H. HASHIMOTO KODAI MATH. J 16 (1993), 65-73

CHARACTERISTIC CLASSES OF ORIENTED 6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

BY HIDEYA HASHIMOTO

§1. Introduction.

Let $(M^{\mathfrak{e}}, c)$ be an oriented 6-dimensional submanifold in the 8-dimensional Euclidean space $R^{\mathfrak{s}}$ with the immersion c. In this paper, we shall identify $R^{\mathfrak{s}}$ with the octonians (or Cayley algebra) O in the natural way. By making use of the algebraic properties of the octonians, we can define an almost complex structure on $(M^{\mathfrak{e}}, c)$. We may observe that this almost complex structure / is orthogonal with respect to the induced metric \langle , \rangle . Hence $M^{\mathfrak{e}} = (M^{\mathfrak{e}}, /, \langle , \rangle)$ is an almost Hermitian manifold ([B], [C], [G]). R. Bryant ([B]) established the structure equations of $(M^{\mathfrak{e}}, c)$ from the standpoint of (O, Spin (7)) geometry. These equations play an important role in this paper.

C. T. C. Wall [W] has proved the following

THEOREM A. Let M^6 be a 6-dimensional closed, simply-connected spinor manifold with torsion free homology. Then we have

(1) There exists an immersion from M^6 into \mathbb{R}^8 if and only if $p_1(M^6) + X^2 = 0$ holds for some $X \in 2H^2(M^6; \mathbb{Z})$, where $p_1(M^6)$ is the 1-st Pontrjagin class of M^6 , In particular,

(2) There exists an embedding from M^6 into \mathbb{R}^8 if and only if $p_1(M^6)=0$.

The purpose of this paper is to show some results related to the above Theorem A by making use of the properties of the induced almost Hermitian structure on (M^6, c) . Namely, we shall prove the following

THEOREM B. Let $M^6 = (M^6, /, \langle , \rangle)$ be a 6-dimensional almost Hermitian submanifold immersed in the octonians O. Then, we have the following relations

(1) $c_1(T^{1,0}) = -c_1(\boldsymbol{\nu}^{1,0}) = -e(\boldsymbol{\nu}),$

- (2) $c_2(T^{1,0}) = c_1(T^{1,0})^2$,
- (3) $p_1(TM^6) + c_1(T^{1,0})^2 = 0$,

where $p_1(TM^6)$ is the l-st Pontrjagin class of the tangent bundle TM^6 of M^6 , $c_i(T^{1,0})$ is the i-th Chern class of the bundle $T^{1,0} = \{v \in TM^6 \otimes C \mid Jv = \sqrt{-1}v\}$, e(v) is the Euler class of the normal bundle v and $c_1(v^{1,0})$ is the l-st Chern class of the bundle $v^{1,0} = \{v \in v \otimes C \mid Jv = \sqrt{-1}v\}$, respectively.

Received June 12, 1992, Revised September 3, 1992.

HIDEYA HASHIMOTO

COROLLARY 1. Let $M^{\epsilon} = (M^{\epsilon}, J, \langle , \rangle)$ be a 6-dimensional almost Hermitian submanifold immersed in the octonians O with flat normal connection. Then, we have

$$c_1(T^{1\,0}) = c_1(\mathbf{v}^{1\,0}) = e(\mathbf{v}) = 0$$
, and $c_2(T^{1,0}) = p_1(TM^6) = 0$.

COROLLARY 2. Let $M^{e} = (M^{e}, J, \langle , \rangle)$ be a 6-dimensional almost Hermitian submanifold in the octonians O which is embedded as a closed subset in O. Then, we have

$$c_1(T^{1,0}) = c_1(\mathbf{v}^{1,0}) = e(\mathbf{v}) = 0$$
, and $c_2(T^{1,0}) = p_1(TM^6) = 0$.

Remark 1. E. Calabi ([C]) proved that an oriented 6-dimensional hypersurface in purely imaginary octonians $Im O \cong R^{\tau}$ is an almost Hermitian manifold and its 1-st Chern class vanishes. Corollary 1 is a generalization of this result.

Remark 2. Corollary 2 improves slightly the necessary part of (2) of Theorem A in our situation.

Remark 3. If $(M^{\mathfrak{s}}, \iota)$ satisfies the assumption in Corollary 1 or 2, then it is a spin manifold (see [L-M, Remark 1.8, p. 82]).

In this paper, we adopt the same notational convention as in [B], [H2] and all the manifolds are assumed to be connected and of class C^{∞} unless otherwise stated. The author would like to express his hearty thanks to Professor Seki-gawa for his valuable suggestions and to the refree for his valuable comments.

§2. Preliminaries.

We shall recall the following formulation of the Spinor group Spin (7) ([H-L]). Let $S^{e} = \{u \in Im \ O \mid \langle u, u \rangle = 1\}$ where $Im \ O$ is the purely imaginary octonians. Then, for any $u \in S^6$, we have $u - \vec{v}$ and $u^2 = -uu = -\langle u, u \rangle = -1$. So, we may use $u \in S^{6}$ to define a map $J_{u}: O \rightarrow O$ such that $J_{u}(x) = xu$ for any $x \in O$. Each J_u is an orthogonal complex structure on O. It is known that Spin(7) is isomorphic to the subgroup of SO(8) generated by the set $\{J_u | u \in S^{\mathfrak{s}}\}$. Also Spin (7) is isomorphic to the group $\{g \in SO(8) | g(uv) = g(u)\chi(g) | v \}$ for any $u, v \in O$, where I is the map from SO(8) to itself defined by $\chi(g)(v) = g(g^{-1}(1)v)$ for any $v \in \mathbf{0}$. Then we may observe that $\chi|_{\text{Spin}(7)}$: Spin(7) \rightarrow SO(7) is a double covering map and satisfies the following equivariance $g(u) \times g(v) = \chi(g)(u \times v)$ for any $g \in \text{Spin}(7)$, where X is the vector cross product defined by $u \times v =$ $(\bar{v}u - \bar{u}v)/2$. Now, we shall recall the structure equations of an oriented 6dimensional submanifold in (O, Spin (7)). It is known that the octonians O is considerd as the algebra $H \oplus H$ where H is the quaternions. We put a basis of $C \otimes_{\mathbb{R}} O$ by; N, $E_1 = iN$, $E_2 = jN$, $E_3 = kN$, \overline{N} , $\overline{E}_1 = i\overline{N}$, $\overline{E}_2 = J\overline{N}$, $\overline{E}_3 = kN$ where $\varepsilon = (0, 1) \in H \oplus H$, $N = (1 - \sqrt{-1}\varepsilon)/2$, $\overline{N} = (1 + \sqrt{-1}\varepsilon)/2 \in C \otimes_{\mathbf{R}} O$ and $\{l, i, j, k\}$ is the canonical basis of H. We call this basis the standard one of $C \bigotimes_{\mathbf{R}} O$ and a

66

basis (n, f, \bar{n}, \bar{f}) of $C \otimes_{\mathbb{R}} O$ is said to be *admissible*, if $(n, f, \bar{n}, \bar{f}) = (N, E, \bar{N}, \bar{E})g$ for some $g \in \text{Spin}(7) \subset M_{8 \times 8}(C)$. We shall identify Spin(7) with the admissible basis. Here, we may note that the Grassmannian manifold $G_2(O)$ of the oriented 2-planes in O is isomorphic to the homogeneous space Spin(7)/U(3). So, we can set

$$\mathcal{F}_{\iota}(M^{6}) = \{ (p(n, f, n, /)) \mid -2\sqrt{-1} n \wedge \overline{n} = T_{p}M^{6} \text{ for any } p \in M^{6} \}.$$

Then $x: \mathcal{F}_{\iota}(M^{6}) \rightarrow M^{6}$ is a principal U(3)-bundle over M^{6} . The induced almost complex structure is defined by:

(2.1)
$$\iota_*(JX) = (\iota_*X)(\eta \times \xi)$$

for $X \in T_p M^6$, where ξ , η are an orthonormal pair of the normal space and $n - \frac{l/2(\xi - \sqrt{-1}\eta)}{(for details, see [B], [H1])}$. By making use of the properties of Spin (7), we may observe that this almost complex structure is an invariant of Spin (7) in the following sence Let M^6 be an oriented 6-dimensional manifold and $\iota, \iota': M^6 \to O$ be isometric immersions. If there exists $g \in \text{Spin}(7)$ such that $\iota' = g \circ \iota$ (up to parallel displacement) then J = J' where J and J' are the almost complex structures on M^6 induced by the immersions c and ι' , respectively. Also, we can easily see that $T^{1 0} = \text{span}_c \{f_1, f_2, f_3\}$ where $T^{1.0}$ is the subbundle of the complexified tangent bundle $TM^6 \otimes C$ whose fibre is $\sqrt{-1}$ -eigenspace of the almost complex structure /. Then we have the following structure equations:

$$(2.2) d\iota = f \boldsymbol{\omega} + f \boldsymbol{\bar{\omega}},$$

(2.3)
$$df = -n^t \bar{\mathfrak{h}} + f\kappa - \bar{n}^t \bar{\theta} + \bar{f}[\theta], \qquad (\text{Gauss formula})$$

(2.4)
$$dn = n(\sqrt{-1}\rho) + f\mathfrak{h} + \bar{f}\mathfrak{h}$$
, (Weingarten formula)

(2.5)
$$d(\sqrt{-1}\rho) = {}^{t}\overline{\mathfrak{h}} \wedge \mathfrak{h} + {}^{t}\theta \wedge \overline{\theta}, \qquad (\text{Ricci equation})$$

(2.6)
$$\begin{cases} d\mathfrak{h} = -\mathfrak{h} \wedge (\sqrt{-1}\rho) - \kappa \wedge \mathfrak{h} - [\tilde{\theta}] \wedge \bar{\theta}, \\ d\theta = -\kappa \wedge \theta + \theta \wedge (\sqrt{-1}\rho) - [\theta] \wedge \bar{\mathfrak{h}}, \end{cases}$$
 (Codazzi equation)

(2.7)
$$d\kappa = \mathfrak{h} \bar{\wedge}^{t} \mathfrak{h} - \kappa \wedge \kappa + \theta \wedge^{t} \bar{\theta} - [\bar{\theta}] \wedge [\theta] \text{ (Gauss equation)}$$

where $\rho: \mathbf{R}$ -valued 1-form, $\mathfrak{h}, \theta: M_{\mathfrak{s}\times \mathfrak{l}}(\mathbf{C})$ -valued 1-forms, and $\kappa: M_{\mathfrak{s}\times \mathfrak{s}}(\mathbf{C})$ valued 1-form on $\mathcal{F}_{\mathfrak{c}}(M^{\mathfrak{s}})$ which satisfy $\kappa + {}^{t}\bar{\kappa} = 0$ and $tr\kappa + \sqrt{-1}\rho = 0$. Here, $[\theta]$ is defined by

$$\begin{bmatrix} \boldsymbol{\theta} \end{bmatrix} = \begin{pmatrix} 0 & \boldsymbol{\theta}^3 & -\boldsymbol{\theta}^2 \\ -\boldsymbol{\theta}^3 & 0 & \boldsymbol{\theta}^1 \\ \boldsymbol{\theta}^2 & -\boldsymbol{\theta}^1 & 0 \end{pmatrix}$$

where $\theta = t(\theta^1, \theta^2, \theta^3)$. By (2.2) and (2.3), the second fundamental form Π is

given by

(2.8)
$$II = -2Re\left\{ ({}^{t}\bar{\mathfrak{h}} \circ \omega + {}^{t}\theta \circ \bar{\omega})n \right\}$$

Applying the Cartan's lemma, we may conclude that there exists 3x3 matrices of functions A, B, C on $\mathcal{F}_{l}(M^{6})$ (with complex values) satisfying

(2.9)
$$A = {}^{t}A, \qquad C = {}^{t}C, \\ \begin{pmatrix} \mathfrak{h} \\ \theta \end{pmatrix} = \begin{pmatrix} \bar{B} & \bar{A} \\ {}^{t}B & \bar{C} \end{pmatrix} \begin{pmatrix} \boldsymbol{\omega} \\ \bar{\boldsymbol{\omega}} \end{pmatrix}.$$

Hence, we have the following canonical splittings:

$$(2.10) \quad \Pi^{2} = (-{}^{t}\omega \circ A\omega)n, \quad \Pi^{1,1} = (-{}^{t}\overline{\omega} \circ {}^{t}B\omega - {}^{t}\omega \circ B\overline{\omega})n, \quad \Pi^{0,2} = (-{}^{t}\overline{\omega} \circ \overline{C}\overline{\omega})n.$$

§3. Proofs of Theorem B and Corollaries 1, 2.

First, we shall define the Hermitian connections on $T^{1,0}$ and $\nu^{1,0}$. Let X be a section of the bundle $T^{1,0}$. Then, we can write $X = f \alpha$, where a is $M_{3\times 1}(C)$ -Valued function on $\mathcal{F}_{\iota}(M^6)$. We define the operator on $T^{1,0}$ such that $\tilde{\nabla}(f \alpha) = f(d\alpha + \kappa \alpha)$. Then we have

LEMMA 3.1. The operator tf defined above is a connection on $T^{1,0}$ and satisfies the following conditions,

- (1) $\tilde{7}$ is complex, that is $\tilde{\nabla}J=0$,
- (2) $\tilde{7}$ preserves the Hermitian metric, that is

$$d\langle X, \overline{Y} \rangle = \langle \tilde{\nabla} X, \overline{Y} \rangle + \langle X, \overline{\check{\nabla} Y} \rangle,$$

where X, Y are sections of $T^{1,0}$ and \overline{Y} is the conjugation of Y.

Proof. Let $f'=(f'_1, f'_2, f'_3)$ be another frame field on M^6 , where f'_i is a section of $T^{1,0}$, then there exists U(3)-valued function A on $\mathfrak{F}_i(M^6)$ such that f'=jA. By direct calculation, we have

$$\kappa' = A^{-1} dA + A^{-1} \kappa A.$$

Hence, $\tilde{7}$ is well-defined. For any section X of $T^{1,0}$, we have

$$(\tilde{\nabla}J)X = (\tilde{\nabla}J)(f\alpha) = \tilde{\nabla}(J(f\alpha)) - J(\tilde{\nabla}(f\alpha))$$

= $\sqrt{-1}\tilde{\nabla}(f\alpha) - J(f(d\alpha + \kappa\alpha)) = \sqrt{-1}(f(d\alpha + \kappa\alpha)) - J(f(d\alpha + \kappa\alpha)) = 0.$

Hence, we have (1).

$$\langle \tilde{\nabla} X, \, \overline{Y} \rangle + \langle X, \, \overline{\tilde{\nabla} Y} \rangle$$

= $\langle f(d\alpha + \kappa \alpha), \, \overline{f} \, \overline{\beta} \rangle + \langle f \alpha, \, \overline{f}(d \, \overline{\beta} + \overline{\kappa} \, \overline{\beta}) \rangle$

68

6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

$$= \frac{1}{2} \left\{ {}^{t}(d\alpha)\bar{\beta} + {}^{t}(\kappa\alpha)\bar{\beta} \right\} + \frac{1}{2} \left\{ {}^{t}(\alpha)d\bar{\beta} + {}^{t}(\alpha)\bar{\kappa}\bar{\beta} \right\} \\ = \frac{1}{2} \left\{ {}^{t}(l\alpha)\bar{\beta} + {}^{t}(\alpha)d\bar{\beta} \right\} = d\langle X, \bar{Y} \rangle \,.$$

Hence we have (2).

Similarly, let v be a section of $\nu^{1,0}$. Then we can write $v - n\zeta$ where ζ is the C-valued function. We define the operator ∇^{\perp} as follows: $\nabla^{\perp}v = n(d\zeta + \zeta\sqrt{-1}\rho)$.

LEMMA 3.2. The operator ∇^{\perp} defined above is a connection on $\nu^{1,0}$ and satisfy the following conditions,

- (1) ∇^{\perp} is complex, that is 7V=0,
- (2) ∇^{\perp} preserves the Hermitian metric, that is

 $d\langle u, \bar{v} \rangle = \langle \nabla^{\perp} u, \bar{v} \rangle + \langle u, \overline{\nabla^{\perp} v} \rangle$

where u, v are sections of $v^{1,0}$ and v is the conjugation of v.

Proof. Same as that of Lemma 3.1.

We are now in a position to prove Theorem B. By Lemma 3.1, we see that the 1-st Chern class of $T^{1,0}$ is given by

(3.1)
$$c_1(T^{1\,0}) = -(2\pi\sqrt{-1})^{-1}[tr\Omega] \in H^2_{DR}(M^6),$$

where $\Omega = d\kappa + \kappa \wedge \kappa$ is the curvature form of \tilde{V} . By (2.7), we get

(3.2) $\Omega = \mathfrak{h} \wedge \mathfrak{h} + \theta \wedge \mathfrak{h} - [\mathfrak{h}] \wedge [\mathfrak{h}],$

By (2.5), (3.1) and (3.2), we get

(3.3)
$$c_1(T^{1\,0}) = -[(2\pi\sqrt{-1})^{-1}({}^t\mathfrak{h}\wedge\bar{\mathfrak{h}}-{}^t\theta\wedge\bar{\theta})] = [(2\pi\sqrt{-1})^{-1}(d\sqrt{-1}\rho)].$$

On the other hand, by Lemma 3.2 and (2.5), we have

(3.4)
$$c_1(\nu^{1,0}) = -\left[(2\pi\sqrt{-1})^{-1}(d\sqrt{-1}\rho)\right].$$

Since the codimension is two, we see that

(3.5)
$$c_1(\nu^{1 \ 0}) = e((\nu^{1 \ 0})_R) = e(\nu).$$

By (3.3), (3.4) and (3.5), we have (1) of Theorem B. Next we shall prove (2) of Theorem B. Since the restriction $TO_{I_{c(M^6)}}$ is the pull back of TO to M^6 under the immersion ι , by the functoriality of the total Pontrjagin class

$$P(T\mathbf{O}|_{\iota(M^{6})}) = \iota^{*}(P(T\mathbf{O})) = 1.$$

On the other hand, by (1), we get

D

HIDEYA HASHIMOTO

$$P(T O \mid {}_{c(M^{6})}) = c(T O \mid {}_{c(M^{6})} \otimes C) = c((c_{*}(T M^{6}) \oplus \nu) \otimes C)$$

= $c((c_{*}(T M^{6}) \otimes C) \oplus (\nu \otimes C)) = c(T^{1,0} \oplus T^{0,1} \oplus \nu^{1,0} \oplus \nu^{0,1})$
= $(1 + c_{1}(T^{1,0}) + c_{2}(T^{1,0}) + c_{3}(T^{1,0}))(1 - c_{1}(T^{1,0}) + c_{2}(T^{1,0}) - c_{3}(T^{1,0}))(1 + c_{1}(\nu^{1,0}))(1 - c_{1}(\nu^{1,0})))$
= $1 + 2c_{2}(T^{1,0}) - 2c_{1}(T^{1,0})^{2}.$

Hence we have (2). From (2), we have the equality (3).

D

We see that Corollary 1 follows from Theorem B. The following Proposition 3.3 will then complete the proof of Corollary 2.

PROPOSITION 3.3 ([M-S; p. 120]). Let M^n be an oriented, n-dimensional manifold which is embedded as a dosed subset in (n+k)-dimensional Euclidean space \mathbb{R}^{n+k} . Then we have $e(\nu)=0$ where $e(\nu)$ is the Euler class of the normal bundle ν .

§4. Applications.

In this section, we shall give some applications of the main Theorem B and Corollaries 1, 2, and some examples.

Let M^6 be a 6-dimensional compact irreducible Riemannian 3-symmeteric space, i.e., M^6 is one the following spaces:

- (1) $SU(3)/T^2$, (2) $SU(4)/S(U(1)\times U(3))$,
- (3) $SO(5)/U(1) \times SO(3)$, (4) SO(5)/U(2),

(5) $Sp(2)/U(1) \times Sp(1)$, (6) Sp(2)/U(2),

(7) SO(6)/U(3), (8) $G_2/SU(3)=S^6$.

We note that the spaces (2), (4), (5) and (7) are diffeomorphic to $P^3(C)$, and, (3) is diffeomorpic to $G_2(\mathbb{R}^5)$. T. Koda [K] has calculated the characteristic classes of compact irreducible Riemannian 3-symmetric spaces. From his results and Corollary 2, we have

THEOREM 4.1. Let M^6 be a 6-dimensional compact irreducible Riemannian 3-symmetric space. If M^6 can be embedded in \mathbb{R}^8 , then it is (1) or (8). In fact, $SU(3)/T^2$ can be embedded in $S^7 \subset \mathbf{0}$ as a Cartan hypersurface.

Next, we shall calculate characteristic classes of three examples.

Example 1. Let $\iota: S^2 \to \mathbb{R}^3$ be the totally umbilical embedding and $\iota \times id: S^2 \times \mathbb{R}^4 \to \mathbb{R}^3 \oplus \mathbb{R}^4 = Im \ O \subset O$ be the product embedding. By Corollary 1, its 1-st Chern class and 1-st Pontrjagin class vanish.

Example 2. (Example of non-zero 1-st Chern class with zero 1-st Pontrjagin class). Let $c: S^2(1/3) \rightarrow S^4(1)$ be the Veronese surface which is defined by;

$$\iota(x, y, z) = \frac{(xy)}{\sqrt{3}}, \frac{xz}{\sqrt{3}}, \frac{yz}{\sqrt{3}}, \frac{x^2 - y^2}{2\sqrt{3}}, \frac{x^2 + y^2 - 2z^2}{6})$$

where $x^2+y^2+z^2=3$. We fix $p \in S^4(1) \setminus (S^2(1/3))$ and denote by π_p the stereographic projection; $\pi_p: S^4 \setminus \{p\} \to \mathbb{R}^4$. We shall consider the following product immersion

$$\pi_p \ \iota \times id : S^2 \times \mathbb{R}^4 \longrightarrow H \oplus H = O$$
.

Since $H_{DR}^4(S^2 \times \mathbb{R}^4) = 0$, the 1-st Pontrjagin class of $T(S^2 \times \mathbb{R}^4)$ vanishes. Next, we shall prove that the 1-st Chern class does not vanish. We note that the induced almost complex structure satisfies the following:

$$J(T_{\tilde{p}}S^2) = T_{\tilde{p}}S^2, \qquad J(T_q R^4) = T_q R^4,$$

for any $(\tilde{p}, q) \in S^2 \times \mathbb{R}^4$. Hence, we may compute the following

$$\int_{\pi_{p^{\circ\ell}}(S^2)} c_1(T^{1-0}) = \int_{\pi_{p^{\circ\ell}}(S^2)} \frac{1}{2\pi} (d\rho) = -\frac{1}{2\pi} \int_{\pi_{p^{\circ\ell}}(S^2)} K^{\perp} \sigma_0$$

where K^{\perp} , σ_0 are the normal curvature, volume element of $\pi_p \circ \iota(S^2)$, respectively. Since $K^{\perp}\sigma_0$ is a conformal invaluant, we see that $\pi_p^*(K^{\perp}\sigma_0) = (2/3)\sigma'$, where 2/3 is the normal curvature of the Veronese surface. Therefore, we get

$$-\frac{1}{2\pi} \int_{\pi_{p^{\circ\ell}}(S^2)} K^{\perp} \sigma_0 = -\frac{1}{2\pi} \int_{\iota(S^2)} \frac{1}{3} \sigma' = -\frac{1}{6\pi} \int_{S^2} \sigma = -\frac{1}{6\pi} 4\pi \times 3 = -2,$$

where σ' , σ are the volume element of $P^2(\mathbf{R})$, $S^2(1/3)$, respectively. Hence, we have $c_1(T^1 \circ (S^2 \times \mathbf{R}^4)) \neq 0$.

Remark. $\pi_p \circ \iota$ is an immersion but not an embedding.

Example 3. Let $i=t \times t \times t: S^2 \times S^2 \times S^2 \to S^8 \subset \mathbb{R}^9 = \mathbb{R}^9 \oplus \mathbb{R}^8 \oplus \mathbb{R}^8$ be the product embedding where t is the totally umbilical embedding. We fix $p \in S^8 \setminus t(S^2 \times S^2 \times S^2)$ and let $\pi_p: S^8 \setminus \{p\} \to \mathbb{R}^8$ be the stereographic projection. Then $\pi_p \circ i: S^2 \times S^2 \times S^2$ $\to \mathbb{R}^8$ is an embedding. So the 1-st Chern class of $T^{1,0}(S^2 \times S^2 \times S^2)$ and the 1-st Pontrjagin class of $T(S^2 \times S^2 \times S^2)$ vanish. On the other hand, if we identify S^2 with the complex projective space $P^1(C)$, then we have $c_1(T^{1,0}(P^1(C) \times P^1(C) \times P^1(C))) \neq 0$. Therefore, the induced almost complex structure is different from the product complex structure.

Lastly, we shall give some curvature condition that the immersion has a self intersection. We shall recall the following

PROPOSITION 4.2 ([B]). Let $M^{e}=(M^{e}, J, \langle , \rangle)$ be a 6-dimensional almost Hermitian submanifold immersed in the octonians O. Then, its almost Hermitian structure is semi-Kähler, that is, $d\Omega^{2}=0$ where $\Omega=(\sqrt{-1}/2)\omega \wedge \overline{\omega}=(\sqrt{-1}/2)$ $\sum_{i=1}^{3} \omega^{i} \wedge \overline{\omega}^{i}$ is the Kdhler form of M^{e} .

HIDEYA HASHIMOTO

PROPOSITION 4..3. Let $M^6 = (M^6, J, \langle , \rangle)$ be a compact 6-dimensional almost Hermitian submanifold immersed in the octonians O. Then we have

$$\int_{\mathcal{M}^{6}} c_{1}(T^{1 0}) \wedge \mathcal{Q}^{2} = - \frac{2}{\pi} \int_{\mathcal{M}^{6}} (|\Pi^{2 0}|^{2} - |\Pi^{0,2}|^{2}) dt$$

where σ is the volume element of M^6 , $|\Pi^{2,0}|^2 := tr A \overline{A} and |\Pi^{\circ 2}|^2 := tr C \overline{C}$.

Proof. By (2.5), (2.9), (2.10) and (3.3), we get

$$c_{1}(T^{1,0}) \wedge \mathcal{Q}^{2} = -\frac{1}{2\pi} d\rho \wedge \mathcal{Q}^{2}$$
$$= \frac{\sqrt{-1}}{4\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{1} \wedge \overline{\boldsymbol{\omega}}^{1} \wedge \boldsymbol{\omega}^{2} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} = -\frac{2}{\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{1} \wedge \overline{\boldsymbol{\omega}}^{1} \wedge \boldsymbol{\omega}^{2} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} = -\frac{2}{\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{1} \wedge \overline{\boldsymbol{\omega}}^{1} \wedge \boldsymbol{\omega}^{2} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} = -\frac{2}{\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{1} \wedge \overline{\boldsymbol{\omega}}^{1} \wedge \boldsymbol{\omega}^{2} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} = -\frac{2}{\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{1} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} = -\frac{2}{\pi} (tr A \overline{A} - tr C \overline{C}) \boldsymbol{\omega}^{3} \wedge \overline{\boldsymbol{\omega}}^{3} \wedge \overline{\boldsymbol{\omega}}^{3}$$

D

From this, we get the desired results.

THEOREM 4.4. Let $M^6 = (M^6, J, \langle , \rangle)$ be a compact 6-dimensional almost Hermitian submanifold immersed in the octonians O. If $\int_{\mathcal{M}}^{\infty} |\Pi^{2,0}|^2 \sigma \neq \int_{\mathcal{M}}^{\infty} |\Pi^{0,2}|^2 \sigma$, then the immersion has a self intersection.

Proof. If the immersion is an embedding, by Proposition 4.2 and Corollary 2, we see that $c_1(T^{1,0}) \wedge \Omega^2$ is closed. By Proposition 4.3 and Stokes' theorem, we get the desired result.

REFERENCES

- [B] R.L. BRYANT, Submanifolds and special structures on the octonians, J. Diff. Geom., 17 (1982) 185-232.
- [B-T] R. BOTT AND L. W. Tu, Differential forms in algebraic topology. Graduate text in Math. 82. Springer-Verlag, New York. 1986.
- [C] E. CALABI, Construction and properties of some 6-dimensional manifolds, Trans. Amer. Math. Soc., 87 (1958) 407-438.
- [G] A. GRAY, Vector cross products on manifolds, Trans. Amer. Math. Soc., 141 (1969) 465-504.
- [H-L] R. HARVEY AND H.B. LAWSON. Jr, Calibrated geometries, Acta Math., 148 (1982) 47-157.
- [H1] H. HASHIMOTO, Some 6-dimensional oriented submanifold in the octonians, Math. Rep. Toyama Univ, 11 (1988) 1-19.
- [H2] H. HASHIMOTO, Oriented 6-dimensional submanifolds in the octonian II. "Geometry of manifolds (edited by Shiohama)" Academic Press. (1989) 71-93.
- [K] T. KODA, Characteristic classes of Homogeneous space (in Japanese), Master's Thesis (1988), Niigata University.
- [L-M]B. LAWSON AND M. L. MICHELSOHN, Spin Geometry. Princeton University Press, Princeton, 1989.
- [M-S] J. MILNOR AND J. D. STASHEFF, Characterstic classes, Ann. of Math. Studies 76, Princeton University Press, Princeton, 1974.

6-DIMENSIONAL SUBMANIFOLDS IN THE OCTONIANS

[W] C. T. C. WALL, Classification problems in differential topology, V. On certain 6manifolds, Invent. Math. 1 (1966) 355-374.

> NIPPON INSTITUTE OF TECHNOLOGY 4-1, GAKUENDAI, MIYASHIRO, Minami-Saitama gun, Saitama, 345, JAPAN.