CHARACTERISTIC CLASSES OF ORIENTED 6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

BY HIDEYA HASHIMOTO

§ 1. Introduction.

Let $\left(M^{6}, c\right)$ be an oriented 6-dimensional submanifold in the 8-dimensional Euclidean space R^{8} with the immersion c. In this paper, we shall identify R^{8} with the octonians (or Cayley algebra) O in the natural way. By making use of the algebraic properties of the octonians, we can define an almost complex structure on $\left(M^{6}, \iota\right)$. We may observe that this almost complex structure / is orthogonal with respect to the induced metric \langle,$\rangle . Hence M^{6}=\left(M^{6}, /,\langle\rangle,\right)$ is an almost Hermitian manifold ([B], [C], [G]). R. Bryant ([B]) established the structure equations of $\left(M^{6}, c\right)$ from the standpoint of (O, Spin (7)) geometry. These equations play an important role in this paper.
C. T. C. Wall [W] has proved the following

THEOREM A. Let M^{6} be a 6-dimensional closed, simply-connected spinor manifold with torsion free homology. Then we have
(1) There exists an immersion from M^{6} into \boldsymbol{R}^{8} if and only if $p_{1}\left(M^{6}\right)+X^{2}=0$ holdsfor some $X \in 2 H^{2}\left(M^{6} ; \boldsymbol{Z}\right)$, where $p_{1}\left(M^{6}\right)$ is the 1 -st Pontrjagin class of M^{6}, In particular,
(2) There exists an embedding from M^{6} into \boldsymbol{R}^{8} if and only if $p_{1}\left(M^{6}\right)=0$.

The purpose of this paper is to show some results related to the above Theorem A by making use of the properties of the induced almost Hermitian structure on $\left(M^{6}, c\right)$. Namely, we shall prove the following

THEOREM B. Let $M^{6}=\left(M^{6}, /,\langle\rangle,\right)$ be a 6-dimensional almost Hermitian submanifold immersed in the octonians O. Then, we have the following relations
(1) $c_{1}\left(T^{1,0}\right)=-c_{1}\left(\boldsymbol{\nu}^{1,0}\right)=-e(\nu)$,
(2) $c_{2}\left(T^{1,0}\right)=c_{1}\left(T^{1,0}\right)^{2}$,
(3) $p_{1}\left(T M^{6}\right)+c_{1}\left(T^{1,0}\right)^{2}=0$, where $p_{1}\left(T M^{6}\right)$ is the l-st Pontrjagin class of the tangent bundle $T M^{6}$ of M^{6}, $c_{i}\left(T^{1,0}\right) \imath$ s the 2 -th Chern class of the bundle $T^{1,0}=\left\{v \in T M^{6} \otimes \boldsymbol{C} \mid J v=\sqrt{-1} v\right\}, e(\boldsymbol{\nu})$ is the Euler class of the normal bundle $\boldsymbol{\nu}$ and $c_{1}\left(\boldsymbol{\nu}^{1,0}\right)$ is the l-st Chern class of the bundle $\boldsymbol{\nu}^{1,0}=\{v \in \boldsymbol{\nu} \otimes \boldsymbol{C} \mid J v=\sqrt{-1} v\}$, respectively.

Received June 12, 1992 , Revised September 3, 1992.

COROLLARY 1. Let $M^{6}=\left(M^{6}, J,\langle\rangle,\right)$ be a 6 -dimensional almost Hermitian submanifold immersed in the octonians O with flat normal connection. Then, we have

$$
c_{1}\left(T^{10}\right)=c_{1}\left(\boldsymbol{\nu}^{10}\right)=e(\boldsymbol{\nu})=0, \quad \text { and } \quad c_{2}\left(T^{1,0}\right)=p_{1}\left(T M^{6}\right)=0 .
$$

COROLLARY 2. Let $M^{6}=\left(M^{6}, J,\langle\rangle,\right)$ be a 6-dimensional almost Hermitian submanifold in the octonians O which is embedded as a closed subset in O. Then, we have

$$
c_{1}\left(T^{1,0}\right)=c_{1}\left(\boldsymbol{\nu}^{1,0}\right)=e(\nu)=0, \quad \text { and } \quad c_{2}\left(T^{10}\right)=p_{1}\left(T M^{6}\right)=0 .
$$

Remark 1. E. Calabi ([C]) proved that an oriented 6-dimensional hypersurface in purely imaginary octonians $\operatorname{Im} \boldsymbol{O} \cong \boldsymbol{R}^{7}$ is an almost Hermitian manifold and its 1 -st Chern class vanishes. Corollary 1 is a generalization of this result.

Remark 2. Corollary 2 improves slightly the necessary part of (2) of Theorem A in our situation.

Remark 3. If $\left(M^{6}, \iota\right)$ satisfies the assumption in Corollary 1 or 2, then it is a spin manifold (see [L-M, Remark 1.8, p. 82]).

In this paper, we adopt the same notational convention as in $[\mathrm{B}],[\mathrm{H} 2]$ and all the manifolds are assumed to be connected and of class C^{∞} unless otherwise stated. The author would like to express his hearty thanks to Professor Sekigawa for his valuable suggestions and to the refree for his valuable comments.

§ 2. Preliminaries.

We shall recall the following formulation of the Spinor group Spin (7) ([H-L]). Let $S^{6}=\{u \in \operatorname{Im} \boldsymbol{O} \mid\langle u, u\rangle=1\}$ where $\operatorname{Im} \boldsymbol{O}$ is the purely imaginary octonians. Then, for any $u \in S^{6}$, we have $u--\ddot{v}$ and $u^{2}=-u u=-\langle u, u\rangle=-1$. So, we may use $u \in S^{6}$ to define a map $J_{u}: \boldsymbol{O} \rightarrow \boldsymbol{O}$ such that $J_{u}(x)=x u$ for any $x \in \boldsymbol{O}$. Each J_{u} is an orthogonal complex structure on O. It is known that $\operatorname{Spin}(7)$ is isomorphic to the subgroup of $S O(8)$ generated by the set $\left\{J_{u} \mid u \in S^{6}\right\}$. Also Spin (7) is isomorphic to the group $\{g \in S O(8) \mid g(u v)=g(u) \chi(g)(u f$ for any $u, v \in \boldsymbol{O}\}$, where I is the map from $S O(8)$ to itself defined by $\chi(g)(v)=g\left(g^{-1}(1) v\right)$ for any $v \in \boldsymbol{O}$. Then we may observe that $\left.\chi\right|_{\operatorname{Spin}(7)}: \operatorname{Spin}(7) \rightarrow S O(7)$ is a double covering map and satisfies the following equivariance $g(u) \times g(v)=\chi(g)(u \times v)$ for any $g \in \operatorname{Spin}(7)$, where X is the vector cross product defined by $u \times v=$ $(\bar{v} u-\bar{u} v) / 2$. Now, we shall recall the structure equations of an oriented 6dimensional submanifold in $(\mathrm{O}, \operatorname{Spin}(7))$. It is known that the octonians O is considerd as the algebra $\boldsymbol{H} \oplus \boldsymbol{H}$ where H is the quaternions. We put a basis of $\boldsymbol{C} \otimes_{R} \boldsymbol{O}$ by; $N, E_{1}=i N, E_{2}=j N, E_{3}=k N, \bar{N}, \bar{E}_{1}=i \bar{N}, \quad \bar{E}_{2}=J \bar{N},{ }^{-} E_{3}=k N$ where $\varepsilon=(0,1) \in \boldsymbol{H} \oplus \boldsymbol{H}, \quad N=(1-\sqrt{-1} \varepsilon) / 2, \bar{N}=(1+\sqrt{-1} \varepsilon) / 2 \in \boldsymbol{C} \otimes_{R} O$ and $\quad\{l, i, j, k\}$ is the canonical basis of H. We call this basis the standard one of $\boldsymbol{C} \otimes_{\boldsymbol{R}} \boldsymbol{O}$ and a
basis (n, f, \bar{n}, \bar{f}) of $\boldsymbol{C} \bigotimes_{R} \boldsymbol{O}$ is said to be admissible, if (n, f, \bar{n}, \bar{f}) $=(N, E, \bar{N}, \bar{E}) g$ for some $g \in \operatorname{Spin}(7) \subset M_{8 \times 8}(\boldsymbol{C})$. We shall identify $\operatorname{Spin}(7)$ with the admissible basis. Here, we may note that the Grassmannian manifold $G_{2}(\boldsymbol{O})$ of the oriented 2-planes in 0 is isomorphic to the homogeneous space $\operatorname{Spin}(7) / U(3)$. So, we can set

$$
\mathscr{F}_{l}\left(M^{6}\right)=\left\{(p(n, f, n, /)) \mid-2 \sqrt{-1} n \wedge \bar{n}=T_{p}^{\perp} M^{6} \text { for any } p \in M^{6}\right\} .
$$

Then $x: \mathscr{F}_{l}\left(M^{6}\right) \rightarrow M^{6}$ is a principal $U(3)$-bundle over M^{6}. The induced almost complex structure is defined by:

$$
\begin{equation*}
\iota_{*}(J X)=\left(\iota_{*} X\right)(\eta \times \xi) \tag{2.1}
\end{equation*}
$$

for $X \in T_{p} M^{6}$, where ξ, η are an orthonormal pair of the normal space and $n-$ $l / 2(\xi-\sqrt{-1} \eta$) (for details, see [B], [H1]). By making use of the properties of Spin (7), we may observe that this almost complex structure is an invariant of Spin (7) in the following sence Let M^{6} be an oriented 6 -dimensional manifold and $\iota, \iota^{\prime}: M^{6} \ldots \boldsymbol{O}$ be isometric immersions. If there exists $g \in \operatorname{Spin}(7)$ such that $\iota^{\prime}=g \circ \iota$ (up to parallel displacement) then $J=J^{\prime}$ where J and J^{\prime} are the almost complex structures on M^{6} induced by the immersions c and c^{\prime}, respectively. Also, we can easily see that $T^{10}=\operatorname{span}_{c}\left\{f_{1}, f_{2}, f_{3}\right\}$ where $T^{1,0}$ is the subbundle of the complexified tangent bundle $T M^{6} \otimes \boldsymbol{C}$ whose fibre is $\sqrt{-1}$-eigenspace of the almost complex structure $/$. Then we have the following structure equations:

$$
\begin{array}{ll}
d \iota=f \omega+f \bar{\omega}, \\
d f=-n^{t} \overline{\mathfrak{h}}+f \kappa-\bar{n}^{t} \bar{\theta}+\bar{f}[\theta], & \text { (Gauss formula) } \\
d n=n(\sqrt{-1} \rho)+f \mathfrak{h}+\bar{f} \bar{\theta}, & \text { (Weingarten formula) } \\
d(\sqrt{-1} \rho)=t^{t} \overline{\mathfrak{h}} \wedge \mathfrak{h}+{ }^{t} \theta \wedge \bar{\theta}, & \text { (Ricci equation) } \\
\begin{cases}d \mathfrak{h} & =-\mathfrak{h} \wedge(\sqrt{-1} \rho)-\kappa \wedge \mathfrak{h}-[\bar{\theta}] \wedge \bar{\theta}, \\
d \theta & =-\kappa \wedge \theta+\theta \wedge\left(\sqrt{\prime}^{-}-1 \rho\right)-[\bar{\theta}] \bar{\wedge}, \\
d \kappa & \text { (Codazzi equation) } \\
d \boldsymbol{h} \wedge^{t} \mathfrak{h}-\kappa \wedge \kappa+\theta \wedge^{t} \bar{\theta}-[\bar{\theta}] \wedge[\theta] \text { (Gauss equation) }\end{cases}
\end{array}
$$

where $\rho: \boldsymbol{R}$-valued 1-form, $\mathfrak{h}, \boldsymbol{\theta}: M_{3 \times 1}(\boldsymbol{C})$-valued 1 -forms, and $\kappa: M_{3 \times 3}(\boldsymbol{C})$ valued 1 -form on $\mathscr{F}_{6}\left(M^{6}\right)$ which satisfy $\kappa+^{t} \bar{\kappa}=0$ and $t r \kappa+\sqrt{-1} \rho=0$. Here, [$\left.\theta\right]$ is defined by

$$
[\theta]=\left(\begin{array}{rrr}
0 & \theta^{3} & -\theta^{2} \\
-\theta^{3} & 0 & \theta^{1} \\
\theta^{2} & -\theta^{1} & 0
\end{array}\right)
$$

where $\theta={ }^{t}\left(\theta^{1}, \theta^{2}, \theta^{3}\right)$. By (2.2) and (2.3), the second fundamental form Π is
given by

$$
\begin{equation*}
I I=-2 \operatorname{Re}\left\{\left(\breve{(}_{\mathfrak{H}} \circ \omega+{ }^{t} \theta \circ \bar{\omega}\right) n\right\} . \tag{2.8}
\end{equation*}
$$

Applying the Cartan's lemma, we may conclude that there exists 3×3 matrices of functions A, B, C on $\mathscr{I}_{l}\left(M^{6}\right)$ (with complex values) satisfying

$$
\begin{align*}
& A={ }^{t} A, \quad C={ }^{t} C, \\
& \binom{\mathfrak{G}}{\theta}=\left(\begin{array}{cc}
\bar{B} & \bar{A} \\
t B & \bar{C}
\end{array}\right)\binom{\omega}{\bar{\omega}} . \tag{2.9}
\end{align*}
$$

Hence, we have the following canonical splittings:

$$
\begin{equation*}
\Pi^{20}=\left(-{ }^{t} \omega^{\circ} A \omega\right) n, \quad \Pi^{1,1}=\left(-{ }^{t} \bar{\omega}^{t} B \omega-{ }^{t} \omega \circ B \bar{\omega}\right) n, \quad I^{0,2}=\left(-{ }^{t} \bar{\omega} \cdot \bar{C} \bar{\omega}\right) n . \tag{2.10}
\end{equation*}
$$

§ 3. Proofs of Theorem B and Corollaries 1, 2.

First, we shall define the Hermitian connections on $T^{1,0}$ and $\nu^{1,0}$. Let X be a section of the bundle $T^{1,0}$. Then, we can write $X=f \alpha$, where a is $M_{3 \times 1}(\boldsymbol{C})$ Valued function on $\mathscr{F}_{l}\left(M^{6}\right)$. We define the operator on $T^{1,0}$ such that $\tilde{\nabla}(f \alpha)=$ $f(d \alpha+\kappa \alpha)$. Then we have

LEMMA 3.1. The operator if defined above is a connection on $T^{1,0}$ and satisfies the following conditions,
(1) $\overline{7}$ is complex, that is $\dot{\nabla} J=0$,
(2) 7 preserves the Hermitian metric, that is

$$
d\langle X, \bar{Y}\rangle=\langle\tilde{\nabla} X, \bar{Y}\rangle+\langle X, \tilde{\nabla} \bar{Y}\rangle,
$$

where X, Y are sections of $T^{1,0}$ and \bar{Y} is the conjugation of Y.
Proof. Let $f^{\prime}=\left(f_{1}^{\prime}, f_{2}^{\prime}, f_{3}^{\prime}\right)$ be another frame field on M^{6}, where f_{2}^{\prime} is a section of $T^{1,0}$, then there exists $U(3)$-valued function A on $\mathscr{F}_{\text {, }}\left(M^{6}\right)$ such that $f^{\prime}=j A$. By direct calculation, we have

$$
\kappa^{\prime}=A^{-1} d A+A^{-1} \kappa A .
$$

Hence, $\tilde{7}$ is well-defined. For any section X of $T^{1,0}$, we have

$$
\begin{aligned}
(\tilde{\nabla} J) X & =(\tilde{\nabla} J)(f \alpha)=\tilde{\nabla}(J(f \alpha))-J(\tilde{\nabla}(f \alpha)) \\
& =\sqrt{-1} \tilde{\nabla}(f \alpha)-J(f(d \alpha+\kappa \alpha))=\sqrt{-1}(f(d \alpha+\kappa \alpha))-J(f(d \alpha+\kappa \alpha))=0 .
\end{aligned}
$$

Hence, we have (1).

$$
\begin{aligned}
& \langle\tilde{\nabla} X, \bar{Y}\rangle+\langle X, \overline{\tilde{V} Y}\rangle \\
& =\langle f(d \alpha+\kappa \alpha), \bar{f} \bar{\beta}\rangle+\langle f \alpha, \bar{f}(d \bar{\beta}+\bar{\kappa} \bar{\beta})\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{厶}\left\{\left\{^{t}(d \alpha) \bar{\beta}+{ }^{t}(\kappa \alpha) \bar{\beta}\right\}+\frac{-}{\iota}\left\{^{t}(\alpha) d \bar{\beta}+{ }^{t}(\alpha) \bar{\kappa} \bar{\beta}\right\}\right. \\
& =\frac{1}{\Sigma}\left\{{ }^{t}(\lambda \alpha) \bar{\beta}+{ }^{t}(\alpha) d \bar{\beta}\right\}=d\langle X, \bar{Y}\rangle .
\end{aligned}
$$

Hence we have (2).
Similarly, let v be a section of $\nu^{1,0}$. Then we can write $v-n \zeta$ where ζ is the \boldsymbol{C}-valued function. We define the operator ∇^{\perp} as follows: $\nabla^{\perp} v=n(d \zeta+\zeta \sqrt{-} 1 \rho)$.

LEMMA 3.2. The operator ∇^{\perp} defined above is a connection on $\nu^{1,0}$ and satisfy the following conditions,
(1) ∇^{\perp} is complex, that is $7 \mathrm{~V}=0$,
(2) ∇^{\perp} preserves the Hermitian metric, that is

$$
d\langle u, \bar{v}\rangle=\left\langle\nabla^{\perp} u, \bar{v}\right\rangle+\left\langle u, \overline{\nabla^{\perp} v}\right\rangle
$$

where u, v are sections of $\nu^{1,0}$ and v is the conjugation of v.
Proof. Same as that of Lemma 3.1.
D
We are now in a position to prove Theorem B. By Lemma 3.1, we see that the 1 -st Chern class of $T^{1,0}$ is given by

$$
\begin{equation*}
c_{1}\left(T^{10}\right)=-(2 \pi \sqrt{-1})^{-1}[\operatorname{tr} \Omega] \in H_{D R}^{2}\left(M^{6}\right), \tag{3.1}
\end{equation*}
$$

where $\Omega=d \kappa+\kappa \wedge \kappa$ is the curvature form of $\tilde{\mathrm{V}}$. By (2.7), we get

$$
\begin{equation*}
\Omega=\mathfrak{h} \wedge \overline{\mathfrak{h}}+\theta \wedge^{\iota} \bar{\theta}-[\bar{\theta}] \wedge[\theta], \tag{3.2}
\end{equation*}
$$

By (2.5), (3.1) and (3.2), we get

$$
\begin{equation*}
c_{1}\left(T^{10}\right)=-\left[(2 \pi \sqrt{-1})^{-1}\left({ }^{t} \mathfrak{h} \wedge \overline{\mathfrak{h}}-{ }^{t} \theta \wedge \bar{\theta}\right)\right]=\left[(2 \pi \sqrt{-1})^{-1}(d \sqrt{-1} \rho)\right] . \tag{3.3}
\end{equation*}
$$

On the other hand, by Lemma 3.2 and (2.5), we have

$$
\begin{equation*}
c_{1}\left(\nu^{1,0}\right)=-\left[(2 \pi \sqrt{-1})^{-1}(d \sqrt{-1} \rho)\right] . \tag{3.4}
\end{equation*}
$$

Since the codimension is two, we see that

$$
\begin{equation*}
c_{1}\left(\nu^{10}\right)=e\left(\left(\nu^{10}\right)_{R}\right)=e(\nu) . \tag{3.5}
\end{equation*}
$$

By (3.3), (3.4) and (3.5), we have (1) of Theorem B. Next we shall prove (2) of Theorem B. Since the restriction $\left.T \boldsymbol{O}\right|_{\iota\left(M^{6}\right)}$ is the pull back of $T O$ to M^{6} under the immersion ι, by the functoriality of the total Pontrjagin class

$$
P\left(\left.T \boldsymbol{O}\right|_{\iota(M 6)}\right)=\iota^{*}(P(T \boldsymbol{O}))=1
$$

On the other hand, by (1), we get

$$
\begin{aligned}
\boldsymbol{P}\left(\boldsymbol{T} \boldsymbol{O} \mid \iota\left(\boldsymbol{M}_{6)}\right)=\right. & c\left(\left.T \boldsymbol{O}\right|_{\iota(\boldsymbol{M})} \otimes \boldsymbol{C}\right)=c\left(\left(\epsilon_{*}\left(T M^{6}\right) \oplus \nu\right) \otimes \boldsymbol{C}\right) \\
= & c\left(\left(\epsilon_{*}\left(T M^{6}\right) \otimes C\right) \oplus(\nu \otimes \boldsymbol{C})\right)=c\left(T^{1,0} \oplus T^{0,1} \oplus \nu^{1,0} \oplus \nu^{0,1}\right) \\
= & \left(1+c_{1}\left(T^{1,0}\right)+c_{2}\left(T^{1,0}\right)+c_{3}\left(T^{1,0}\right)\right)\left(1-c_{1}\left(T^{1,0}\right)\right. \\
& \left.+c_{2}\left(T^{1,0}\right)-c_{3}\left(T^{1,0}\right)\right)\left(1+c_{1}\left(\nu^{1,0}\right)\right)\left(1-c_{1}\left(\nu^{1,0}\right)\right) \\
= & 1+2 c_{2}\left(T^{10}\right)-2 c_{1}\left(T^{10}\right)^{2} .
\end{aligned}
$$

Hence we have (2). From (2), we have the equality (3).
D
We see that Corollary 1 follows from Theorem B. The following Proposition 3.3 will then complete the proof of Corollary 2.

PROPOSITION 3.3 ([M-S; p. 120]). Let M^{n} be an oriented, n-dimensional manifold which is embedded as a dosed subset in $(n+k)$-dimensional Euclidean space \boldsymbol{R}^{n+k}. Then we have $e(\nu)=0$ where $e(\nu)$ is the Euler class of the normal bundle ν.

§ 4. Applications.

In this section, we shall give some applications of the main Theorem B and Corollaries 1, 2, and some examples.

Let M^{6} be a 6 -dimensional compact irreducible Riemannian 3-symmeteric space, i. e., M^{6} is one the following spaces:
(1) $S U(3) / T^{2}$,
(2) $S U(4) / S(U(1) \times U(3))$,
(3) $S O(5) / U(1) \times S O$ (3),
(4) $S O(5) / U(2)$,
(5) $S p(2) / U(1) \times S p(1)$,
(6) $S p(2) / U(2)$,
(7) $S O(6) / U(3)$,
(8) $G_{2} / S U(3)=S^{6}$.

We note that the spaces (2), (4), (5) and (7) are diffeomorphic to $\boldsymbol{P}^{3}(\boldsymbol{C})$, and, (3) is diffeomorpic to $G_{2}\left(\boldsymbol{R}^{5}\right)$. T. Koda $[\mathrm{K}]$ has calculated the characteristic classes of compact irreducible Riemannian 3 -symmetric spaces. From his results and Corollary 2 , we have

THEOREM 4.1. Let M^{6} be a 6-dimensional compact irreducible Riemannian 3 -symmetric space. If M^{6} can be embedded in \boldsymbol{R}^{8}, then it is (1) or (8). In fact, $S U(3) / T^{2}$ can be embedded in $S^{7} \subset \boldsymbol{O}$ as a Cartan hypersurface.

Next, we shall calculate characteristic classes of three examples.
Example 1. Let $\iota: S^{2} \rightarrow \boldsymbol{R}^{3}$ be the totally umbilical embedding and $c \times$ id $: \mathrm{S}^{2}$ $\times \boldsymbol{R}^{4} \rightarrow \boldsymbol{R}^{3} \oplus \boldsymbol{R}^{4}=\operatorname{Im} \boldsymbol{O} \subset \boldsymbol{O}$ be the product embedding. By Corollary 1, its $1-\mathrm{st}$ Chern class and 1 -st Pontrjagin class vanish.

Example 2. (Example of non-zero 1-st Chern class with zero 1-st Pontrjagin class). Let $\iota: S^{2}(1 / 3) \rightarrow S^{4}(1)$ be the Veronese surface which is defined by;

$$
\left(\left(x, y, \alpha-1 \sqrt{x y}, \frac{x z}{\sqrt{3}}, \frac{y z}{\sqrt{3}}, \frac{x^{2}-y^{2}}{2 \sqrt{3}}-, \frac{x^{2}+y^{2}-2 z^{2}}{6}\right),\right.
$$

where $x^{2}+y^{2}+z^{2}=3$. We fix $p \in S^{4}(1) \backslash \iota\left(S^{2}(1 / 3)\right.$ and denote by π_{p} the stereographic projection ; $\pi_{p}: S^{4} \backslash\{p\} \rightarrow \boldsymbol{R}^{4}$. We shall consider the following product immersion

$$
\pi_{p} ८ \times i d: S^{2} \times \boldsymbol{R}^{4} \longrightarrow \boldsymbol{H} \oplus \boldsymbol{H}=\boldsymbol{O}
$$

Since $H_{D R}^{4}\left(S^{2} \times \boldsymbol{R}^{4}\right)=0$, the 1 -st Pontrjagin class of $T\left(S^{2} \times \boldsymbol{R}^{4}\right)$ vanishes. Next, we shall prove that the 1 -st Chern class does not vanish. We note that the induced almost complex structure satisfies the following:

$$
J\left(T_{\tilde{p}} S^{2}\right)=T_{\tilde{p}} S^{2}, \quad J\left(T_{q} \boldsymbol{R}^{4}\right)=T_{q} \boldsymbol{R}^{4},
$$

for any $(\tilde{p}, q) \in S^{2} \times \boldsymbol{R}^{4}$. Hence, we may compute the following

$$
\int_{\pi_{p^{\circ}<(S 2)}} c_{1}\left(T^{10}\right)=\int_{\pi_{p^{\circ}\left(\left(S^{2}\right)\right.}} \frac{1}{2 \pi}(d \rho)=-\frac{1}{2 \pi} \int_{\pi_{p^{\circ}<(S 2)}} K^{\perp} \sigma_{0}
$$

where K^{\perp}, σ_{0} are the normal curvature, volume element of $\pi_{p} \circ \iota\left(S^{2}\right)$, respectively. Since $K^{\perp} \sigma_{0}$ is a conformal invaiant, we see that $\pi_{p}^{*}\left(K^{\perp} \sigma_{0}\right)=(2 / 3) \sigma^{\prime}$, where $2 / 3$ is the normal curvature of the Veronese surface. Therefore, we get

$$
-\frac{-}{2 \pi} \int_{\pi p^{\circ}\left(\left(S^{2}\right)\right.} K^{\perp} \sigma_{0}=-\frac{1}{2 \pi} \int_{\iota\left(S^{2}\right)} \frac{\overline{3}}{} \sigma^{\prime}=-\frac{1}{6 \pi} \int_{S^{2}} \sigma=-\frac{1}{6 \pi} 4 \pi \times 3=-2,
$$

where σ^{\prime}, σ are the volume element of $P^{2}(\boldsymbol{R}), S^{2}(1 / 3)$, respectively. Hence, we have $c_{1}\left(T^{1}{ }^{\circ}\left(S^{2} \times \boldsymbol{R}^{4}\right)\right) \neq 0$.

Remark. $\pi_{p} \circ \ell$ is an immersion but not an embedding.
Example 3. Let $\tilde{i}=\iota \times \curlywedge \times \iota: S^{2} \times S^{2} \times S^{2} \rightarrow S^{8} \subset \boldsymbol{R}^{9}=\boldsymbol{R}^{3} \oplus \boldsymbol{R}^{3} \oplus \boldsymbol{R}^{3}$ be the product embedding where ι is the totally umbilical embedding. We fix $p \in S^{8} \backslash \iota\left(S^{2} \times S^{2} \times S^{2}\right)$ and let $\pi_{p}: S^{8} \backslash\{p\} \rightarrow \boldsymbol{R}^{8}$ be the stereographic projection. Then $\pi_{p} \circ \tilde{\iota}: S^{2} \times S^{2} \times S^{2}$ $\rightarrow \boldsymbol{R}^{8}$ is an embedding. So the 1 -st Chern class of $T^{1,0}\left(S^{2} \times S^{2} \times S^{2}\right)$ and the 1 -st Pontrjagin class of $T\left(S^{2} \times S^{2} \times S^{2}\right)$ vanish. On the other hand, if we identify S^{2} with the complex projective space $P^{1}(\boldsymbol{C})$, then we have $c_{1}\left(T^{10}\left(P^{1}(\boldsymbol{C}) \times P^{1}(\boldsymbol{C})\right.\right.$ $\left.\left.\times P^{1}(C)\right)\right) \neq 0$. Therefore, the induced almost complex structure is different from the product complex structure.

Lastly, we shall give some curvature condition that the immersion has a self intersection. We shall recall the following

PROPOSITION 4.2 ([B]). Let $M^{6}=\left(M^{6}, J,\langle\rangle,\right)$ be a 6-dimensional almost Hermitian submanifold immersed in the octonians O. Then, its almost Hermitian structure is semi-Kähler, that is, $d \Omega^{2}=0$ where $\Omega=(\sqrt{-1} / 2) \omega \wedge \bar{\omega}=(\sqrt{-1} / 2)$ $\sum_{i=1}^{3} \omega^{2} \wedge \bar{\omega}^{2}$ is the Kdhler form of M^{6}.

PROPOSITION 4..3. Let $M^{6}=\left(M^{6}, J,\langle\rangle,\right)$ be a compact 6 -dimensional almost Hermitian submanifoldimmersed in the octonians O. Then we have

$$
\bigcup_{\mathcal{M}^{6}} c_{1}\left(T^{1}\right) \wedge \Omega^{2}=-\frac{\tilde{2}}{\pi} \int_{\mathcal{M}^{6}}\left(\left|\Pi^{20}\right|^{2}-\left|\Pi^{0,2}\right|^{2}\right) \sigma
$$

where σ is the volume element of $M^{6},\left.\backslash \Pi^{2,0}\right|^{2}:=\operatorname{tr} A \bar{A}$ and $\left.\backslash \Pi^{\circ}\right|^{2}:=\operatorname{tr} C \bar{C}$.
Proof. By (2.5), (2.9), (2.10) and (3.3), we get

$$
\begin{aligned}
c_{1}\left(T^{1,0}\right) \wedge \Omega^{2} & =-\frac{1}{2 \pi} d \rho \wedge \Omega^{2} \\
& =\frac{\sqrt{-1}}{4 \pi}(\operatorname{tr} A \bar{A}-\operatorname{tr} C \bar{C}) \omega^{1} \wedge \bar{\omega}^{1} \wedge \omega^{2} \wedge \bar{\omega}^{2} \wedge \omega^{3} \wedge \bar{\omega}^{3}=-\frac{2}{\pi}(\operatorname{tr} \overline{A A}-\operatorname{tr} \overline{C C}) \omega
\end{aligned}
$$

From this, we get the desired results.
THEOREM 4.4. Let $M^{6}=\left(M^{6}, J,\langle\rangle,\right)$ be a compact 6-dimensional almost Hermitian submanifold immersed in the octonians O. If $\left.\right|_{J S^{6}} ^{1}\left|I^{2,0}\right|^{2} \sigma \neq\left.\right|_{J G^{6}}\left|I I^{0,2}\right|^{2} \sigma$, then the immersion has a self intersection.

Proof. If the immersion is an embedding, by Proposition 4.2 and Corollary 2, we see that $c_{1}\left(T^{1,0}\right) \wedge \Omega^{2}$ is closed. By Proposition 4.3 and Stokes' theorem, we get the desired result.

REFERENCES

[B] R.L. BRYANT, Submanifolds and special structures on the octonians, J. Diff. Geom., 17 (1982) 185-232.
[B-T] R. BOTT AND L. W. Tu, Differential forms in algebraic topology. Graduate text in Math. 82. Springer-Verlag, New York. 1986.
[C] E. CALABI, Construction and properties of some 6 -dimensional manifolds, Trans. Amer. Math. Soc., 87 (1958) 407-438.
[G] A. GRAY, Vector cross products on manifolds, Trans. Amer. Math. Soc., 141 (1969) 465-504.
[H-L] R. HARVEY AND H. B. LAWSON. Jr, Calibrated geometries, Acta Math., 148 (1982) 47-157.
[H1] H. HASHIMOTO, Some 6-dimensional oriented submanifold in the octonians, Math. Rep. Toyama Univ, 11 (1988) 1-19.
[H2] H. HASHIMOTO, Oriented 6-dimensional submanifolds in the octonian II. "Geometry of manifolds (edited by Shiohama)" Academic Press. (1989) 71-93.
[K] T. KODA, Characteristic classes of Homogeneous space (in Japanese), Master's Thesis (1988), Niigata University.
[L-M]B. LAWSON AND M. L. MICHELSOHN, Spin Geometry. Princeton University Press, Princeton, 1989.
[M-S] J. MILNOR AND J. D. STASHEFF, Characterstic classes, Ann. of Math. Studies 76, Princeton University Press, Princeton, 1974.
[W] C. T. C. WALL, Classification problems in differential topology, V. On certain 6manifolds, Invent. Math. 1 (1966) 355-374.

NIPPON INSTITUTE OF TECHNOLOGY
4-1, GAKUENDAI, MIYASHIRO,
Minami-Saitama gun,
Saitama, 345, JAPAN.

