\cdots+g_{0}=0\left(g_{0}, \cdots, g_{n-1} \in E_{N}\right)$ for an entire function /. M. Green [1] treated the first non-trivial case $f^{2}=e^{2 \varphi_{1}}+e^{2 \varphi_{2}}+e^{2 \varphi_{3}}$ $\left(\varphi_{1}, \varphi_{2}, \varphi_{3} \in \boldsymbol{C}[z]\right)$ and showed that $/$ is a linear combination of $e^{\varphi_{1}}, e^{\varphi_{2}}, e^{\varphi_{3}}$. He also showed that, if $g: C \rightarrow \boldsymbol{P}_{2}$ is a holomorphic curve of finite order omitting the two lines $\left\{Z_{0}=0\right\}$ and $\left\{Z_{1}=0\right\}$ and the conic $\left\{Z_{0}{ }^{2}+Z_{1}{ }^{2}+Z_{2}{ }^{2}=0\right\}$, then the image of g lies in a line or a conic ([1]).

In this paper we shall show the following results.
THEOREM 1. Let P_{1}, \cdots, P_{m} be polynomials, $N=\underset{j}{\max } \operatorname{deg} P_{J}, N \geqq 2, A_{j}=$ $P_{j}^{(N)}(0) / N!(j=1, \cdot \cdot m), n(\geqq 2)$ be an integer and f be a holomorphic function on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}\left(\omega_{2}-\omega_{1}>\pi / N\right)$. Assume that $\#\left\{j A_{1}=v, j=1, \cdots, m\right\}=1$ for every vertex v of the convex hull of $\left\{A_{j}\right\}_{\}_{1=1}^{m}}^{m}$, and that $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ on $\left\{z ; \omega_{1}<\arg z<\omega_{2}\right\}$. Then f is an element of E_{N}.

FUNCUIONAL EQUATION $f^{n}=e^{P_{1}}+\cdot+e^{P_{m}}$ AND RIGIDITY THEOREMS
THEOREM 2. Let f be an entire function, $n(\geqq 2)$ be an integer and P_{1}, \cdots, P_{4} be polynomials satisfying that $\sum_{j \in J} e^{P_{J}} \neq 0$ for every subset $J \subset\{1, \cdots, 4\}$ with $J \neq \varnothing$ and that $P_{j}-P_{k} \neq$ const. for some $j \neq k$. Assume that $f^{n}=e^{P_{1}}+\cdots+e^{P_{4}}$. Then there are the following two possibilities:
(1) $n=2,3$ and $f=e^{P}+e^{Q}$, where P, Q are polynomials.
(2) $n=2$ and $f=e^{P} R\left(e^{Q}\right)$, where P, Q are polynomials and $R(w)=w^{2}+$ $\sqrt{2} \sigma w-\sigma^{2}$ with $\sigma \neq 0$.

In Theorem 2 the vertices of the convex hull of $\left\{A_{j}\right\}_{j=1}^{4}$ do not necessarily satisfy the assumption of Theorem 1. For example, A_{1}, \cdots, A_{4} can be on the line segment $\{\alpha+x(\beta-\alpha) 0 \leqq x \leqq 1\}$ and satisfy $\#\left\{j ; A_{\jmath}=\alpha\right\}=1, \#\left\{j ; A_{j}=\beta\right\}$ $=2$. In this case, however, it is verified that, if $A_{j}=A_{k}$, then $P_{j}-P_{k}=$ const.. In Section 2 we prove a more general result (Theorem 5). From Theorem 2 we obtain the following theorems.

THEOREM 3. Let $g: C \rightarrow \boldsymbol{P}_{2}$ be a holomorphic curve of finite order, D_{0}, D_{1} be distinct lines and D_{2} be a conic. Assume that $D_{0} \cap D_{1} \cap D_{2}=\varnothing, g(\boldsymbol{C}) \cap$ $\left(D_{0} \cup D_{1} \cup D_{2}\right)=\varnothing$. Then there is a homogeneous polynomial $Q\left(w_{0}, w_{1}, w_{2}\right)$ of degree at most three satisfying $g(\boldsymbol{C}) \subset\left\{Q\left(w_{0}, w_{1}, w_{2}\right)=0\right\}$.

THEOREM 4. Let $g: \boldsymbol{C}_{\rightarrow} \boldsymbol{P}_{3}$ be a nonconstant holomorphic curve of finite order satisfying $g(\boldsymbol{C}) \cap\left(\left\{w_{0}=0\right\} \cup\left\{w_{1}=0\right\} \cup\left\{w_{2}=0\right\} \cup\left\{w_{0}{ }^{n}+\cdots+w_{3}{ }^{n}=0\right\}\right)=0$, where $n(\geqq 2)$ is an integer. Then there are homogeneous polynomials $Q_{1}\left(w_{0}, \cdots, w_{3}\right)$, $Q_{2}\left(w_{0}, \cdots, w_{3}\right)$ which are relatively prime to each other and satisfy $1 \leqq \operatorname{deg} Q_{1} \leqq 2$, $1 \leqq \operatorname{deg} Q_{2} \leqq 4$ and $g(\boldsymbol{C}) \subset\left(\left\{Q_{1}\left(w_{0}, \cdots, w_{3}\right)=0\right\} \cap\left\{Q_{2}\left(w_{0}, \cdots, w_{3}\right)=0\right\}\right)$. Further if $n \geqq 4$, then g has the reduced representation $\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$ such that $\left\{g_{j}\right\}_{j=0}^{3}=$ $\left\{a_{0}\right.$, fli, $\left.a_{2}, e^{P}\right\}$ or $\left\{g_{j}\right\}_{j=0}^{3}=\left\{a_{0}, a_{1}, a_{2} e^{P}, a_{3} e^{P}\right\}$, where a^{\prime},'s are constants and P is a polynomial.

The order p of a holomorphic curve $g: C \rightarrow \boldsymbol{P}_{m}$ is defined by $p=$ $\limsup _{r \rightarrow \infty}(\log T(r, g) / \log r)$, where $T(r, g)$ is the characteristic function of g. (Let $\left(g_{0}, g_{1}, \cdots, g_{m}\right)$ be a reduced representation of g. Then we define $T(r, g)=$ $(1 / 2 \pi) \int_{\text {br }}^{2 \pi} \log \left(\max _{3}\left|g_{j}\left(r e^{i \theta}\right)\right|\right) d \theta-\log \left(\max _{J}\left|g_{j}(0)\right|\right)$.)

Remark. In Theorem 3 we cannot conclude that the degree of $Q\left(w_{0}, w_{1}, w_{2}\right)$ is at most two, since the curve $\left(1, e^{2},\left(1+e^{2}\right) e^{2 / 2}\right)$ satisfies the assumption of Theorem 3 with $D_{0}=\left\{w_{0}=0\right\}, D_{1}=\left\{w_{1}=0\right\}, D_{2}=\left\{w_{2}{ }^{2}-w_{0} w_{1}-2 w_{1}{ }^{2}=0\right\}$. (In this case $Q\left(w_{0}, w_{1}, w_{2}\right)=w_{2}{ }^{2} w_{0}-\left(w_{0}+w_{1}\right)^{2} w_{1}$ and the image lies neither in a line nor in a conic.)

1. Proof of Theorem 1.

For each $\boldsymbol{\theta} \in \boldsymbol{R}$ and $\boldsymbol{\alpha} \in \boldsymbol{C}$, the polynomials $P_{1}\left(e^{i \theta} z\right)+\alpha z^{N}, \cdots, P_{m}\left(e^{i \theta} z\right)+\alpha z^{N}$ satisfy the hypotheses of Theorem 1 with / replaced by $f\left(e^{i \theta} z\right) e^{(\alpha / n) z^{N}}$. There-
fore we may assume that $\omega_{1}<0<\omega_{2}$ and that the following condition (A) is satisfied.
(A) $n(\geqq 2)$ is an integer, P_{1}, \cdots, P_{m} are polynomials, $P_{j}-P_{k} \neq$ const. $(j \neq k)$, $N=\max _{j} \operatorname{deg} P_{\jmath}, N \geqq 2, A_{J}=P_{j}^{(N)}(0) / N!(j=1, \cdots, m), U$ is the convex hull of $\left\{A_{1}, \cdots, A_{m}\right\},\left\{A_{1}, \cdots, A_{t}\right\}$ is the set of the vertices of $U, t \geqq 2, \arg \left(A_{1}-c\right)<$ $\arg \left(A_{2}-c\right)<\quad<\arg \left(A_{t}-c\right)<\arg \left(A_{1}-c\right)+2 \pi f o r$ all $c \in\left(£ 7-\left\{A_{1}, \cdots, A_{t}\right\}\right)$, $\operatorname{Re} A_{1}=\operatorname{Re} A_{2}, \operatorname{Im} A_{2}>\operatorname{Im} A_{1}$ and $U \subset\left\{z ; \operatorname{Re} z \leqq \operatorname{Re} A_{1}\right\}$.

For each $\nu \in\{1, \cdots, t\}$, let $\left\{p_{\nu, j}\right\}$, be the set of polynomials of degree at most N definedd by

$$
\begin{equation*}
\exp \left(P_{\nu} / n\right)\left(1+\sum_{j=1} \gamma_{j}\left(_{\mu \in(1, \cdots, m)-(\nu)} \exp \left(P_{\mu}-P_{\nu}\right)\right)^{j}\right) \equiv \sum \exp \left(p_{\nu, j}\right) \tag{1.1}
\end{equation*}
$$

$$
p_{\nu, j}-p_{\nu, k} \neq \text { const. }(\jmath \neq k), \quad \operatorname{Im}\left(p_{\nu, j}(0)\right) \in[0,2 \pi),
$$

where $1+\sum_{j=1}^{\infty} \gamma_{j} w^{j}$ is the Taylor expansion of $(1+w)^{1 / n}(|w|<1)$. Put

$$
\begin{gather*}
a_{\nu, \nu}=p_{\nu, \rho}{ }^{(N)}(0) / N!, \tag{1.2}\\
\mathcal{S}_{\nu}=\left\{z \arg \left(\left(A_{\nu+1}-A_{\nu}\right) / n\right) \leqq \arg \left(z-\left(A_{\nu} / n\right)\right) \leqq \arg \left(\left(A_{\nu-1}-A_{\nu}\right) / n\right)\right\} \cup\left\{A_{\nu} / n\right\} \\
\quad\left(A_{0}=A_{t}, \nu=1, \cdots, t-1\right), \tag{1.3}
\end{gather*}
$$

$$
\mathcal{S}_{t}=\left\{z \quad \arg \left(\left(A_{1}-A_{t}\right) / n\right) \leqq \arg \left(z-\left(A_{t} / n\right)\right) \leqq \arg \left(\left(A_{t-1}-A_{t}\right) / n\right)\right\} \cup\left\{A_{t} / n\right\}
$$

(see Figure 1 and 2).

Fig. 1.

Fig. 2.

Put

$$
\left.\left.H_{1}=\{z \quad \operatorname{Re} z<0\} \cup i \boldsymbol{R}^{+}, \quad \mathrm{ft}=\right\} \mathrm{Z} \quad \operatorname{Re} z<0\right\} \cup i \boldsymbol{R}^{-},
$$

where $i \boldsymbol{R}^{+}=\{i x ; x>0\}, i \boldsymbol{R}^{-}=\{i x ; x<0\}$. For $\boldsymbol{\theta} \in(0, \pi / 2)$ and $d>0$, we set

$$
\begin{aligned}
& G_{1}(\theta, d)=\{z ; 0<\arg z<\theta, \operatorname{Im} z>d\} \\
& G_{2}(\theta, d)=\{z ; 0>\arg z>-\theta, \operatorname{Im} z<-d\}
\end{aligned}
$$

Further we denote by

$$
C(p)
$$

the leading coefficient of a polynomial p. Note that $C(p)=0$ if and only if $p=0$.

LEMMA 1.1. Let p_{1}, \cdots, p_{m} be polynomials satisfying $C\left(p_{j}\right) \in H_{1}(j=1, \cdots, m)$ or $C\left(p_{j}\right) \in H_{2}(j=1, \cdots, m)$ and $\lambda_{1}, \cdots, \lambda_{m}$ be positive numbers. Then $\operatorname{deg}\left(\lambda_{1} p_{1}+\right.$ $\left.\cdots+\lambda_{m} p_{m}\right)=\max _{j} \operatorname{deg} p_{3}$, and $C\left(\lambda_{1} p_{1}+\cdots+\lambda_{m} p_{m}\right) \in H_{1}$ or $C\left(\lambda_{1} p_{1}+\cdots+\lambda_{m} p_{m}\right) \in H_{2}$ respectively.
proof. Assume that $C\left(p_{j}\right) \in H_{1}(j=1, \cdots, \mathrm{~m})$. Put $D=\max _{j} \operatorname{deg} p_{j}, /-$ $\left\{j ; \operatorname{deg} p_{j}=D, j=1, \cdots, m\right\}, c=\sum_{j \in J} \lambda_{j} C\left(p_{j}\right)$. Then we have $c \in H_{1}$. Further $\lambda_{1} p_{1}+\cdots+\lambda_{m} p_{m}=c z^{D}+q(z)$, where q is a polynomial of degree at most $D-1$. Thus $\operatorname{deg}\left(\lambda_{1} p_{1}+-+\lambda_{m} p_{m}\right)=D=\max _{j} \operatorname{deg} p_{j}, C\left(\lambda_{1} p_{1}+\cdots+\lambda_{m} p_{m}\right)=c \in H_{1}$.

Let $\boldsymbol{\nu} \in\{1,2\}$ be fixed. When polynomials p, q satisfy $C(p-q) \in H_{\nu}$, we write $p<_{\nu} q$. Then, by Lemma 1.1, $\left(\boldsymbol{C}[z],<_{\nu}\right)$ is an ordered set. Further, if $p \neq q$, then $p<_{\nu} q$ or $q<_{\nu} p$. Therefore $\left(\mathbf{C M},<_{1}\right),\left(\mathrm{CM},<_{2}\right)$ are totally ordered sets. Hence we have the following

LEMMA 1.2. Let $\Pi(\neq \varnothing)$ be a finite subset of CM . Then there are p_{1}, p_{2} $\in \Pi$ such that $C\left(p-p_{1}\right) \in H_{1}$ for every $p \in \Pi-\left\{p_{1}\right\}$ and that $C\left(p-p_{2}\right) \in H_{2}$ for every $p \in \Pi-\left\{p_{2}\right\}$.

LEMMA 1.3. Let p be a polynomial of degree $N(\geqq 1)$.
(1) // $\operatorname{Re} C(p)<0$, then there are positive numbers K, θ, R such that

$$
|\exp p(z)|<\exp \left(-K^{\prime}|z|^{N}\right) \quad \text { on }\{z ;|\arg z|<\theta,|z|>R\}
$$

(2) $/ / C(p) \in i \boldsymbol{R}^{+}$, then there are positive numbers $K^{\prime \prime}, \boldsymbol{\theta}^{\prime}$, d^{\prime} such that

$$
|\exp p(z)|<\exp \left(-\left.K^{\prime}|\operatorname{Im} z| z\right|^{N-1}\right) \quad \text { on } G_{1}\left(\theta^{\prime}, d^{\prime}\right)
$$

(3) // $C(p) \in i \boldsymbol{R}^{-}$, then there are positive numbers $K^{\prime \prime}, \theta^{\prime \prime}, d^{\prime \prime}$, such that

$$
|\exp p(z)|<\exp \left(-K^{\prime \prime} \operatorname{Im} z|z|^{N-1}\right) \quad \text { on } G_{2}\left(\theta^{\prime \prime}, d^{\prime \prime}\right)
$$

Proof. We shall prove only (2). Put $C(p)=i A(A>0), q(z)=p(z)-i A z^{N}$. Then for $\zeta \in(0, \pi / 4)$ we have

$$
\begin{aligned}
|\exp (p(z))|= & \left|\exp \left(i A z^{N}+q(z)\right)\right|=\left|\exp \left(i A\left(x^{N}+i N y x^{N-1}+\cdots+(i y)^{N}\right)+q(z)\right)\right| \\
& <\exp \left(-A N y x^{N-1}(1+O(y / x))+B|z|^{N-1}\right) \quad \text { on }\{|\arg z|<\zeta\},
\end{aligned}
$$

where B is a positive constant and $z=x+i y$. Thus we have the desired result.

LEMMA 1.4. Let m be a positive integer and $\Delta(\neq 0)$ be a subset of $(\boldsymbol{N} \cup\{0\})^{m}$. Then there exist $\alpha_{1}, \cdots, \alpha_{\tau} \in \Delta(\tau<\infty)$ such that $\Delta \subset\left\{\alpha_{j}+\beta j=1, \cdots, \tau, \beta \in\right.$ $\left.(\boldsymbol{N} \cup\{0\})^{m}\right\}$.

Proof. By induction on m. For $\alpha_{1}, \cdots, \alpha_{p} \in(\boldsymbol{N} \cup\{0\})^{q}(p, q \in \boldsymbol{N})$ we set

$$
\left\langle\alpha_{1}, \cdots, \alpha_{p}\right\rangle=\left\{\alpha_{j}+\beta ; j=1,-, p, \beta \in(\boldsymbol{N} \cup\{0\})^{q}\right\} .
$$

Further for $\alpha=\left(\lambda_{1}, \cdots, \lambda_{q}\right) \in(\boldsymbol{N} \cup\{0\})^{q}$ and $\lambda \in \boldsymbol{N} \cup\{0\}$, we denote by (α, λ) the element $\left(\lambda_{1}, \cdots, \lambda_{q}, \lambda\right)$ of $(\boldsymbol{N} \cup\{0\})^{q+1}$. It is easily seen that Lemma 1.4 holds for $m=1$. Assume that Lemma 1.4 holds for $m=\nu$. Let J be a subset of $(\boldsymbol{N} \cup\{0\})^{\nu+1}$ satisfying the assumption with m replaced by $\nu+1$. Put

$$
\tilde{\Delta}=\left\{\left(\lambda_{1}, \cdots, \lambda_{\nu}\right) ;\left(\lambda_{1}, \cdots, \lambda_{\nu+1}\right) \in \Delta\right\}
$$

Then, by the induction assumption, there exist $\tilde{\alpha}_{1}, \cdots, \tilde{\alpha}_{\rho} \in \tilde{\Delta}(\rho \in N)$ such that

$$
\tilde{\Delta} \subset\left\langle\tilde{\alpha}_{1}, \ldots, \tilde{\alpha}_{\rho}\right\rangle .
$$

Let

$$
\begin{gathered}
\lambda^{(j)}=\min \left\{\lambda_{\nu+1} ;\left(\tilde{\alpha}_{\rho}, \lambda_{\nu+1}\right) \in \Delta\right\} \quad(j=1, \cdots, \rho), \\
M=\max _{\rho} \lambda^{(j)}, \\
\Delta^{(\sigma)}=\left\{\left(\lambda_{1}, \cdots, \lambda_{\nu}\right) \quad\left(\lambda_{1}, \cdots, \lambda_{\nu}, \sigma\right) \in \Delta\right\} \quad(\sigma=0,1,-, M) .
\end{gathered}
$$

Then, for every $\sigma \in\{0,1,-, M\}$, there exist $\alpha_{1}^{(\sigma)}, \cdots, \alpha_{\rho_{\sigma}}^{(\sigma)} \in \Delta^{(\sigma)}\left(\rho_{\sigma} \in N \cup\{0\}\right)$ such that

$$
\left.\Delta^{(\sigma)} \subset\left\langle\alpha_{1}^{(\sigma)}\right\rangle, \cdots, \alpha_{\rho_{\sigma}}^{(\sigma)}\right\rangle \quad(\sigma=0,1, \cdots, M)
$$

Let $\alpha=\left(\lambda_{1}, \cdots, \lambda_{\nu+1}\right) \in \Delta$. Then $\left(\lambda_{1}, \cdot \cdot, \lambda_{\nu}\right) \in \tilde{\Delta}$. Thus for some j we have tfi, $\left.\cdots, \lambda_{\nu}\right) \in\left\langle\hat{\alpha}_{\rho}\right\rangle$. Therefore, if $\lambda_{\nu+1} \geqq M$, then $\alpha \in\left\langle\left(\tilde{\alpha}_{j}, \lambda^{(\nu)}\right)\right\rangle$. If $\lambda_{\nu+1} \leqq M$, then $\left(\lambda_{1}, \cdots, \lambda_{\nu}\right) \in \Delta^{\left(\lambda_{\nu+1}\right)}$. Thus for some j we have $\left(\lambda_{1}, \cdots, \lambda_{\nu}\right) \in\left\langle\alpha_{j}^{\left.\left(\lambda_{\nu+1}\right)\right\rangle \text {. There- }}\right.$ fore $\alpha \in\left\langle\left(\alpha_{j}^{\left(\lambda_{\nu+1}\right)}, \lambda_{\nu+1}\right)\right\rangle$. Put

$$
\begin{gathered}
\alpha_{\jmath}=\left(\tilde{\alpha}_{J}, \lambda^{(\nu)}\right) \quad(j=1, \cdots, \rho), \\
\left.\alpha_{\sigma, \jmath}=\left(\alpha_{J}^{(\sigma)}, \sigma\right) \quad 0=1,-, \rho_{\sigma}, \sigma=0,-, M\right) .
\end{gathered}
$$

Then $\alpha_{j} \in \Delta 0=1$. $\left.\cdot \boldsymbol{\rho}, \alpha_{\sigma, j} \in \Delta 0=1, \cdots, \rho_{\sigma}, \sigma=0, \cdots, \mathrm{M}\right)$ and

$$
\Delta \subset\left\langle\alpha_{1}, \cdot \cdot, \alpha_{\rho}, \alpha_{0,1}, \cdot \cdot, \alpha_{M, \rho_{M}}\right\rangle .
$$

Lemma 1.4 is thus proved.
LEMMA 1.5. Assume that (A) holds. Then $\left\{a_{\nu, j}\right\}_{j} \subset \mathcal{S}(\nu=1, \cdots, t)$ Further if $\#\left\{j ; A_{\nu}=A_{\jmath}, j=1, \cdots, m\right\}=1$, then $\left\{a_{\nu, j}\right\}$, has no finite accumulotion point.

Proof. We shall give the proof only for $\nu=1$. From (1.1)-(1.3) we have

$$
\left\{a_{1, j}\right\}_{j} \subset\left\{\left(A_{1} / n\right)+{ }_{j \neq 1} \sum \lambda_{j}\left(A_{j}-A_{1}\right) ; \lambda_{j} \in N \cup\{0\}\right\} \subset \mathcal{S}_{1} .
$$

Further if $\#\left\{j A_{1}=A_{j}, j=1, \cdots, m\right\}=1$, then $A_{j}-A_{1} \neq 0$ for any $j \neq 1$. Thus $\left\{a_{1, j}\right\}_{\text {, has }}$ no finite accumulation point (see Figure 1 and 2).

For each polynomial q, we put

$$
\begin{aligned}
& J_{1}=\left\{j ; \operatorname{Re} C\left(p_{1, j}-q\right)>0, p_{1, j}-q \neq \text { const. }\right\}, \\
& J^{\prime}{ }_{1}=\left\{j ; C\left(p_{1, j}-q\right) \in i \boldsymbol{R}^{-}, p_{1, j}-q \neq \text { const. }\right\}, \\
& J^{\prime \prime}{ }_{1}=\left\{j ; C\left(p_{1, j}-q\right) \in H_{1}, p_{1, j}-q \neq \text { const. }\right\}, \\
& J_{2}=\left\{j \operatorname{Re} C\left(p_{2, j}-q\right)>0, p_{2, j}-q \neq \text { const. }\right\}, \\
& J^{\prime}{ }_{2}=\left\{j ; C\left(p_{2, j}-q\right) \in i \boldsymbol{R}^{+}, p_{2, j}-q \neq \text { const. }\right\}, \\
& J^{\prime \prime}{ }_{2}=\left\{j ; C\left(p_{2, j}-q\right) \in H_{2}, p_{2, j}-q \neq \text { const. }\right\}, \\
& R_{1}[q]=\sum_{\in J_{1}} \exp \left(p_{1, j}\right), \quad S_{1}[q]=\sum_{\in J^{\prime} 1} \exp \left(p_{1, j}\right), \quad T_{1}[q]=\sum_{\in J_{1}^{\prime \prime}} \exp \left(p_{1, j}\right), \\
& R_{2}[q]=\sum_{j \in J_{2}} \exp \left(p_{2, j}\right), \quad S_{2}[q]=\sum_{\jmath \in J^{\prime} 2} \exp \left(p_{2, j}\right), \quad T_{2}[q]=\sum_{j \in J^{\prime \prime}{ }_{2}} \exp \left(p_{2, j}\right), \\
& b_{1}(q)= \begin{cases}\exp \left(p_{1 j}(0)-q(0)\right) & \text { if } p_{1 j}-q=\text { const. for some } j, \\
0 & \text { if } p_{1, j}-q \neq \text { const. for all } 7,\end{cases} \\
& b_{2}(q)= \begin{cases}\exp \left(p_{2 j}(0)-q(0)\right) & \text { if } p_{2},-q=\text { const. for some } j, \\
0 & \text { if } p_{2, j}-q \neq \text { const. for all } j .\end{cases}
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{j} \exp \left(p_{1, j}\right)=b_{1}(q) e^{q}+R_{1}[q]+S_{1}[q]+T_{1}[q], \\
& \sum_{j} \exp \left(p_{2, j}\right)=b_{2}(q) e^{q}+R_{2}[q]+S_{2}[q]+T_{2}[q] .
\end{aligned}
$$

We see that $b_{1}(q)=1$ if and only if $q \in\left\{p_{1, j}\right\}$ and that $b_{2}(q)=1$ if and only if $q \in\left\{p_{2, j}\right\}_{j}$. Thus, if $q \in\left(\left\{p_{1, j}\right\}_{j}-\left\{p_{2, j}\right\}_{j}\right) \cup\left(\left\{p_{2, j}\right\}_{j}-\left\{p_{1, j}\right\}_{j}\right)$, then $b_{1}(q) \neq b_{2}(q)$.

LEMMA 1.6. Let q be a polynomial of degree at most N. Assume that (A) holds. If $\#\left\{j ; A_{1}=A_{\jmath}, j=1, \cdots, m\right\}=l$ or $\#\left\{j A_{2}=A_{\jmath}, j=1, \cdots, m\right\}=1$, then we have $S_{1}[q] \in E_{N}$ or $S_{2}[q] \in E_{N}$ respectively.

Proof. Put

$$
\begin{gathered}
\alpha_{0}=q^{(N)}(0) / N!, \\
\mathcal{L}_{1}=\mathcal{S}_{1} \cap\left\{z ; \operatorname{Re} z=\operatorname{Re} \alpha_{0}, \operatorname{Im} z \leqq \operatorname{Im} \alpha_{0}\right\}, \\
\mathcal{L}_{2}=\mathcal{S}_{2} \cap\left\{z \operatorname{Re} z=\operatorname{Re} \alpha_{0}, \operatorname{Im} z \geqq \operatorname{Im} \alpha_{0}\right\} .
\end{gathered}
$$

Then by the definitions of $J^{\prime}{ }_{1}, J^{\prime}{ }_{2}$

$$
\left\{a_{1,}, j \in J^{\prime}{ }_{1}\right\} \subset \mathcal{L}_{1}, \quad\left\{a_{2, j} ; j \in J^{\prime}{ }_{2}\right\} \subset \mathcal{L}_{2} .
$$

Further $\mathcal{L}_{1}, \mathcal{L}_{2}$ are compact sets (see Figure 3 and 4). Therefore, if \# $\{j ; \mathrm{A}$ $\left.=A_{j}, j=1, \cdots, m\right\}=1$, then by Lemma 1.5 we have $\#\left\{a_{1, j} ; \in J^{\prime}{ }_{1}\right\}<\infty$. Thus $S_{1}[q] \in E_{N}$. Similarly, if $\#\left\{j ; A_{2}=A_{\jmath}, \jmath=1, \cdots, m\right\}=1$, then we have $S_{2}[q] \in E_{N}$. Lemma 1.6 is thus proved.

Fig. 3.

Fig. 4.
LEMMA 1.7. Let q be a polynomial of degree at most N. Assume that (A) holds and that $S_{1}[q] \in E_{N}, S_{2}[q] \in E_{N}$. Then there exist positive constants $\theta^{\prime}(q)$, $d^{\prime}(q), h_{1}, h_{2}$ such that

$$
\begin{array}{ll}
\left|e^{-q(z)} S_{2}[q](z)\right| \leqq \exp \left(-h_{1}|\operatorname{Im} z|\right) & \text { on } G_{1}\left(\theta^{\prime}(q), d^{\prime}(q)\right), \\
\left|e^{-q(z)} S_{1}[q](z)\right| \leqq \exp \left(-h_{2}|\operatorname{Im} z|\right) & \text { on } G_{2}\left(\theta^{\prime}(q), d^{\prime}(q)\right) .
\end{array}
$$

Proof. By the definitions of $S_{1}[q], S_{2}[q]$ and Lemma 1.3, we easily have the desired result.

LEMMA 1.8. Let q be a polynomial of degree at most N. Assume that (A) holds, $C\left(P_{\mu}-P_{1}\right) \in H_{1}$ for every $\mu \neq 1$ and that $C\left(P_{\mu}-P_{2}\right) \in H_{2}$ for every $\mu \neq 2$. Then there exist positive constants $\theta(q), d(q), k_{1}, k^{\prime}{ }_{1}, k_{2}, k^{\prime}{ }_{2}$ such that
(1) $\left|e^{-q(z)} T_{1}[q](z)\right| \leqq \exp \left(-k_{1}|\operatorname{Im} z|\right)+\exp \left(-k_{1}^{\prime}|z|\right) \quad$ on $G_{1}(\theta(q), d(q))$,
(2) $\left|e^{-q(z)} T_{2}[q](z)\right| \leqq \exp \left(-k_{2}|\operatorname{Im} z|\right)+\exp \left(-k^{\prime}{ }_{2}|z|\right) \quad$ on $G_{2}(\theta(q), d(q))$.

Proof. We shall prove only (1). We may assume $P_{1}=0$. Then

$$
\begin{equation*}
\operatorname{deg} P_{\mu} \geqq 1, \quad C\left(P_{\mu}\right) \in H_{1} \quad \text { for every } \mu \neq 1 \tag{1.4}
\end{equation*}
$$

For each $\lambda=\left(\lambda_{2}, \lambda_{3}, \cdots, \lambda_{m}\right) \in(\boldsymbol{N} \cup\{0\})^{m-1}$ we put

$$
\begin{gathered}
\|\lambda\|=\lambda_{2}+\lambda_{3}+\cdots+\lambda_{m}, \\
\delta(\lambda)=\gamma_{\|\lambda\|} \frac{\|\lambda\|!}{\lambda_{2}!\lambda_{3}!\cdots \lambda_{m}!}, \\
q^{(\lambda)}=\lambda_{2} P_{2}+\lambda_{3} P_{3}+\cdots+\lambda_{m} P_{m},
\end{gathered}
$$

where $(1+w)^{1 / n}=\sum_{j=0}^{\infty} \gamma_{j} w^{j} \quad(|w|<1)$. Let k be a positive number such that

$$
(m-1) k<1 .
$$

Then by (1.4) and Lemma 1.3, for suitable θ, d,

$$
\left|\exp \left(P_{\mu}(z)\right)\right|<k \quad \text { on } G_{1}(\theta, d) \quad(\mu=2,-, m) .
$$

Hence

$$
\begin{gathered}
\sum_{j=0}^{\infty} \gamma_{j}\left(\sum_{\mu=2}^{m} \exp \left(P_{\mu}\right)\right)^{j}=\sum_{\|\lambda\| \geq 0} \delta(\lambda) \exp \left(q^{(\lambda)}\right), \\
\sum_{J}\left|\exp \left(p_{1, j}(z)\right)\right| \leqq \sum_{\|\lambda\| \geq 0}|\delta(\lambda)|\left|\exp \left(q^{(\lambda)}(z)\right)\right| \leqq \sum_{\|\lambda\| \geq 0}|\delta(\lambda)| k^{\|\lambda\|}<\infty
\end{gathered}
$$

on $G_{1}(\theta, \mathrm{rf})$. Therefore $\sum_{\jmath} \exp \left(p_{1, j}(z)\right)$ is absolutely convergent and holomorphic on $G_{1}(\theta, d)$.

Put

$$
\Delta=\left\{\lambda \in(\boldsymbol{N} \cup\{0\})^{m-1} ; C\left(q^{(\lambda)}-q\right) \in H_{1}, \mathrm{tf}^{\wedge}-q \neq \text { const. }\right\} .
$$

Then by Lemma 1.4 , there exist $\alpha_{1}, \cdots, \alpha_{\tau} \in \Delta$ satisfying

$$
\begin{equation*}
\Delta \subset\left\langle\alpha_{1}, \cdots, \alpha_{\tau}\right\rangle . \tag{1.5}
\end{equation*}
$$

Put

$$
\Gamma\left(\lambda_{0}, h\right)=\left|\delta\left(\lambda_{0}\right)\right|+\sum_{\|\lambda\| \geq 1}\left|\delta\left(\lambda_{0}+\lambda\right)\right| h^{\|\lambda\|} .
$$

Then $\Gamma\left(\lambda_{0}, h\right)<\infty$ for all $\lambda_{0} \in(N \cup\{0\})^{m-1}$ and all $h \in(0,1 /(m-1))$. By (1.5)

$$
\begin{gathered}
\sum_{\jmath \in J_{1}^{\prime \prime}}\left|\exp \left(p_{1, j}-q\right)\right| \leqq \sum_{\lambda \in \Delta}|\delta(\lambda)|\left|\exp \left(q^{(\lambda)}-q\right)\right| \\
\leqq \sum_{j=1}^{\tau}\left|\exp \left(q^{\left(\alpha_{j}\right)}-q\right)\right|\left(\left|\delta\left(\alpha_{j}\right)\right|+\sum_{\|\lambda\| \geq 1}\left|\delta\left(\alpha_{j}+\lambda\right)\right|\left|\exp \left(q^{(\lambda)}\right)\right|\right) \\
\leqq \sum_{j=1}^{\tau}\left|\exp \left(q^{\left(\alpha_{j}\right)}-q\right)\right| \Gamma\left(\alpha_{\jmath}, k\right) \quad \text { on } G_{1}(\theta, \mathrm{~d}) .
\end{gathered}
$$

Since $C\left(q^{\left(\alpha_{j}\right)}-q\right) \in H_{1}$ and $q^{\left(\alpha_{j}\right)}-q \neq$ const., by Lemma 1.3 there exist positive constants $\boldsymbol{\theta}(q)(<\theta), d(q)(>d), k_{1}, k^{\prime}{ }_{1}$ such that

$$
\sum_{j=1}^{\tau}\left|\exp \left(q^{\left(\alpha_{j}\right)}(z)-q(z)\right)\right| \Gamma\left(\alpha_{j}, k\right)<\exp \left(-k_{1}|\operatorname{Im} z|\right)+\exp \left(-k^{\prime}{ }_{1}|z|\right)
$$

on $G_{1}(\theta(q), d(q))$. Thus we have the desired result.
LEMMA 1.9. Let f be a holomorphic function on $\left\{z ;|\arg z|<\omega_{0}\right\}\left(\omega_{0}>0\right)$. Assume that (A) holds, $\#\left\{j ; A_{1}=A_{j}, j=1, \cdots, m\right\}=l, \#\left\{j ; A_{2}=A_{j}, j=1, \cdots, m\right\}$ $=1$ and that $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ on $\left\{z ;|\arg z|<\omega_{0}\right\}$. Then

$$
\left\{p_{1, j}\right\}_{j}=\left\{p_{2, j}\right\}_{j} .
$$

Proof. Put $W=\left(\left\{p_{1, j}\right\}_{j}-\left\{p_{2, j}\right\}_{j}\right) \cup\left(\left\{p_{2, j}\right\}_{j}-\left\{p_{1, j}\right.\right.$ kajh 2 a d assume $W \neq \varnothing$. Then, by Lemma 1.5, $\left\{\operatorname{Re} a_{\nu, j} ; p_{\nu, j} \in W\right\}$ is a discrete set which is bounded from above. Thus there exists $\alpha_{0} \in\left\{a_{\nu, j} ; p_{\nu, j} \in W\right\}$ which satisfies

$$
\begin{equation*}
\operatorname{Re} \alpha_{0}=\max \left\{\operatorname{Re} a_{\nu, j} ; p_{\nu, j} \in W\right\} \tag{1.6}
\end{equation*}
$$

Put

$$
W^{\prime}=\left\{p_{\nu, j} \in W ; a_{\nu, j}=\alpha_{0}\right\} .
$$

Then, by Lemma 1.5, $\# W^{\prime}<\infty$. Thus, by Lemma 1.2, there exists a polynomial q_{0} in W^{\prime} such that

$$
\operatorname{Re} C\left(p-q_{0}\right) \leqq 0 \quad \text { for every } p \in W^{\prime}
$$

On the other hand, by (1.6), $\operatorname{Re} C\left(p_{\nu, j}-f f_{0}\right)=\operatorname{Re}\left(a_{\nu, j}-\alpha_{0}\right) \leqq 0$ for every $p_{\nu, j} \in$ $W-W^{\prime}$. Thus we have

$$
\begin{equation*}
\operatorname{Re} C\left(p-q_{0}\right) \leqq 0 \quad \text { for every } p \in W \tag{1.7}
\end{equation*}
$$

We define $J_{1}, J^{\prime}{ }_{1}, J^{\prime \prime}{ }_{1}, J_{2}, J^{\prime}{ }_{2}, J^{\prime \prime}{ }_{2}$ for $q=q_{0}$. Then by (1.7) we have $\left\{p_{1, j} ; j \in J_{1}\right\} \cap W=\varnothing,\left\{p_{2, j} ; j \in J_{2}\right\} \cap W=\varnothing$. Therefore, by the definitions of J_{1}, J_{2} and $W,\left\{p_{1, j} j \in J_{1}\right\}=\left\{p_{2,}, j \in J_{2}\right\} \quad$ and $\quad\left\{a_{1, j} \quad \in J_{1}\right\}=\left\{a_{2, j} \quad j \in J_{2}\right\}$. Further, if $j \in J_{1}$, then by the definition of J_{1} we have $a_{1, j}=\alpha_{0}$ or $\operatorname{Re} a_{1, \rho}>$ $\operatorname{Re} \alpha_{0} \quad$ Thus by Lemma 1.5

$$
\left\{a_{1, j} ; j \in J_{1}\right\} \subset\left(\mathcal{S}_{1} \cap \mathcal{S}_{2} \cap\left\{z ; \operatorname{Re} z \geqq \operatorname{Re} \alpha_{0}\right\}\right)
$$

Put $\left.\mathrm{ff}^{\wedge} \mathrm{cSi} \operatorname{CVSsj} \Pi \mathrm{te} ; \operatorname{Re} z \geqq \operatorname{Re} \alpha_{0}\right\}$. Since \mathscr{T} is a compact set, by Lemma 1.5 we have $\#\left\{a_{1,}, j j \in J_{1}\right\}<\infty$ (see Figure 5). Thus $R_{1}=R_{2} \in E_{N}$.

Fig. 5.
Let $\boldsymbol{\theta}\left(q_{0}\right), \boldsymbol{\theta}^{\prime}\left(q_{0}\right), d\left(q_{0}\right), d^{\prime}\left(q_{0}\right)$ be positive constants for which Lemma 1.7 and 1.8 hold with q replaced by q_{0}, and let θ_{0}, d_{0} be positive constants satisfying $0<\theta_{0}<\min \left(\omega_{0}, \theta\left(q_{0}\right), \theta^{\prime}\left(q_{0}\right)\right), d_{0}>\max \left(d\left(q_{0}\right), d^{\prime}\left(q_{0}\right)\right)$. Put

$$
R=R_{1}\left[q_{0}\right]=R_{2}\left[q_{0}\right], \quad F=\left(f-R-S_{1}\left[q_{0}\right]-S_{2}\left[q_{0}\right]-b_{2}\left(q_{0}\right) e^{q_{0}}\right) e^{-q_{0}}
$$

Then, by Lemma $1.6, \mathrm{~F}$ is a holomorphic function on $\left\{|\arg z|<\omega_{0}\right\}$ satisfying

$$
\begin{aligned}
& F(z)=\left(b_{1}\left(q_{0}\right)-b_{2}\left(q_{0}\right)\right)-S_{2}\left[q_{0}\right](z) e^{-q_{0}(z)}+T_{1}\left[q_{0}\right](z) e^{-q_{0}(z)} \quad \text { on } G_{1}\left(\theta_{0}, d_{0}\right), \\
& F(z)=-S_{1}\left[q_{0}\right](z) e^{-q_{0}(z)}+T_{2}\left[q_{0}\right](z) e^{-q_{0}(z)} \quad \text { on } G_{2}\left(\theta_{0}, d_{0}\right)
\end{aligned}
$$

Therefore, by Lemma 1.7 and 1.8, there are positive constants K_{1}, K_{2} such that for every $y_{0}>d_{0}$ we have

$$
\left|F\left(x+i y_{0}\right)-\left(b_{1}\left(q_{0}\right)-b_{2}\left(q_{0}\right)\right)\right| \leqq \exp \left(-K_{1} y_{0}\right)+o(1) \quad(x \rightarrow+\infty)
$$

$$
\begin{equation*}
\left|F\left(x-i y_{0}\right)\right| \leqq \exp \left(-K_{2} y_{0}\right)+o(1) \quad(x \rightarrow+\infty) \tag{1.9}
\end{equation*}
$$

Put $L_{0}=y_{0} \tan ^{-1} \theta_{0}$. Then F is bounded on $\partial\left\{z ; \operatorname{Re} z \geqq L_{0},|\operatorname{Im} z| \leqq y_{0}\right\}$ and satisfies $|F(z)|<\exp \left(A|z|^{N}\right)$ on $\left|z \quad \operatorname{Re} z \geqq L_{0},|\operatorname{Im} z| \leqq y_{0}\right\}$ with a positive constant A Therefore by the Phragmén-Lindelöf theorem (see [3; p. 43]) it is verified that F is a bounded function in $\left\{z ; \operatorname{Re} z \geqq L_{0},|\operatorname{Im} z| \leqq y_{0}\right\}$. Let $L\left(>L_{0}\right)$ be a positive number. Then

$$
\begin{aligned}
\frac{1}{L} \int_{L_{0}}^{L} F\left(x+\imath y_{0}\right) d x= & \frac{1}{L} \int_{L_{0}}^{L} F\left(x-i y_{0}\right) d x \\
& -\frac{i}{L} \int_{-y_{0}}^{y_{0}} F\left(L_{0}+i y\right) d y+\frac{i}{L} \int_{-y_{0}}^{y_{0}} F(L+i y) d y
\end{aligned}
$$

(see Figure 6).

Fig. 6.
Since F is bounded on $\left\{z ; \operatorname{Re} z \geqq L_{0},|\operatorname{Im} z| \leqq y_{0}\right\}$, by using (1.9) we have

$$
\left|b_{1}\left(q_{0}\right)-b_{2}\left(q_{0}\right)\right| \leqq \exp \left(-K_{1} y_{0}\right)+\exp \left(-K_{2} y_{0}\right)+o(1)+O(1 / L) \quad(L \rightarrow+\infty) .
$$

Since $q_{0} \in W$, we have $b_{1}\left(q_{0}\right) \neq b_{2}\left(q_{0}\right)$. Thus for y_{0} sufficiently large, we have a contradiction. Thus $W=\varnothing$, namely $\left\{p_{1, j}\right\}_{\jmath}=\left\{p_{2, j}\right\}_{\jmath}$. Lemma 1.9 is thus proved.

From Lemma 1.5 and 1.9 we have the following
COROLLARY. Under the hypotheses of Lemma 1.9, assume that $\mathcal{S}_{1} \cap \mathcal{S}_{2}$ is a bouuded set. Then f is an element of E_{N}.

Now we can complete the proof of Theorem 1. For each polynomial p and $\boldsymbol{\theta} \in \boldsymbol{R}$, we set $(p)_{\theta}(z)=p\left(z e^{i \theta}\right)$. Then $(\cdot)_{\theta}: \boldsymbol{C}[z] \rightarrow \boldsymbol{C}[z]$ is a linear bijection which leaves every element of $C(\subset C[z])$ fixed. Therefore for every $\nu \in\{1, \cdots, t\}$ and $\boldsymbol{\theta} \in \boldsymbol{R}$, we have

$$
\exp \left(\left(P_{\nu}\right)_{\theta} / n\right)\left(1+\sum_{j=1} \gamma_{j}\left({ }_{\mu \in(1,} \sum_{m)-(\nu)} \exp \left(\left(P_{\mu}\right)_{\theta}-\left(P_{\nu}\right)_{\theta}\right)\right)^{\nu}\right)=\sum_{j} \exp \left(p_{\nu, j}\right)_{\theta}
$$

Let $\nu \in\{1, \cdots, t\}$ be fixed. Then there exists $\theta_{\nu} \in(-\pi / N, \pi / N]$ such that

$$
\operatorname{Re}\left(A_{\nu} e^{i N \theta_{\nu}}\right)=\operatorname{Re}\left(A_{\nu+1} e^{i N \theta_{\nu}}\right), \quad \operatorname{Im}\left(A_{\nu} e^{i N \theta_{\nu}}\right)<\operatorname{Im}\left(A_{\nu+1} e^{i N \theta_{\nu}}\right),
$$

$$
\operatorname{Re}\left(A_{\mu} e^{i N \theta_{\nu}}\right) \leqq \operatorname{Re}\left(A_{\nu} e^{i N \theta_{\nu}}\right) \quad(\mu=1,-, m)
$$

Therefore (A) is fulfilled with $P_{1},-, P_{m}, A_{1}, A_{2}$ replaced by $\left(P_{1}\right)_{\theta_{\nu}},-,\left(P_{m}\right)_{\theta_{\nu}}$, $A_{\nu} e^{i N \theta_{\nu}}, A_{\nu+1} e^{i N \theta_{\nu}}$ respectively. Thus, if $\theta_{\nu} \in\left(\omega_{1}, \omega_{2}\right)$, then by Lemma 1.9 $\left\{\left(p_{\nu, j}\right)_{\theta_{\nu}}\right\}_{J}=\left\{\left(p_{\nu+1, j}\right)_{\theta_{\nu}}\right\}_{J}$. Therefore $\left.\left\{p_{\nu, j}\right\}_{j}=\left\{p_{\nu+1, j}\right\}_{J},\left\{a_{\nu, j}\right\}_{J}=\left\{a_{\nu+1, j}\right\}_{j} \subset \mathcal{S}_{\nu} \cap \mathcal{S}_{\nu+1}\right)$. Let $\nu_{0} \in\{1, \cdots, t\}$ be the integer such that $\left\{\nu ; \theta_{\nu} \in\left(\omega_{1}, \omega_{2}\right)\right\}-\left\{\nu_{0}, \nu_{0}+1, \cdots, \nu_{0}+s\right\}$ $(\bmod t)$. Then $\left\{a_{\nu_{0}, j}\right\}_{0}=\left\{a_{\nu_{0}+1, j}\right\}_{j}=\cdots=\left\{a_{\nu_{0}+s+1, j}\right\}_{j} \subset\left(\mathcal{S}_{\nu_{0}} \cap \mathcal{S}_{\nu_{0}+1} \cap \cdots \cap \mathcal{S}_{\nu_{0}+s+1}\right)$. (We set $a_{\nu+t, j}=a_{\nu, j}, \mathcal{S}_{\nu+t}=\mathcal{S}_{\nu}(\nu \in\{1, \cdots, t\})$) Since $\omega_{2}-\omega_{1}>\pi / N, \mathcal{S}_{\nu_{0}} \cap \mathcal{S}_{\nu_{0}+1} \cap$ $\cdots \cap \mathcal{S}_{\nu_{0}+s+1}$ is a bounded set. Thus $\left\{a_{\nu_{0}, j}\right\}_{j}$ is a ${ }^{\text {tinite }}$ set Therefore by Lemma $1.5\left\{p_{\nu_{0}, j}\right\}$, is so. Thus / is an element of E_{N}. Theorem 1 is thus proved.

2. Proof of Theorem 2.

We begin with the proof of the following
Theorem 5. Let f be a holomorphic function on $\left\{z ;|\arg z|<\omega_{0}\right\}\left(\omega_{0}>0\right)$ and g be an element of E_{N-1}. Assume that (A) holds, $\#\left\{j ; A_{1}=A_{j}, j=1, \cdots, m\right\}$ $=1, \#\left\{j ; A_{2}=A_{j}, 7=1, \cdots, m\right\}=1$ and that $f^{n}=g e^{P_{1}}+e^{P_{2}}+\cdots--+e^{P_{m}}$ on $\{z ;|\arg z|$ $\left.<\omega_{0}\right\}$. Then $g=h^{n}$ for some $h \in E_{N-1}$.

LEMMA 2.1. Let $n(\geqq 2)$ be an integer, P_{1}, \cdots, P_{s} be polynomials, $P_{\mu}-P_{\nu} \neq$ const. $(\mu \neq \nu), C\left(P_{\mu}-P_{1}\right) \in H_{1}\left(\mu=2, \cdots\right.$, s) and $\left\{r_{j}\right\}$, be the set of polynomials defined by

$$
\begin{gathered}
\exp \left(P_{1} / n\right)\left(1+\sum_{j=1} \gamma_{j}\left(\sum_{\mu=2} \exp \left(P_{\mu}-P_{1}\right)\right)^{j}\right) \equiv \sum_{3} \exp \left(r_{j}\right), \\
r_{j}-r_{k} \neq \text { const. } \quad(j \neq k), \quad \operatorname{Im}\left(r_{j}(0)\right) \in[0,2 \pi),
\end{gathered}
$$

uhere $1+\sum_{j=1}^{\infty} \gamma_{j} w^{j}=(1+w)^{1 / n} \quad(|w|<1)$. Let $\Pi(\neq \varnothing)$ be a subset of $\left\{r_{j}\right\}_{j}$. Then there exists a polynomial $p_{0} \in \Pi$ such that

$$
C\left(p-p_{0}\right) \in H_{1} \quad \text { for every } p \in \Pi-\left\{p_{0}\right\}
$$

Proof. We may assume $P_{1}=0$. Then

$$
\operatorname{deg} P_{\mu} \geqq 1, \quad C\left(P_{\mu}\right) \in H_{1}(\mu=2, \cdots, \mathrm{~s})
$$

For each polynomial p we set

$$
(p)^{*}(z)=p(z)-p(0),
$$

and for each $\lambda=\left(\lambda_{2}, \cdots, \lambda_{s}\right) \in(\boldsymbol{N} \cup\{0\})^{s-1}$

$$
q^{(\lambda)}=\lambda_{2} P_{2}+\cdots+\lambda_{s} P_{s} .
$$

Then $(\cdot)^{*}: \boldsymbol{C}[z] \rightarrow \boldsymbol{C}[z]$ is a linear mapping. By the definition of $\left\{r_{j}\right\}$ and Lemma 1.1, we have

$$
\begin{equation*}
\left\{\left(r_{j}\right)^{*}\right\}_{j} \subset\left\{\left(q^{(\lambda)}\right)^{*} ; \lambda \in(\boldsymbol{N} \cup\{0\})^{s-1}\right\} \tag{2.1}
\end{equation*}
$$

Put

$$
\begin{equation*}
\Pi^{*}=\left\{(p)^{*} ; p \in \Pi\right\}, \quad \Delta=\left\{\lambda ;\left(q^{(\lambda)}\right)^{*} \in \Pi^{*}\right\} \tag{2.3}
\end{equation*}
$$

Then by (2.2)

$$
\Pi^{*}=\left\{\left(q^{(\lambda)}\right)^{*} ; \lambda \in \Delta\right\}
$$

Further by Lemma 1.4 there exist $\alpha_{1}, \cdots, \alpha_{\tau} \in \Delta$ such that

$$
\Delta \subset\left\langle\alpha_{1}, \cdots, \alpha_{\tau}\right\rangle .
$$

Put

$$
\tilde{\Pi}=\left\{\left(q^{\left(\alpha_{j}+\beta\right)}\right)^{*} ; \jmath=1, \ldots, \tau, \beta \in(\boldsymbol{N} \cup\{0\})^{s-1}\right\}
$$

Then

$$
\begin{equation*}
\Pi * \subset \tilde{\Pi} . \tag{2.4}
\end{equation*}
$$

By Lemma 1.2 we may assume

$$
C\left(q^{\left(\alpha_{j}\right)}-q^{\left(\alpha_{1}\right)}\right) \in H_{1}
$$

for every $q^{\left(\alpha_{j}\right)}$ satisfying $\left(q^{\left(\alpha_{j}\right)}\right)^{*} \neq\left(q^{\left(\alpha_{1}\right)}\right)^{*}$. Note that $C\left(\left(q^{\left(\alpha_{j}+\beta\right)}\right)^{*}-\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right)=$ $C\left(\left(q^{\left(\alpha_{j}+\beta\right)}\right)^{*}-\left(q^{\left(\alpha_{j}\right)}\right)^{*}+\left(q^{\left(\alpha_{j}\right.}\right.\right.$ Therefore by (2.2) and Lemma 1.1

$$
C\left(p-\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right) \in H_{1} \quad \text { for every } p \in \tilde{\Pi}-\left\{\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right\}
$$

Thus by (2.4)

$$
\begin{equation*}
C\left(p-\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right) \in H_{1} \quad \text { for every } p \in I^{*}-\left\{\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right\} \tag{2.5}
\end{equation*}
$$

Since $\alpha_{1} \in \Delta$, by (2.3) there is an element p_{0} of Π such that

$$
\left.\mathrm{fo}^{\beta}<{ }^{\beta}>\right)^{*}=(/>0)^{*}
$$

If $p \in I I-\left\{p_{0}\right\}$, then $\operatorname{deg}\left(p-p_{0}\right) \geqq 1$ and $(p)^{*} \in \Pi^{*}-\left\{\left(p_{0}\right)^{*}\right\}$. Therefore by (2.5)

$$
C\left(p-p_{0}\right)=C\left((p)^{*}-\left(p_{0}\right)^{*}\right)=C\left((p)^{*}-\left(q^{\left(\alpha_{1}\right)}\right)^{*}\right) \in H_{1} \quad \text { for every } p \in I I-\left\{p_{0}\right\} .
$$

Thus we have the desired result.
LEMMA 2.2. Assume that (A) holds, $\left\{j A_{1}=A_{\jmath}, j=1,-, m\right\}=\{1, t+1, \cdots, \mathrm{~s}\}$ $(t+1 \leqq s \leqq m)$, $\#\left\{j ; A_{2}=A, j=1, \cdots, m\right\}=1$ and that

$$
\exp \left(P_{1}\right)+\sum_{j=t+l}^{s} \exp \left(P_{j}\right) \neq h^{n} \quad \text { for any } h \in E_{N}
$$

Let $\left\{p_{1, j}\right\}_{J,},\left\{p_{2, j}\right\}_{,}$be defined by (1.1). Then there exists $q_{0} \in\left(\left\{p_{1, j}\right\}_{j}-\left\{p_{2, j}\right\}_{j}\right) \cup$ $\left(\left\{p_{2, j}\right\}_{j}-\left\{p_{1, j}\right\}_{j}\right)$ such that

$$
R_{1}\left[q_{0}\right]=R_{2}\left[q_{0}\right] \in E_{N}, \quad S_{1}\left[q_{0}\right] \in E_{N}, \quad S_{2}\left[q_{0}\right] \in E_{N},
$$

where $R_{1}\left[q_{0}\right], R_{2}\left[q_{0}\right], S_{1}\left[q_{0}\right], S_{2}\left[q_{0}\right]$ are defined in Section 1.
Proof. We may assume

Then

$$
P_{1}=0, \quad C\left(P_{\mu}\right) \in H_{1} \quad(\mu=2, \cdots, m) .
$$

$$
\begin{gathered}
N-1 \geqq \operatorname{deg} P_{\mu} \geqq 1 \quad(\mu=t+1, \cdots, \mathrm{~s}), \\
\operatorname{deg} P_{\mu}=N \quad(\mu \in\{2, \cdots, m\}-\{t+1, \cdots, s\}) .
\end{gathered}
$$

Let $\left\{r_{j}\right\}$, be the set of polynomials defined by

$$
\begin{gathered}
1+\sum_{j=1}^{\infty} \gamma_{\mu=i+1}\left(\sum_{i=1}^{s} \exp \left(P_{(k)}\right)\right)^{j} \equiv \sum_{\mathcal{B}} \exp \left(r_{j}\right), \\
r_{j}-r_{k} \neq \text { const. }(\jmath \neq k), \quad \operatorname{Im}\left(r_{j}(0)\right) \in[0,2 \pi),
\end{gathered}
$$

where $\left.1+\sum_{j=1}^{\infty} \gamma_{j} w^{j} \neq l+w\right)^{1 / n}(|w|<1)$. Then by Lemma 1.1

$$
\left\{p_{1, j} ; a_{1, j}=0\right\}=\left\{r_{j}\right\}_{\jmath,},
$$

where $a_{\nu, \rho}=p_{\nu, \rho}{ }^{(N)}(0) / N$!. Put

$$
\begin{array}{rll}
\Pi_{1}=\left\{p_{1, j}\right\}_{\jmath}, & \Pi_{2}=\left\{p_{2, j}\right\}_{\jmath}, \\
\pi_{1}=\left\{p_{1, j} ; a_{1, j}=0\right\}, & \pi_{2}=\left\{p_{2, j} ; a_{2, j}=0\right\}
\end{array}
$$

By assumption we have $\# \pi_{1}=\infty$. Since $\#\left\{j ; A_{2}=A_{\nu}, j=1, \cdots, m\right\}=1$, by Lemma $1.5 \# \pi_{2}<\infty$. Therefore $\left(\pi_{1}-\pi_{2}\right) \neq \varnothing$. Thus by Lemma 2.1 there exists $q_{1} \in$ $\left(\pi_{1}-\pi_{2}\right)$ such that

$$
\begin{equation*}
C\left(q-q_{1}\right) \in H_{1} \quad \text { for every } q \in\left(\pi_{1}-\pi_{2}\right)-\left\{q_{1}\right\} \tag{2.6}
\end{equation*}
$$

Since \#($\left.\pi_{2}-\pi_{1}\right)<\infty$, by Lemma 1.2 there exists $q_{2} \in\left(\pi_{2}-\pi_{1}\right)$ such that

$$
\begin{equation*}
C\left(q-q_{2}\right) \in H_{1} \quad \text { for every } q \in\left(\pi_{2}-\pi_{1}\right)-\left\{q_{2}\right\} \tag{2.7}
\end{equation*}
$$

whenever $\left(\pi_{2}-\pi_{1}\right) \neq \varnothing$. Note that $C\left(q_{1}-q_{2}\right) \neq 0$. Put

$$
q_{0}= \begin{cases}q_{1} & \text { if }\left(\pi_{2}-\pi_{1}\right) \neq \varnothing \text { or } C\left(q_{2}-q_{1}\right) \in H_{1} \\ q_{2} & \text { if }\left(\pi_{2}-\pi_{1}\right) \neq \varnothing \text { and } C\left(q_{1}-q_{2}\right) \in H_{1}\end{cases}
$$

Then $q_{0} \in\left(\left(\pi_{1}-\pi_{2}\right) \cup\left(\pi_{2}-\pi_{1}\right)\right) \subset\left(\left(\Pi_{1}-\Pi_{2}\right) \cup\left(\Pi_{2}-\Pi_{1}\right)\right)$. When $q_{0}=q_{1}$ and $\left(\pi_{2}-\pi_{1}\right)$ $\neq \varnothing$, we have $C\left(q-q_{0}\right)=C\left(\left(q-q_{2}\right)+\left(q_{2}-q_{1}\right)\right)$. Thus, by (2.7) and Lemma 1.1,

$$
C\left(q-q_{0}\right) \in H_{1} \quad \text { for every } q \in\left(\pi_{2}-\pi_{1}\right) .
$$

When $q_{0}=q_{2}$, we have $C\left(q-q_{0}\right)=C\left(\left(q-q_{1}\right)+\left(q_{1}-q_{2}\right)\right)$. Thus, by (2.6) and Lemma 1.1,

$$
C\left(q-q_{0}\right) \in H_{1} \quad \text { for every } q \in\left(\pi_{1}-\pi_{2}\right) .
$$

Therefore, from (2.6), (2.7),

$$
\begin{equation*}
C\left(q-q_{0}\right) \in H_{1} \quad \text { for every } q \in\left(\pi_{1}-\pi_{2}\right)-\left\{q_{0}\right\} \tag{2.8}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re} C\left(q-q_{0}\right) \leqq 0 \quad \text { for every } q \in\left(\pi_{1}-\pi_{2}\right) \cup\left(\pi_{2}-\pi_{1}\right) \tag{2.9}
\end{equation*}
$$

Since $\operatorname{deg} q_{0} \leqq N-1$, we have $C\left(p_{1, j}-q_{0}\right)=a_{1, j}(\neq 0), C\left(p_{2, j}-q_{0}\right)=a_{2, j}$ for $p_{1, j} \in$ $\left(\Pi_{1}-\pi_{1}\right), p_{2, j} \in\left(\Pi_{2}-\pi_{2}\right)$. Note that $A_{1}=0, A_{2} \in i \boldsymbol{R}^{+}$. By Lemma 1.5 and (1.3), $a_{1, j} \in\left(\mathcal{S}_{1}-\{0\}\right) \subset H_{1}, \quad a_{2, j} \in \mathcal{S}_{2} \subset\{z ; \operatorname{Re} z \leqq 0\}$ for $p_{1, j} \in\left(\Pi_{1}-\pi_{1}\right), p_{2, j} \in\left(\Pi_{2}-\pi_{2}\right)$.

Therefore

$$
\begin{align*}
C\left(q-q_{0}\right) \in H_{1} & \text { for every } q \in\left(\Pi_{1}-\pi_{1}\right) \tag{2.10}\\
\operatorname{Re} C\left(q-q_{0}\right) \leqq 0 & \text { for every } q \in\left(\Pi_{2}-\pi_{2}\right) . \tag{2.11}
\end{align*}
$$

Thus, from (2.8)-(2.11), we have

$$
\begin{equation*}
C\left(q-q_{0}\right) \in H_{1} \quad \text { for every } q \in\left(\Pi_{1}-\left(\pi_{1} \cap \pi_{2}\right)\right)-\left\{q_{0}\right\} \tag{2.12}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re} C\left(q-q_{0}\right) \leqq 0 \quad \text { for every } q \in\left(\Pi_{1} \cup \Pi_{2}\right)-\left(\pi_{1} \cap \pi_{2}\right) \tag{2.13}
\end{equation*}
$$

We define $J_{1}, J^{\prime}{ }_{1}, J^{\prime \prime}{ }_{1}, J_{2}, J^{\prime}{ }_{2}, J^{\prime \prime}{ }_{2}$ for $q=q_{0}$ as in Section 1. Then, from (2.13) and the definitions of J_{1}, J_{2},

$$
\left\{p_{1,3}, j \in J_{1}\right\}=\left\{p_{2, j} j \in J_{2}\right\} \subset\left(\pi_{1} \cap \pi_{2}\right) .
$$

Since $\#\left(\pi_{1} \cap \pi_{2}\right)<\infty$,we have

From Lemma 1.6

$$
\begin{gathered}
R_{1}\left[q_{0}\right]=R_{2}\left[q_{0}\right] \in E_{N-1} . \\
S_{2}\left[q_{0}\right] \in E_{N} .
\end{gathered}
$$

Further by (2.12) and the definition of $J^{\prime}{ }_{1}$

Thus

$$
\left\{p_{1, j} ; j \in J^{\prime}\right\} \subset\left(\pi_{1} \cap \pi_{2}\right) .
$$

$$
S_{1}\left[q_{0}\right] \in E_{N-1} .
$$

Lemma 2.2 is thus proved.
Proof of Theorem 5. We use the notations of Lemma 2.2. Assume that $g \neq h^{n}$ for any $h \in E_{N-1}$. Then by Lemma 2.2 there exists $q_{0} \in\left(\left\{p_{1, j}\right\}_{j}-\left\{p_{2, j}\right\}_{j}\right)$ $\cup\left(\left\{p_{2, j}\right\}_{j}-\left\{p_{1, j}\right\}_{j}\right)$ such that

$$
R_{1}\left[q_{0}\right]=R_{2}\left[q_{0}\right] \in E_{N}, \quad S_{1}\left[q_{0}\right] \in E_{N}, \quad S_{2}\left[q_{0}\right] \in E_{N} .
$$

Therefore Lemma 1.7 and 1.8 hold for those $S_{1}\left[q_{0}\right], S_{2}\left[q_{0}\right], T_{1}\left[q_{0}\right], T_{2}\left[q_{0}\right]$. Put

$$
R=R_{1}\left[q_{0}\right]=R_{2}\left[q_{0}\right], \quad F=\left(f-R-S\left[q_{0}\right]-S_{2}\left[q_{0}\right]-b_{2}\left(q_{0}\right) e^{q_{0}}\right) e^{-q_{0}} .
$$

Then F is a holomorphic function on $\left\{|\arg z|<\omega_{0}\right\}$ satisfying (1.8), (1.9), and $b_{1}\left(q_{0}\right) \neq b_{2}\left(q_{0}\right)$. Thus we have a contradiction as in Section 1. Theorem 5 is thus proved.

Now we prove Theorem 2. Put $N=\max _{j} \operatorname{deg} P_{j}, A_{j}=P_{j}^{(N)}(0) / N(j=1, \cdots, 4)$. We may assume that $\#\left\{A_{j}\right\}_{j} \geqq 2$. Then we have the following three cases.

Case 1): $\#\left\{A_{j}\right\}_{j}=2$. In this case, from the following Lemma 2.3, we have a contradiction.

LEMMA 2.3. Let $n(\geqq 2), N(\geqq 1)$ be integers, A_{1}, A_{2} be distinct constants
and g_{1}, g_{2} be nonzero elements of E_{N-1}. Then

$$
f(z)^{n} \neq g_{1}(z) \exp \left(A_{1} z^{N}\right)+g_{2}(z) \exp \left(A_{2} z^{N}\right)
$$

for any entire function f.
Proof. Assume that there exists an entire function / satisfying $f^{n}(z)=$ $g_{1}(z) \exp \left(A_{1} z^{N}\right)+g_{2}\left(z \exp \left(A_{2} z^{N}\right)\right.$. Put

$$
F(z)=g_{1}(z) \exp \left(\left(A_{1}-A_{2}\right) z^{N}\right) .
$$

Then $T\left(r, g_{2}\right)=o(T(r, F))$ and

$$
\Theta(0, F)=\Theta(\infty, F)=1, \quad \Theta\left(-g_{2}, F\right) \geqq 1-(1 / n) .
$$

Thus by the second fundamental theorem (see [2; p. 47]) we have a contradiction.

Case 2): $\#\left\{A_{j}\right\}_{,}=3$. Suppose that A_{1}, \cdots, A_{4} do not lie on any streight line. Then we may assume that

$$
A_{1}=0, \quad A_{2} \in i \boldsymbol{R}^{+}, \quad \operatorname{Re} A_{3}<0, \quad \operatorname{Re} A_{4}<0
$$

Define $p_{\nu, \jmath}, a_{\nu, \jmath}$ and $\mathcal{S}_{\nu}(\nu=1,2)$ as in Section 1. Then, by Lemma 1.9, $\left\{a_{1, j}\right\}_{,}$ $=\left\{a_{2, j}\right\}_{J}$. Further from (1.1) we have $\left\{\left(P_{1} / n\right)-\nu\left(P_{2}-P_{1}\right)+\log \gamma_{\nu} \nu \in N\right\} \subset\left\{p_{1, j}\right\}_{,}$. Therefore, by Lemma 1.5, $\left(\mathcal{S}_{1} \cap \mathcal{S}_{2}\right) \supset\left\{a_{1, j}\right\} \supset \supset\left\{\nu A_{2} ; \nu \in \boldsymbol{N}\right\}$. Thus $\left(\mathcal{S}_{1} \cap \mathcal{S}_{2} \cap i \boldsymbol{R}\right)$ $\supset\left\{\nu A_{2} \quad \nu \in \boldsymbol{N}\right\}$. Since $\mathcal{S}_{1} \cap \mathcal{S}_{2} \cap i \boldsymbol{R}=\left\{i x \quad 0 \leqq x \leqq\left(\operatorname{Im} A_{2}\right) / n\right\}$, this is a contradiction. Thus A_{1}, \cdots, A_{4} lie on a straight line. We assume that $A_{2}=A_{3}$ and $A_{1} \neq A_{2} \neq A_{4}$ (see Figure 7 and 8).

Fig. 7.

Fig. 8.

Subcase 2.1): $A_{2} \in \overline{A_{1} A_{4}}$. (We denote by $\overline{\alpha \beta}$ the line segment $\{\alpha+x(\beta-\alpha)$; $0 \leqq x \leqq 1\}$.) First we shall show the following

LEMMA 2.4.
(1) Let Q_{1}, \cdots, Q_{m} be polynomials satisfying $Q_{j}-Q_{k} \neq$ const. $(\jmath \neq k)$. Then $e^{Q_{1}}+\cdots+e^{Q_{m}} \not \equiv 0$.
(2) Let P_{1}, \cdots, P_{m} be polynomials. Assume that $e^{P_{1}}+\cdots+e^{P_{m}}=0$ and that $\sum_{j \in J} e^{P_{j}} \neq 0$ for any $J \varsubsetneqq\{1, \cdots, m\} \quad(J \neq \varnothing)$. Then $\left(P_{1}\right)^{*}=-=\left(P_{m}\right)^{*} . \quad / / e^{P_{1}}+e^{P_{2}}=0$ or $e^{P_{1}}+e^{P_{2}}+e^{P_{3}}=0$, then we always have $\left(P_{1}\right)^{*}=\left(P_{2}\right)^{*}$ or $\left(P_{1}\right)^{*}=\left(P_{2}\right)^{*}=\left(P_{3}\right)^{*}$ respectively. (For each polynomial p we set $(p)^{*}(z)=p(z) p(0)$.)

Proof. These are well-known results and immediate consequences of Lemma 1.3. We assume that $Q_{1}<_{2} Q_{2}<_{2}-<_{2} Q_{m}$. By Lemma 1.1, $C\left(Q_{j}-Q_{m}\right) \in H_{2}$ $0=1, \cdots, m-1)$. Thus, by Lemma 1.3, there exist positive constants θ, d such that $\left|e^{\left(Q_{1}-Q_{m}\right)}+\ldots+e^{\left(Q_{m-1}-Q_{m}\right)}\right|<1 / 2$ on $G_{2}(\theta, d)$. Therefore $\left|\left(e^{Q_{1}}+\cdots+e^{Q_{m}}\right) e^{-Q_{m}}\right|$ $>1 / 2$ on $G_{2}(\theta, d)$. Thus (1) is proved. (2) follows from (1).

By Theorem 1 we have $f \in E_{N}$. We may assume that $A_{1}, \cdots, A_{4} \in \boldsymbol{R}$,
 are polynomials of degree at most N satisfying $Q_{\mu}-Q_{\nu} \neq$ const. ($\mu \neq \nu$), $Q_{1}<_{2}$ $Q_{2}<_{2}-<_{2} Q_{m}$ and $Q_{j}{ }^{(N)}(0) / N!\in\left[A_{1} / \imath A_{4} / n\right](j=1, \cdots, \mathrm{~m})$.

Put $\left(e^{Q_{1}}+\cdots+e^{Q_{m}}\right)^{n}=\sum_{\mu_{1}+\cdots+\mu_{m}=n} n!\left(\mu_{1}!\cdots \mu_{m}!\right)^{-1} e^{\mu_{1} Q_{1}} \cdots e^{\mu_{m} Q_{m}}=\exp \left(\tilde{Q}_{1}\right)+\cdots$ $+\exp \left(\widetilde{Q}_{k}\right)$, where $Q_{\text {' }}$'s are polynomials satisíying $\tilde{Q}_{\mu}-Q_{\nu} \neq$ const. $(\mu \neq \nu), \widetilde{Q}_{1}<_{2}$ $\widetilde{Q}_{2}<_{2} \cdots<_{2} \widetilde{Q}_{k} \quad$ It is easily seen that $m \geqq 2$ and

$$
\widetilde{Q}_{1}=n Q_{1}, \quad \tilde{Q}_{2}=(n-1) Q_{1}+Q_{2}, \quad \tilde{Q}_{k-1}=Q_{m-1}+(n-1) Q_{m}, \quad \tilde{Q}_{k}=n Q_{m}
$$

We shall consider the following two cases.

1) $P_{2}-P_{3}=$ const.. In this case we have $f^{n}=e^{P_{1}}+e^{P_{2}+c}+e^{P_{4}}=\exp \left(\tilde{Q_{1}}\right)+\cdots$ $+\exp \left(\widetilde{Q}_{k}\right)$ for some constant c. Therefore, by Lemma 2.4, we have $k=3$, $(n-1) Q_{1}+Q_{2}=Q_{m-1}+(n-1) Q_{m}=P_{2}+c$. Thus $R \equiv(n-1)\left(Q_{1}-Q_{m}\right)+\left(Q_{2}-Q_{m-1}\right)=0$. If $m>2$, then $Q_{1}<_{2} Q_{m}, Q_{2} \leqq_{2} Q_{m-1}$ Therefore, by Lemma 1.1, we have $R<{ }_{2} 0$. This is a contradiction. Thus $m=2, R=(n-2)\left(Q_{1}-Q_{2}\right)$. If $n>2$, then $R<{ }_{2} 0$. This is again a contradiction. Thus $m=n=2, f=e^{Q_{1}}+e^{Q_{2}}$.
2) $P_{2}-P_{3} \neq$ const.. By Lemma 2.4 we have

$$
\begin{equation*}
P_{1}=n Q_{1}, \quad P_{2}=(n-1) Q_{1}+Q_{2}, \quad P_{3}=Q_{m-1}+(n-1) Q_{m}, \quad P_{4}=n Q_{m} . \tag{2.14}
\end{equation*}
$$

Put $B_{j}=Q_{j}{ }^{(N)}(0) / N!(j=1,-, m)$. Then by (2.14)

$$
A_{1}=n B_{1}, \quad A_{2}=(n-1) B_{1}+B_{2}, \quad A_{3}=B_{m-1}+(n-1) B_{m}, \quad A_{4}=n B_{m} .
$$

Since $A_{1}<A_{2}=A_{3}<A_{4}$, we have $B_{1}<B_{2}, B_{m-1}<B_{m}, B_{\jmath} \leqq B_{j+1} 0=1, \cdots, m-1$), $(n-1)\left(B_{1}-B_{m}\right)+\left(B_{2}-B_{m-1}\right)=0$. Therefore we have $n=m=2$ as in 1). Thus $f=e^{Q_{1}}+e^{Q_{2}}$. This implies $e^{P_{2}}+e^{P_{3}}=2 e^{\left(Q_{1}+Q_{2}\right)}, P_{2}-P_{3}=$ const., which contradicts the assumption.

Subcase 2.2): $A_{2} \oplus \overline{A_{1} A_{4}}$. We may assume that $\operatorname{Re} A_{1}=\cdots=\operatorname{Re} A_{4}, \operatorname{Im} A_{1}>$ $\operatorname{Im} A_{4}>\operatorname{Im} A_{2}=\operatorname{Im} A_{3}$. If $P_{2}-\mathrm{ft} \neq$ const., then by Theorem 5 and Lemma 2.3 we have a contradiction. Thus $P_{2}-P_{3}=$ const.. Therefore this case is reduced to Subcase 2.1).

Case 3): $\#\left\{A_{j}\right\}_{j}=4$. By Theorem 1 it is verified that $f \in E_{N}$. As in Case 2), we see that A_{1}, \cdots, A_{4} lie on a straight line. We may assume that A_{1}, \cdots,
 are nonzero constants and Q_{j} 's are polynomials such that $Q_{j}(0)=0(j=1, \cdots, \mathrm{~m})$, $\operatorname{deg} Q_{0} \leqq N(j=2, \cdots, m), Q_{j}{ }^{(N)}(0) / N!\in\left[0, A_{4} / n\right](j=1,-, m)$ and $Q_{1}<_{2} Q_{2}<_{2} \cdot \cdot$ $<{ }_{2} Q_{m}$.
$\operatorname{Put}\left(c_{1} e^{Q_{1}}+\cdots+c_{m} e^{Q_{m}}\right)^{n}=\exp \left(\tilde{Q}_{1}\right)+\cdots+\exp \left(\tilde{Q}_{k}\right)$, where \tilde{Q}_{j} 's are polynomials satisfying $Q_{\mu}-\widetilde{Q}_{\nu} \neq$ const. $(\mu \neq \nu), Q_{1}<_{2} Q_{2}<_{2}<_{2} Q_{k}$. By Lemma 2.4 we have $\mathrm{fe}=4$ and $P_{j}=\hat{Q}{ }_{j}(j=1, \cdots, 4)$. Since $P_{1}=0$, we have $c_{1}{ }^{n} e^{n Q_{1}}=1$. Therefore we may assume $c_{1}=1, Q_{1}=0$. It is easily seen that ra^2 and

$$
\left(\tilde{Q}_{1}\right)^{*}=n Q_{1}, \quad\left(\tilde{Q}_{2}\right)^{*}=(n-1) Q_{1}+Q_{2}, \quad\left(\tilde{Q}_{3}\right)^{*}=Q_{m-1}+(n-1) Q_{m}, \quad\left(\tilde{Q}_{4}\right)^{*}=n Q_{m}
$$

Thus

$$
\begin{align*}
& 0=\left(P_{1}\right)^{*}=Q_{1}, \quad\left(P_{2}\right)^{*}=(n-1) Q_{1}+Q_{2}=Q_{2}, \tag{2.15}\\
& \left(P_{3}\right)^{*}=Q_{m-1}+(n-1) Q_{m}, \quad\left(P_{4}\right)^{*}=n Q_{m} .
\end{align*}
$$

Put $B_{\jmath}=Q_{j}{ }^{(N)}(0) / N!(\jmath=1,-, m)$. Then

$$
\begin{equation*}
0 \leqq B \jmath \leqq B_{j+1} \leqq A_{4} / n \quad(j=1, \cdots, m-1) \tag{2.16}
\end{equation*}
$$

Further by (2.15)

$$
\begin{equation*}
0=A_{1}=B_{1}, \quad A_{2}=B_{2}, \quad A_{3}=B_{m-1}+(n-1) B_{m}, \quad A_{4}=n B_{m} . \tag{2.17}
\end{equation*}
$$

Since $A_{1}<A_{2}<A_{3}<A_{4}$, we have $B_{1}<B_{2}, B_{m-1}<B_{m}$.
Assume $m \geqq 3$. Let p be the integer such that $B_{2}=B_{3}=\cdots=B_{\rho}<B_{\rho+1}$. Then

$$
\begin{aligned}
& \left\{\left(\mu_{1}, \cdots, \mu_{m}\right) ; \sum_{j=1}^{m} \mu_{j} B J \leqq B_{2}, \sum_{j=1}^{m} \mu_{j}=n, \mu_{j} \in N \cup\{0\}\right\} \\
& =\{(n, 0, \cdot \cdot, 0)\} \cup\{(n-1, \underbrace{0, \cdot, 0,1}_{V}, 0, \cdots, 0) ; \nu=0, \cdots, \rho-2\} .
\end{aligned}
$$

Therefore $\left(\widetilde{Q}_{j}\right)^{*}=Q_{\jmath}(j=1, \cdots, \rho)$ If $\rho \geqq 3$, then

$$
f^{n}=1+e^{P_{2}}+e^{P_{3}}+e^{P_{4}}=1+n\left(c_{2} e^{Q_{2}}+c_{3} e^{Q_{3}}+\cdots+c_{\rho} e^{Q_{\rho}}\right)+\cdots+c_{m}^{n} e^{n Q_{m}} .
$$

Therefore, by Lemma 2.4, $\left(P_{2}\right)^{*}=\left(Q_{2}\right)^{*}=Q_{2},\left(P_{3}\right)^{*}=\left(\widetilde{Q}_{3}\right)^{*}=Q_{3}$. Thus $A_{2}=B_{2}$, $A_{3}=B_{3}$. Hence $A_{2}=A_{3}$. This is a contradiction. Thus $B_{2}<B_{3}$. Similarly B_{m-2} $<B_{m-1}$. Therefore, if $m \geqq 3$, then

$$
\begin{equation*}
0=13_{1}<B_{2}<B_{3}, \quad B_{m-2}<B_{m-1}<B_{m} . \tag{2.18}
\end{equation*}
$$

LEMMA 2.5. There exist positive integers $\lambda_{j}(j=2, \cdots, m)$ such that

$$
\begin{equation*}
Q_{j}=\lambda_{j} Q_{2} \quad(j=2, \cdots, \mathrm{~m}) . \tag{2.19}
\end{equation*}
$$

Proof. By induction on \jmath. For each polynomial Q we set

$$
\mu(Q)=\left\{\left(\mu_{1}, \cdots, \mu_{m}\right\rangle ; Q=\sum_{j=1}^{m} \mu_{j} Q_{j}, n=\sum_{j=1}^{m} \mu_{j}, \mu_{j} \in N \cup\{0\}\right\} .
$$

Put

$$
\begin{gathered}
U=\left\{Q ; \sum_{\left(\mu_{1}, \mu_{m}\right) \in \mu(Q)}\left(n!/\left(\mu_{1}!\cdots \mu_{m}!\right)\right) c_{1}{ }^{\mu_{1}} \cdots c_{m}{ }^{\mu_{m}} \neq 0\right\}, \\
V_{\nu}=\left\{Q ; Q=\sum_{j=1}^{\nu} \mu_{j} Q_{J}, n=\sum_{j=1}^{\nu} \mu_{j}, \mu_{j} \in N \cup\{0\}\right\} \quad(v=2, \cdots, m) .
\end{gathered}
$$

Then by (2.15) $U=\left\{\left(P_{1}\right)^{*},-,\left(P_{4}\right)^{*}\right\}=\left\{0, Q_{2}, Q_{m-1}+(n-1) Q_{m}, n Q_{m}\right\}$. (2.19) holds trivially for $j=2$. Assume that (2.19) holds for $j=2, \cdots, \nu(\nu<m)$. Further assume $Q_{\nu+1} \notin V_{\nu}$. If $\left(\mu_{1}, \cdots, \mu_{m}\right) \in \mu\left(Q_{\nu+1}\right)$, then there exists an integer $\rho \geqq \nu+1$ such that $\mu_{\rho} \neq 0$. Since $Q_{\nu+1}=\sum_{\substack{j=1 \\ m}}^{m} \mu_{j} Q_{J}=\sum_{j=2}^{m} \mu_{j} Q_{\jmath}$, we have $Q_{\nu+1}-\mu_{\rho} Q_{\rho}=\sum_{j=2}^{\rho-1}+\sum_{j=\rho+1}^{m} \mu_{j} Q_{J}$. By Lemma 1.1 $0 \leqq_{j=2}^{\rho-1}\left(\sum_{j=\rho+1}^{+} \sum_{j} \mu_{j} Q_{j}\right),\left(Q_{\nu+1}-\mu_{\rho} Q_{\rho}\right) \leqq_{2} 0$. Therefore $\mu_{2}=-=\mu_{\rho-1}$ $=0, \mu_{\rho+1}=-=\mu_{m}=0, Q_{\nu+1}=\mu_{\rho} Q_{\rho}$. Hence $\mu_{\rho}=1, \rho=\nu+1$. Thus

$$
\mu\left(Q_{\nu+1}\right)=\{(n-1, \underbrace{0 \quad,}_{\nu-1} 1,0,-, 0)\} .
$$

Therefore $\# \mu\left(Q_{\nu+1}\right)=1$. Thus $Q_{\nu+1} \in U$. On the other hand, by (2.16) and (2.18), we have $B_{2}<B_{3} \leqq B_{\nu+1}, B_{\nu+1} \leqq B_{m}, 0<B_{m-1}$. (We assume $m \geqq 3$.) Therefore $0<B_{2}<B_{\nu+1}<\left(B_{m-1}+(n-1) B_{m}\right)<n B_{m}$. Hence $Q_{\nu+1} \notin U$. This is a contradiction. Thus $Q_{\nu+1} \in V_{\nu}$. By the induction assumption we have $V_{\nu} \subset\left\{\lambda Q_{2} ; \lambda \in N \cup\{0\}\right\}$. Hence there is a positive integer $\lambda_{\nu+1}$ such that

$$
\hat{Q}_{\nu+1}-\lambda_{\nu+1} Q_{2}
$$

Lemma 2.5 is thus proved.
By Lemma 2.5 there are polynomials \mathscr{P}, \mathcal{R} satisfying that

$$
f=\mathscr{P}\left(\exp \left(Q_{2}\right)\right), \quad f^{n}=\mathcal{R}\left(\exp \left(Q_{2}\right)\right) .
$$

By Lemma $2.5 B_{m}-B_{m-1}=\lambda\left(B_{2}-B_{1}\right)$ with $\lambda=\lambda_{m}-\lambda_{m-1}$. Similarly $B_{2}-B_{1}=$ $\lambda^{\prime}\left(B_{m}-B_{m-1}\right)$ with a positive integer λ^{\prime}. Thus $B_{2}-B_{1}=B_{m}-B_{m-1}$. Therefore from (2.17) we have $A_{4}-A_{3}=B_{m}-B_{m-1}=B_{2}-B_{1}=A_{2}-A_{1}$. This implies that, if $t>3$, then $\mathcal{R}^{(\nu)}(0)=0(\nu=2,-, t-2)$. Therefore $\mathcal{R}(w)=d_{4} w^{t}+d_{3} w^{t-1}+d_{2} w+1$, where $t \geqq 3$ and rf_{y} 's are nonzero constants.

LEMMA 2.6. Let \mathscr{P}, \mathscr{R} be polynomials and $n(\geqq 2)$ be an integer such that

$$
\begin{equation*}
\mathscr{P}^{n}=\mathcal{R}, \quad \mathscr{R}(w)=d_{4} w^{t}+d_{3} w^{t-1}+d_{2} w+1 \tag{2.20}
\end{equation*}
$$

where $t \geqq 3$ and $\mathrm{rf}^{\wedge} \wedge \mathrm{O}$ for elery ν. Then there are the following two possibilities:
(1) $n=3$ and $\mathscr{P}(w)=\rho(w-\sigma)$ with $p, \sigma \neq 0$.
(2) $n=2$ and $\mathscr{P}(w)=\rho^{\prime}\left(w^{2}+\sqrt{2} \sigma^{\prime} w-\sigma^{\prime 2}\right)$ with $\rho^{\prime}, \sigma^{\prime} \neq 0$.

Proof. Let a be a zero of \mathscr{P}. Then $\mathscr{R}(\alpha)=\mathcal{R}^{\prime}(\alpha)=0$, This yields

$$
(t-1) d_{4} d_{2} \alpha^{2}+\left((t-2) d_{3} d_{2}+t d_{4}\right) \alpha+(t-1) d_{3}=0 .
$$

Therefore \mathscr{P} has at most two distinct zeros α_{1}, α_{2}.
Case 1): $\alpha_{1}=\alpha_{2}$. Put $\sigma=\mathrm{tfj}-\alpha_{2}$. In this case $\mathscr{P}(w)^{n}=\boldsymbol{\tau}(w-\boldsymbol{\sigma})^{s n}-\mathcal{R}(w)$, where τ is a constant and $s=\operatorname{deg} \mathscr{P}$. From (2.20) we have $t-s n=3$. Thus $s=1, n=3$. Therefore we have the desired result.

Case 2): $\alpha_{1} \neq \alpha_{2}$. In this case

$$
\begin{equation*}
\mathscr{P}(w)^{n}=\tau^{\prime}\left(w-\alpha_{1}\right)^{n u}\left(w-\alpha_{2}\right)^{n v}=\mathcal{R}\left(u_{j}\right) \tag{2.21}
\end{equation*}
$$

where τ^{\prime} is a constant and u, v are positive integers. On the other hand, from (2.20), we have

$$
\begin{equation*}
\mathcal{R}^{\prime \prime}(w)=\zeta w^{t-3}(w-\eta) \tag{2.22}
\end{equation*}
$$

with $\zeta, \eta \neq 0$. Assume $n \geqq 4$, then raw- $2^{\wedge} 2$ and $n v-2 \geqq 2$. From (2.21), (2.22) we have a contradiction. Thus $n \leqq 3$. Similarly we have $u=1$ or $v=l$. Assume that $u=1, v \geqq 2$. Then, from (2.21) and (2.22), we obtain $n+n v=t, n v-2=t-3$. Thus $n=1$. This is a contradiction. Similarly $u-1$ whenever $v=1$. Thus $u=v=1$. If $n=3$ and $u=v=1$, then from (2.21) we have $t=6$. On the other hand (2.21) and (2.22) imply $t=4$. This is a contradiction. Thus $n=2, u=v=1$ and $t=4$. Therefore

$$
\mathscr{P}(w)=\rho^{\prime}\left(w^{2}-\left(\alpha_{1}+\alpha_{2}\right) w+\alpha_{1} \alpha_{2}\right),
$$

where p^{\prime} is a nonzero constant. Since $t=4$, from (2.20) and (2.21), the coefficcient of w^{2} of $\mathscr{P}\left(w^{2}\right)$ is equal to 0 . Thus $\left(\alpha_{1}+\alpha_{2}\right)^{2}+2 \alpha_{1} \alpha_{2}=0$. Hence

$$
\mathscr{P}(w)=\rho^{\prime}\left(w^{2}+\sqrt{2} \sigma^{\prime} w-\sigma^{\prime 2}\right),
$$

where σ^{\prime} is a nonzero constant. Lemma 2.6 is thus proved.
Lemma 2.5 and 2.6 complete the proof of Theorem 2.

3. Proof of Theorem 3.

Let $g=\left(g_{0}, g_{1}, g_{2}\right)$, where g 's are entire functions without common zeros. We may assume that $D_{0}=\left\{w_{0}=0\right\}, D_{1}=\left\{w_{1}=0\right\}$. Let $P\left(w_{0}, w_{1}, w_{2}\right)$ be a homogeneous polynomial of degree two such that $D_{2}=\left\{P\left(w_{0}, w_{1}, w_{2}\right)=0\right\}$. Then, by the assumption, for suitable polynomials q_{0}, q_{1}, q

$$
g_{0}=e^{q_{0}}, \quad g_{1}=e^{q_{1}}, \quad P\left(g_{0}, g_{1}, g_{2}\right)=e^{q} .
$$

Since $D_{0} \cap D_{1} \cap D_{2}=\varnothing$, there exist constants a_{0}, fli, $a_{2}\left(a_{2} \neq 0\right), b_{0}, b_{1}, b_{2}$ such that $P\left(w_{0}, w_{1}, w_{2}\right)=\left(a_{0} w_{0}+a_{1} w_{1}+a_{2} w_{2}\right)^{2}-\left(b_{0} w_{0}{ }^{2}+b_{1} w_{1}{ }^{2}+b_{2} w_{0} w_{1}\right)$. Since D_{2} is not a line, we have $\left(b_{0}, b_{1}, b_{2}\right) \neq(0,0,0)$. Put

$$
G=a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}
$$

Then
110 YOJI NOD A

$$
\begin{equation*}
G^{2}=b_{0} e^{2 q_{0}}+b_{1} e^{2 q_{1}}+b_{2} e^{\left(q_{0}+q_{1}\right)}+e^{q} . \tag{3.1}
\end{equation*}
$$

If $q_{0}-q_{1}=$ const., then $g_{0}=c g_{1}$ with a nonzero constant c. Thus, in what follows, we assume that $q_{0}-q_{1} \neq$ const.. Further we may assume, without loss of generality, that

$$
\operatorname{deg} \mathrm{tfo}^{\wedge} \operatorname{deg} q_{1}, \quad C\left(q_{0}\right) \neq C\left(q_{1}\right) .
$$

If $\mathrm{ft}_{\mathrm{B}}=\mathrm{ft}_{1=} \mathrm{o}, b_{2} \neq 0$, then from (3.1) $G^{2}=b_{2} e^{q_{0}+q_{1}}+e^{q}$. Thus by Lemma 2.3 we have $G^{2}=c e^{q_{0}+q_{1}}$ with a constant $c\left(\neq b_{2}\right)$. Thus

$$
\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)^{2}=c g_{0} g_{1}, \quad c \neq b_{2} .
$$

Similarly, if $b_{0}=b_{2}=0, b_{1} \neq 0$, then $G^{2}=b_{1} e^{2 q_{1}}+e^{q}$. Thus $G^{2}=c^{\prime} e^{2 q_{1}}, c^{\prime} \neq b_{1}$. Therefore

$$
a_{0} g_{0}+a_{1} g_{1}+a_{2} g 2=\sqrt{c^{\prime}} g_{1}, \quad c^{\prime} \neq b_{1} .
$$

If $\mathrm{ft}_{1==} \mathrm{ft}_{2=} \mathrm{o}, b_{0} \neq 0$, then $G^{2}=b_{0} e^{2 q_{0}}+e^{q}$. Thus $G^{2}=c^{\prime \prime} e^{2 q_{0}}, c^{\prime \prime} \neq b_{0}$. Therefore

$$
a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}=\sqrt{c^{\prime \prime}} g_{0}, \quad c^{\prime \prime} \neq b_{0} .
$$

Thus, in what follows, we assume that $\#\left\{j ; \mathrm{ft}_{\mathrm{y}}=0,-0,1,2\right\} \leqq 1$.
LEMMA 3.1. Let

$$
\varphi_{0}=b_{0} e^{2 q_{0}}, \quad \varphi_{1}=b_{1} e^{2 q_{1}}, \quad \varphi_{2}=b_{2} e^{q_{0}+q_{1}}, \quad \varphi_{3}=e^{q} .
$$

Assume that there exists a subset J of $\{0,1,2,3\}$ satistying $\# J \geqq 2$ and $\sum_{j \in J} \varphi_{j}=0$. Then there are the following three possibilities

$$
\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)^{2}=b_{2} g_{0} g_{1}, \quad b_{2} \neq 0,
$$

2)

$$
a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}=\sqrt{b_{0}} g_{0}, \quad b_{0} \neq 0,
$$

3)

$$
a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}=\sqrt{b_{1}} g_{1}, \quad b_{1} \neq 0
$$

Proof. We may assume that $\varphi_{\rho} \neq 0$ for all $\in J$. We shall consider the following three cases.

1) $\# J=2$. Put $J=\left\{j_{2}, j_{3}\right\}$. Then by Lemma $2.4 \varphi_{J_{2}} / \varphi_{J_{3}}=$ const.. If \jmath_{2}, \jmath_{3} $\in\{0,1,2\}$, then $q_{0}-q_{1}=$ const.. This is a contradiction. Thus we have $J \ni 3$. Let $j_{0},{ }_{1}$ be integers such that $\left\{j_{0}, j_{1}\right\}=\{0,1,2\}-/$. Then from (3.1) $\varphi \rho_{2}+\varphi_{J_{3}}$ $=0, G^{2}=\varphi_{j_{0}}+\varphi_{j_{1}}$. If $\varphi_{j_{0}} \neq 0$ and $\varphi_{\mathrm{r}_{1}} \neq 0$, then by Lemma $2.3 \varphi_{\mathrm{o}_{0}} / \varphi_{j_{1}}=$ const. Thus $q_{0}-q_{1}=$ const.. This is a contradiction. Thus $\varphi_{\jmath_{2}}=0$ or $\varphi_{J_{1}}=0$. Therefore one of the following three cases holds: $G^{2}=b_{0} g_{0}{ }^{2}\left(b_{0} \neq 0\right), G^{2}=b_{1} g_{1}{ }^{2}\left(b_{1} \neq 0\right)$, $G^{2}=b_{2} g_{0} g_{1}\left(b_{2} \neq 0\right)$. Thus we have the desired result.
2) $\# J=3$. Since $\#(\{0,1,2\} \cap J) \geqq 2$, by Lemma 2.4 we have $\varphi_{j} / \varphi_{k}=$ const. for some $j, k \in\{0,1,2\}$. Thus $q_{0}-q_{1}=$ const.. This is a contradiction.
3) $\# J=4$. We may assume, without loss of generality, that $\sum_{j \in J} \varphi_{\jmath} \neq 0$ for
any $J^{\prime} \varsubsetneqq J\left(J^{\prime} \neq \varnothing\right)$. Since $\#(\{0,1,2\} \cap J) \geqq 2$, by Lemma 2.4 we have a contradiction as above.

In what follows, we assume that

$$
\begin{equation*}
\sum_{J \in J} \varphi_{j} \neq 0 \quad \text { for any } J \subset\{0,1,2,3\} \text { satisfying } \# J \geqq 2 \text {. } \tag{3.2}
\end{equation*}
$$

By Lemma 2.3 and (3.2), we have $\operatorname{deg} q_{0}=\operatorname{deg} q_{1} \geqq \operatorname{deg} q$. Put

$$
\begin{gathered}
N=\operatorname{deg} q_{0}=\operatorname{deg} q_{1}, \\
A_{1}=2 q_{0}{ }^{(N)}(0) / N!, \quad A_{2}=2 q_{1}{ }^{(N)}(0) / N!, \\
A_{3}=\left(q_{0}+q_{1}\right)^{(N)}(0) / N!, \quad A_{4}=q^{(N)}(0) / N!.
\end{gathered}
$$

Then $A_{1} \neq A_{2}, A_{3}=\left(A_{1}+A_{2}\right) / 2$. Therefore $\#\left\{A_{j}\right\}_{j=1}^{4}=3$ or 4.
Case 1): $b_{0} b_{1} b_{2} \neq 0$. In this case, we shall consider the following two subcases.

Subcase 1.1): $\#\left\{A_{j}\right\}_{j=1}^{4}=3$. There are the following three possibilities.

1) $A_{4}=A_{1}$. In this case, by Theorem 2, $G^{2}=c e^{2 q_{0}}+b_{1} e^{2 q_{1}}+b_{2} e^{q_{0}+q_{1}}$ with a constant $c\left(\neq b_{0}\right)$. By (3.2) we have $c \neq 0$. Therefore, by Theorem 2, $G-$ $\sqrt{c} e^{q_{0}}+\sqrt{b_{1}} e^{q_{1}}$. Thus

$$
\left(a_{0}-\sqrt{c}\right) g_{0}+\left(a_{1}-\sqrt{b_{1}}\right) g_{1}+a_{2} g_{2}=0, \quad c \notin\left\{0, b_{0}\right\} .
$$

2) $A_{4}=A_{2}$. In this case we have $G^{2}=b_{0} e^{2 q_{0}}+c^{\prime} e^{2 q_{1}}+b_{2} e^{q_{0}+q_{1}}$ with a constant $c^{\prime} \notin\left\{0, b_{1}\right\}$. Therefore, by Theorem 2, $G=\sqrt{ } b_{0} e^{q_{0}}+\sqrt{c^{\prime}} e^{q_{1}}$. Thus

$$
\left(a_{0}-\sqrt{b_{0}}\right) g_{0}+\left(a_{1}-\sqrt{ } c^{\prime}\right) g_{1}+a_{2} g_{2}=0, \quad c^{\prime} \in\left\{0, b_{1}\right\} .
$$

3) $A_{4}=A_{3}$. In this case we have $G^{2}=b_{0} e^{2 q_{0}}+b_{1} e^{2 q_{1}}+c^{\prime \prime} e^{q_{0}+q_{1}}$ with a constant $c^{\prime \prime} \notin\left\{\mathrm{O}, b_{2}\right\}$. Therefore, by Theorem 2, $G=\sqrt{b_{0}} e^{q_{0}}+\sqrt{b_{1}} e^{q_{1}}$. Thus

$$
\left(a_{0}-\sqrt{b_{0}}\right) g_{0}+\left(a_{1}-\sqrt{b_{1}}\right) g_{1}+a_{2} g_{2}=0 .
$$

Subcase 1.2): $\#\left\{A_{j}\right\}_{j=1}^{4}=4$. In this case, by Theorem 2, $G=e^{P}\left(e^{2 Q}+\right.$ $\sqrt{2} \sigma e^{Q}-\sigma^{2}$) with polynomials P, Q and a nonzero constant σ. Thus, by Lemma 2.4 and (3.1), we have $\left\{A_{1}, \cdots, A_{4}\right\}=\{2 \alpha, 2 \alpha+\beta, 2 \alpha+3 \beta, 2 \alpha+4 \beta\}$, where $\alpha=$ $P^{(N)}(0) / N!, \beta=Q^{(N)}(0) / N!$. This contradicts $A_{1} \neq A_{2}, A_{3}=\left(A_{1}+A_{2}\right) / 2$ (see Figure 9).

Fig. 9.
Case 2): $b_{0}=0, b_{1} b_{2} \neq 0$. In this case

$$
\begin{equation*}
G^{2}=b_{1} e^{2 q_{1}}+b_{2} e^{\left(q_{0}+q_{1}\right)}+e^{q} . \tag{3.3}
\end{equation*}
$$

By Lemma 2.3 and (3.2), we have $A_{2} \neq A_{3} \neq A_{4}$. Therefore, by Theorem 2, we see that there are the following three possibilities.

1) $G=\sqrt{b_{1}} e^{q_{1}}+d e^{q / 2}(d \in\{ \pm 1\})$. We have $\left(G-\sqrt{b_{1}} e^{q_{1}}\right)^{2}=e^{q}$. Therefore by (3.3) $2 \sqrt{b_{1}} G-2 b_{1} e^{q_{1}}-b_{2} e^{q_{0}}=0$. Thus

$$
\left(2 \sqrt{b_{1}} a_{0}-b_{2}\right) g_{0}+2\left(\sqrt{b_{1}} a_{1}-b_{1}\right) g_{1}+2 \sqrt{b_{1}} a_{2} g_{2}=0
$$

2) $G=\sqrt{b_{2}} e^{\left(q_{0}+q_{1}\right) / 2}+d^{\prime} e^{q / 2}\left(d^{\prime} \in\{ \pm 1\}\right)$. Since $b_{1} e^{2 q_{1}}=2 d^{\prime} \sqrt{b_{2}} e^{\left(q_{0}+q_{1}+q\right) / 2}$, we have $e^{q}=\left(b_{1}{ }^{2} /\left(4 b_{2}\right)\right) e^{3_{1}-q_{0}}$. Therefore, from (3.3), $G^{2}=b_{1} e^{2 q_{1}}+b_{2} e^{\left(q_{0}+q_{1}\right)}+\left(b_{1}{ }^{2} /\left(4 b_{2}\right)\right)$ $\cdot e^{3 q_{1}-q_{0}}$. Thus $G^{2} e^{q_{0}}=\left(\left(b_{1}^{2} /\left(4 b_{2}\right)\right) e^{2 q_{1}}+b_{1} e^{\left(q_{0}+q_{1}\right)}+b_{2} e^{2 q_{0}}\right) e^{q_{1}}=\left(\left(b_{1} /\left(2 \sqrt{b_{2}}\right)\right) e^{q_{1}}+\sqrt{b_{2}} e^{q_{0}}\right)^{2}$ $e^{q_{1}}$. Therefore

$$
4 b_{2} g_{0}\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)^{2}=\left(2 b_{2} g_{0}+b_{1} g_{1}\right)^{2} g_{1}
$$

3) $G=\sqrt{b_{1}} e^{q_{1}}+\sqrt{b_{2}} e^{\left(q_{0}+q_{1}\right) / 2}$. We have $\left(G-\sqrt{ } b_{1} e^{q_{1}}\right)^{2}=b_{2} e^{q_{0}+q_{1}}$. Thus

$$
\left(a_{0} g_{0}+\left(a_{1}-\sqrt{\left.\overline{b_{1}}\right)} g_{1}+a_{2} g_{2}\right)^{2}=b_{2} g_{0} g_{1} .\right.
$$

Case 3): $b_{2}=0, b_{0} b_{1} \neq 0$. In this case

$$
G^{2}=b_{0} e^{2 q_{0}}+b_{1} e^{2 q_{1}}+e^{q} .
$$

There are the following three possibilities as above.

1) $G=\sqrt{b_{0}} e^{q_{0}}+\sqrt{b_{1}} e^{q_{1}}$. We have

$$
\left(a_{0}-\sqrt{b_{0}}\right) g_{0}+\left(a_{1}-\sqrt{\overline{b_{1}}}\right) g_{1}+a_{2} g_{2}=0 .
$$

2) $G=\sqrt{b_{0}} e^{q_{0}}+d e^{q / 2}(d \in\{ \pm 1\})$. We have $\left(G-\sqrt{b_{0}} e^{q_{0}}\right)^{2}=e^{q}=G^{2}-b_{0} e^{2 q_{0}}-$ $b_{1} e^{2 q_{1}}$. Thus $2 \sqrt{b_{0}} G e^{q_{0}}=2 b_{0} e^{2 q_{0}}+b_{1} e^{2 q_{1}}$. Therefore

$$
2 \sqrt{b_{0}} g_{0}\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)=2 b_{0} g_{0}{ }^{2}+b_{1} g_{1}{ }^{2}
$$

3) $G=\sqrt{b_{1}} e^{q_{1}}+d^{\prime} e^{q / 2}\left(d^{\prime} \in\{ \pm 1\}\right)$. We have

$$
2 \sqrt{b_{1}} g_{1}\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)=b_{0} g_{0}{ }^{2}+2 b_{1} g_{1}{ }^{2} .
$$

Case 4): $b_{1}=0, b_{0} b_{2} \neq 0$. In this case there are the following three possibilities as in Case 2).

1) $G=\sqrt{b_{0}} e^{q_{0}}+d e^{q / 2}(d \in\{ \pm 1\})$. We have

$$
2\left(\sqrt{b_{0}} a_{0}-b_{0}\right) g_{0}+\left(2 \sqrt{b_{0}} a_{1}-b_{2}\right) g_{1}+2 \sqrt{b_{0}} a_{2} g_{2}=0
$$

2) $G=\sqrt{b_{2}} e^{\left(q_{0}+q_{1}\right) / 2}+d^{\prime} e^{q / 2}\left(d^{\prime} \in\{ \pm 1\}\right)$. We have

$$
4 b_{2} g_{1}\left(a_{0} g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)^{2}=\left(b_{0} g_{0}+2 b_{2} g_{1}\right)^{2} g_{0}
$$

3) $G=\sqrt{b_{0}} e^{q_{0}}+\sqrt{b_{2}} e^{\left(q_{0}+q_{1}\right) / 2}$. We have

$$
\left(\left(a_{0}-\sqrt{b_{0}}\right) g_{0}+a_{1} g_{1}+a_{2} g_{2}\right)^{2}=b_{2} g_{0} g_{1}
$$

Theorem 3 is thus proved.

4. Proof of Theorem 4.

Let $g=\left(g_{0}, g_{1}, g_{2}, g_{3}\right)$, where g_{j} 's are entire functions without common zeros. Then, for suitable polynomials q_{0}, q_{1}, q_{2}, q,

$$
g_{0}=e^{q_{0}}, \quad g_{1}=e^{q_{1}}, \quad g_{2}=e^{q_{2}}, \quad g_{0}{ }^{n}+g_{1}{ }^{n}+g_{2}{ }^{n}+g_{3}{ }^{n}=e^{q} .
$$

Thus

$$
\begin{equation*}
g_{3}^{n}=e^{q}-e^{n q_{0}}-e^{n q_{1}}-e^{n q_{2}} \tag{4.1}
\end{equation*}
$$

Put

$$
q_{-1}=(q+i \pi) / n .
$$

Then

$$
\begin{equation*}
g_{3}{ }^{n}=-\sum_{j=-1}^{2} \exp \left(n q_{j}\right) \tag{4.2}
\end{equation*}
$$

LEMMA 4.1. Assume that there exists a subset $](\neq \varnothing)$ of $\{-1,0,1,2\}$ satisfying

$$
\sum_{j \in J} \exp \left(n q_{j}\right)=0
$$

Then g has the reduced representation $\left(h_{0}, h_{1}, h_{2}, h_{3}\right)$ such that $\left\{h_{j}\right\}_{j=0}^{3}=\left\{a_{0}\right.$, fli, $\left.a_{2}, e^{P}\right\}$ or $\left\{h_{j}\right\}_{j=0}^{3}=\left\{a_{0}, a_{1}, a_{2} e^{P}\right.$, fls $\left.{ }^{\wedge}\right\}$, where a_{j} 's are constants and P is a polynomial.

Proof. Since $\# J \geqq 2$, we shall consider the following three cases.

1) $\# J=2$. Put $J=\left\{j_{-1}, \jmath_{0}\right\}$. Let j_{1}, \jmath_{2} be integers such that $\left\{{ }_{1}, j_{2}\right\}=$ $\{-1,0,1,2\}-J$. Then from (4.2)

$$
\begin{gathered}
\exp \left(n q_{\jmath_{-1}}\right)+\exp \left(n q_{J_{0}}\right)=0, \\
g_{3}^{n}=-\exp \left(n q_{\rho_{1}}\right)-\exp \left(n q_{\jmath_{2}}\right) .
\end{gathered}
$$

Then by Lemma 2.3 and 2.4

$$
\left.\left(q_{j_{-1}}\right)^{*}=\left(q_{\jmath_{0}}\right)^{*}, \quad \text { te. } ._{1}\right)^{*}=\left(\wedge_{2}\right)^{*}, \quad g_{3}=c \exp \left(q_{\rho_{1}}\right),
$$

where $(p)^{*}(z)=p(z) p(0)$ for each polynomial p, and c is a constant. Since g is not a constant, $\left(q_{\rho_{-1}}\right) * \neq\left(q_{\rho_{1}}\right)$. Thus we have the desired result.
2) $\# /=3$. Put $J=\left\{\jmath_{-1}, \jmath_{0}, j_{1}\right\}$ Let \jmath_{2} be an integer such that $\left\{\jmath_{2}\right\}=$ $\{-1,0,1,2\}-J$. Then from (4.2)

$$
\exp \left(n q_{J_{-1}}\right)+\exp \left(n q_{j_{0}}\right)+\exp \left(n q_{\jmath_{1}}\right)=0, \quad g_{3}{ }^{n}=-\exp \left(n q_{\jmath_{2}}\right) .
$$

Thus by Lemma 2.4

$$
\left.\mathrm{toO}^{*}=(\mathrm{fco})^{*}=\mathrm{fol}>*>g_{3}=c \exp _{\mathrm{fo}_{2}}\right)
$$

with a constant c. Since g is not a constant, $\left(q_{\rho_{-1}}\right) * \neq\left(q_{\jmath_{2}}\right)$. Thus we have the desired result.
3) $\# J=4$. In this case we may assume, without loss of generality, that $\sum_{\jmath \in J^{\prime}} \exp \left(n q_{j}\right) \neq 0$ for any $J^{\prime} \subsetneq\{-1,0,1,2\} \quad\left(J^{\prime} \neq \varnothing\right)$. Then from (4.2)

$$
\exp \left(n q_{\jmath_{-1}}\right)+\cdots+\exp \left(n q_{j_{2}}\right)=0, \quad g_{3}{ }^{n}=0
$$

Thus by Lemma 2.4

$$
\left(q_{\jmath_{-1}}\right)^{*}=\cdots=\left(q_{j_{2}}\right)^{*}, \quad g_{3}=0 .
$$

Thus g is a constant. This is a contradiction. Lemma 4.1 is thus proved.
If $n \geqq 4$, then by Theorem $2 \sum_{j \in J} \exp \left(n q_{j}\right)=0$ for some $J \subset\{-1,0,1,2\}(J \neq 0)$. Therefore, in this case, Theorem 4 follows from Lemma 4.1. Thus, in what follows, we assume that $n \leqq 3$ and

$$
\begin{equation*}
\sum_{j \in J} \exp \left(n q_{j}\right) \neq 0 \quad \text { for any } J \subset\{-1,0,1,2\}, \quad J \neq \varnothing \tag{4.3}
\end{equation*}
$$

Since g is not a constant, $q_{j}-q_{k} \neq$ const. for some $j, k \in\{-1,0,1,2\}$ with $j \neq k$. We have the following two cases.

Case 1): $q_{j}-q_{k}=$ const. for some $j, k \in\{-1,0,1,2\}$ with $j \neq k$. In this case, by Theorem 2, we have $n=2$. We shall consider the following two subcases.

Subcase 1.1): $q_{-1}-\mathrm{ft}_{\mathrm{B}}=$ const. for some $j_{0} \in\{0,1,2\}$. Let ${ }_{1}, \jmath_{2}$ be integers such that $\left\{{ }_{1}, j_{2}\right\}=\{0,1,2\}-\left\{j_{0}\right\}$. From (4.1) we have

$$
g_{3}{ }^{2}=b \exp \left(2 q_{\jmath_{0}}\right)-\exp \left(2 q_{\jmath_{1}}\right)-\exp \left(2 q_{\jmath_{2}}\right)
$$

with a constant $b(\neq-1)$. By (4.3) we have $b \neq 0$. Then, by Theorem 2, there are the following three possibilities.

1) $g_{3}=\sqrt{b} \exp \left(q_{\rho_{0}}\right)+i d \exp \left(q_{j_{1}}\right)(d \in\{ \pm 1\})$. In this case we have $-\exp \left(2 q_{\sigma_{2}}\right)$ $=2 i d \sqrt{b} \exp \left(q_{r_{s}}+q_{r_{2}}\right)$. Thus

$$
\left\{\begin{array}{l}
\sqrt{b} g_{j_{0}}+i d g_{\rho_{1}}-g_{3}=0 \\
i g_{j_{2}}{ }^{2}-2 d \sqrt{b} g_{\rho_{0}} g_{\nu_{1}}=0,
\end{array} \quad b \notin\{0,-1\} .\right.
$$

2) $g_{3}=\sqrt{b} \exp \left(q_{j_{0}}\right)+i d^{\prime} \exp \left(q_{\gamma_{2}}\right)\left(d^{\prime} \in\{+1\}\right)$. In this case we have $-\exp \left(2 q_{\rho_{1}}\right)$ $=2 i d^{\prime} \sqrt{b} \exp \left(q_{\jmath_{0}}+q_{\jmath_{2}}\right)$. Thus

FUNCTIONAL EQUATION $f^{n}=e^{P_{1}}+\cdots+e^{P_{m}}$ AND RIGIDITY THEOREMS

$$
\left\{\begin{array}{l}
\sqrt{b} g \rho_{\rho_{0}}+\imath d^{\prime} g \rho_{\rho_{2}}-g_{3}=0 \\
i g_{\rho_{1}}{ }^{2}-2 d^{\prime} \sqrt{\bar{b}} g_{\rho_{0}} g_{\rho_{2}}=0,
\end{array} \quad b \notin\{0,-1\} .\right.
$$

3) $g_{3}=i d^{\prime \prime} \exp \left(q_{\rho_{1}}\right)+i d^{\prime \prime \prime} \exp \left(q\left(d^{\prime \prime}, d^{\prime \prime \prime} \in\{+1\}\right)\right.$. In this case we have $b \exp \left(2 q_{\rho_{0}}\right)=-2 d^{\prime \prime} d^{\prime \prime \prime} \exp \left(q_{\rho_{1}}+q_{\rho_{2}}\right)$. Thus

$$
\left\{\begin{array}{l}
i d^{\prime \prime} g_{\jmath_{1}}+2 d^{\prime \prime \prime} g_{\jmath_{2}}-g_{3}=0 \\
b g_{\jmath_{0}}{ }^{2}+2 d^{\prime \prime} d^{\prime \prime \prime} g_{\jmath_{1}} g_{\rho_{2}}=0,
\end{array} \quad \text { fteMO },-1\right\}
$$

Subcase 1.2): $q_{\rho_{0}}-q_{2}=$ const. for some $j_{0}, j_{1} \in\{0,1,2\}$ with $\jmath_{0} \neq j_{1}$. Let j_{2} be an integer such that $\left\{j_{2}\right\}=\{0,1,2\}-\left\{j_{0}, \jmath_{1}\right\}$ Then $-\exp \left(2 q_{j_{0}}\right)-\exp \left(2 q_{j_{1}}\right)=$ $c \exp \left(2 q_{\jmath_{1}}\right)$ with a constant $c(\neq-1)$. By (4.3) we have $c \neq 0$. Thus $g_{\rho_{0}}=$ $\mathrm{V}=1-c g_{\jmath_{1}}$. Further from (4.1)

$$
g_{3}{ }^{2}=c \exp \left(2 q_{\jmath_{1}}\right)-\exp \left(2 q_{\jmath_{2}}\right)+\exp (q) .
$$

Thus, by Case 3) in Section 3, there are the following three possibilities:

$$
\left\{\begin{array}{l}
-\sqrt{c} g_{\rho_{1}}-\sqrt{-1} g_{د_{2}}+g_{3}=0 \\
g_{j_{0}}-\sqrt{-1-c} g_{\rho_{1}}=0,
\end{array} \quad c \notin\{0,-1\}\right.
$$

2)

$$
\begin{aligned}
& \left\{2 \sqrt{c} g_{\rho_{1}} g_{3}-2 c g_{\rho_{1}}{ }^{2}+g_{\jmath}{ }^{2}=0\right. \\
& \prime g_{\rho_{0}}-\sqrt{-1-c} g_{\rho_{1}}=0,
\end{aligned} \quad c \notin\{0,-1\},
$$

3) $\left\{\begin{array}{l}2 \sqrt{-1} g_{\rho_{2}} g_{3}-c g \rho_{1}{ }^{2}+2 g \rho_{\rho_{2}}{ }^{2}=0 \\ g_{\jmath_{0}}-\sqrt{-1-c} g_{\rho_{1}}=0,\end{array} \quad c \notin\{0,-1\}\right.$.

Case 2): $q_{j}-q_{k} \neq$ const. for every $j, k \in\{-1,0,1,2\}$ with $j \neq k$. In this case, by Theorem 2, we have $n=2,3$.

Subcase 2.1): $n=2$. In this case we have

$$
g_{3}{ }^{2}=e^{q}-e^{2 q_{0}}-e^{2 q_{1}}-e^{2 q_{2}} .
$$

By Theorem 2

$$
g_{3}=e^{P}\left(e^{2 Q}+\sqrt{2} \sigma e^{Q}-\sigma^{2}\right),
$$

where P, Q are polynomials and σ is a nonzero constant. Thus by Lemma 2.4

$$
\left\{e^{q},-e^{2 q_{0}},-e^{2 q_{1}},-e^{2 q_{2}}\right\}=\left\{e^{2 P+4 Q}, 2 \sqrt{2} \sigma e^{2 P+3 Q},-2 \sqrt{2} \boldsymbol{\sigma}^{3} e^{2 P+Q}, \boldsymbol{\sigma}^{4} e^{2 P}\right\} .
$$

We may assume $e^{q}=e^{2 Q+4 P}$ or $e^{q}=2 \sqrt{2} \sigma e^{2 P+3 Q}$. Let (${ }^{\prime} 0, j_{1}, j_{2}$) be the permutation of $(0,1,2)$ which satisfies

$$
-\exp \left(2 q_{\jmath_{0}}\right)=\sigma^{4} e^{2 P}, \quad-\exp \left(2 q_{\mu_{1}}\right)=-2 \sqrt{2} \sigma^{3} e^{2 P+Q}
$$

We may assume $g_{\rho_{0}} \equiv i$. Then $\sigma^{4} e^{2 P} \equiv 1$. Put

$$
p=Q-\log \sigma .
$$

Then

$$
\begin{gathered}
g_{3}=d_{3}\left(e^{2 p}+\sqrt{2} e^{p}-1\right), \quad\left\{e^{q},-\exp \left(2 q_{J_{2}}\right)\right\}=\left\{e^{4 p}, 2 \sqrt{2} e^{3 p}\right\}, \\
-\exp \left(2 q_{j_{1}}\right)=-2 \sqrt{2} e^{p}
\end{gathered}
$$

where $d_{3} \in\{ \pm 1\}$. Now we have the following two cases.

1) $e^{q}=e^{4 p}$. In this case we have $-\exp \left(2 q_{\jmath_{2}}\right)=2 \sqrt{2} e^{3 p}$. Thus

$$
\begin{gathered}
g_{J_{0}}=i, \quad g_{J_{1}}=d_{1}(2 \sqrt{2})^{1 / 2} e^{p / 2} \\
g_{J_{2}}=i d_{2}(2 \sqrt{2})^{1 / 2} e^{3 p / 2}, \quad g_{3}=d_{3}\left(e^{2 p}+\sqrt{2} e^{p}-1\right)
\end{gathered}
$$

where $d_{1}, d_{2} \in\{ \pm 1\}$. Therefore

$$
\left\{\begin{array}{l}
2 \sqrt{2} g g_{0}{ }^{2}+\sqrt{2} g_{j_{1}}{ }^{2}+i 2 \sqrt{2} d_{3} g_{J_{0}} g_{3}-i d_{1} d_{2} g_{J_{1}} g_{J_{2}}=0 \\
g_{J_{1}}{ }^{3}-i \sqrt{2} d_{1} d_{2} g_{j_{0}}{ }^{2} g_{j_{2}}=0
\end{array}\right.
$$

2) $e^{q}=2 \sqrt{2} e^{3 p}$. In this case we have $-\exp \left(2 q_{\jmath_{2}}\right)=e^{4 p}$. Thus

$$
\begin{gathered}
g_{\rho_{0}}=i, \quad g_{\rho_{1}}=d_{1}(2 \sqrt{2})^{1 / 2} e^{p / 2}, \\
g_{j_{2}}=i d_{2} e^{2 p}, \quad g_{3}=d_{3}\left(e^{2 p}+\sqrt{2} e^{p}-1\right),
\end{gathered}
$$

where $d_{1}, d_{2} \in\{ \pm 1\}$. Therefore

$$
\left\{\begin{array}{l}
2 g_{\rho_{0}}{ }^{2}+g_{\rho_{1}}{ }^{2}-i d_{2} g_{\rho_{0}} g_{\jmath_{2}}+i 2 d_{3} g_{\rho_{0}} g_{3}=0 \\
g_{\rho_{1}}{ }^{4}-8 d_{2} g_{\rho_{0}}{ }^{3} g_{\rho_{2}}=0
\end{array}\right.
$$

Subcase 2.2): $n=3$. In this case we have

$$
g_{3}{ }^{3}=e^{q}-e^{3 q_{0}}-e^{3 q_{1}-} e^{3 q_{2}} .
$$

By Theorem 2

$$
g_{3}=e^{P}\left(1+e^{Q}\right)
$$

with polynomials P, Q. Thus by Lemma 2.4

$$
\left\{e^{q},-e^{3 q_{0}},-e^{3 q_{1}},-e^{3 q_{2}}\right\}=\left\{e^{3 P+3 Q}, 3 e^{3 P+2 Q}, 3 e^{3 P+Q}, e^{3 P}\right\}
$$

We may assume $e^{q}=e^{3 P+3 Q}$ or $e^{q}=3 e^{3 P+2 Q}$. Let $\left(\jmath_{0}, j_{1}, j_{2}\right)$ be the permutation of $(0,1,2)$ which satisfies

$$
-\exp \left(3 q_{j_{0}}\right)=e^{3 P}, \quad-\exp \left(3 q_{\rho_{1}}\right)=3 e^{3 P+Q}
$$

We may assume $g_{J_{0}} \equiv-1$. Then $e^{3 P} \equiv 1$ and

$$
g_{3}=\omega_{3}\left(1+e^{Q}\right), \quad\left\{e^{q},-\exp \left(3 q_{j_{2}}\right)\right\}=\left\{e^{3 Q}, 3 e^{2 Q}\right\}, \quad-\exp \left(3 q_{j_{1}}\right)=3 e^{Q}
$$

where $\omega_{3} \in\left\{1, e^{ \pm i 2 \pi / 3}\right\}$. We have the following two cases.

1) $e^{q}=e^{3 Q}$. In this case $-\exp \left(3 q_{\rho_{2}}\right)=3 e^{2 Q}$. Thus

$$
g_{J_{0}}=-1, \quad g_{J_{1}}=\sqrt[3]{3} \omega_{1} e^{Q / 3}, g_{J_{2}}=\sqrt[3]{3} \omega_{2} e^{2 Q / 3}, \quad g_{3}=\omega_{3}\left(1+e^{Q}\right),
$$

where $\omega_{1}, \omega_{2} \in\left\{-1, e^{ \pm 2 \pi / 3}\right\}$. Thus

$$
\left\{\begin{array}{l}
\sqrt[3]{9} \omega_{1} \omega_{2} g_{j_{0}}{ }^{2}+\sqrt[3]{9} \omega_{1} \omega_{2} \omega_{3}{ }^{2} g_{j_{0}} g_{3}+g_{J_{1}} g_{J_{2}}=0 \\
\omega_{1} \omega_{2} g_{\rho_{1}}{ }^{2}-\sqrt[3]{3} g_{\rho_{0}} g_{j_{2}}=0
\end{array}\right.
$$

2) $e^{q}=3 e^{2 Q}$. In this case $-\exp \left(3 q_{\rho_{2}}\right)=e^{3 Q}$. Thus

$$
g_{J_{0}}=-1, \quad g_{J_{1}}=\sqrt[3]{3} \omega_{1} e^{Q / 3}, \quad g_{J_{2}}=\omega_{2} e^{Q}, \quad g_{3}=\omega_{3}\left(1+e^{Q}\right),
$$

where $\omega_{1}, \omega_{2} \in\left\{-1, e^{ \pm 2 \pi / 3}\right\}$. Thus

$$
\left\{\begin{array}{l}
\omega_{2} g_{J_{0}}-g_{J_{2}}+\omega_{2} \omega_{3}{ }^{2} g_{3}=0 \\
\omega_{2} g_{\rho_{1}}{ }^{3}+3 g g_{0}{ }^{2} g_{J_{2}}=0 .
\end{array}\right.
$$

Theorem 4 is this proved.

Referfnces

[1] M. GREEN, On the functional equation $f^{2}=e^{2 \varphi_{1}}+e^{2 \varphi_{2}}+e^{2 \varphi_{3}}$ and a new Picard theorem, Trans. Amer. Math. Soc. 195 (1974), 223-230.
[2] W. K. Hayman, Meromorphic Functions. Clarendon Press, Oxford, 1964.
[3] R. Nevanlinna, Analytıc Functıons, Springer, 1970.
[4] J.F. Ritt, Algebraic combinations of exponentials, Trans. Amer. Math. Soc. 31 (1929), 654-679.

DEPARTMENT OF MATHEMATICS, TOKYO INSTITUTE OF TECHNOLOGY, OH-OKAYAMA, MEGURO-KU, TOKYO, 152, JAPAN

