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UNIQUENESS OF FACTORIZATION OF

CERTAIN ENTIRE FUNCTIONS

BY KAZUNARI SAWADA

Introduction. For a meremorphic function F(z) in the plane (|
the representation :

F(z)=f g(z)=f(g(z»

is called a factorization of F(z), where / and g are meromorphic functions (g
is entire, if / is transcendental). And then / is called left-factor and g is
called right-factor of F. F is called to be prime, if, for every factorization, we
can always deduce that either / or g is linear. We state that two factoriza-
tions :

= gι°gz° '" °gm

are equivalent, if n— m and there exist linear functions T 3 (!<;/<:n — 1) such that

and

An entire function F is called uniquely factorizable, if all the factorizations into
non-linear prime entire functions are equivalent to each other.

Urabe [8] proved the following

THEOREM A. F(z)~(z+h(e*))*(z+Q(ez)) is uniquely facΐorizable, where his
a non-constant entire function, h(ez) is of finite order and Q is a non-constant
polynomial.

We have many functions which are uniquely factorizable as its corollaries.
Still there are several functions whose unique factorizablity cannot be proved
by Theorem A. For example,
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and so on.
In this paper we shall prove the following

THEOREM. Let Rj(w) (/=1, 2) be non-constant rational functions having at
most two poles at w=0 and w — oo. Then

is uniquely factorizable.

As an easy application of this theorem we have immediately that above
functions are uniquely factorizable.

§ 1. Some lemmas. We shall use the following symbols :

MF(r)=M(r, F)=Max|F(*)|
l « l = r

loglogM^r)
p(F)=hmsup t — — —r r-.βo ^ logr

for an entire function F. And we shall use Nevanlinna's notations such as
T(r, F),m(r, F) and N(r, a, F).

LEMMA 1 (Urabe [8]). Let J(b)={F(z)=cz+ H(z)\ H(z) is an entire periodic
function with period b (=£0) and c is a non-zero constant}. And let F<^J(b) and
F(z)—f(g(z)) with non-linear entire functions f and g, then /<Ξ/(b') for some
b'Φΰ and g^J(b). Further b'= Cz>b, if g(z)^c2-z+H2(z).

LEMMA 2 (Urabe [8]). Let

where Hίf H2 (^constant) are periodic entire functions with period 2πi and
< + oo and Hz is of exponential type. And let F(z)—f(g(z)) with non-linear entire
functions f and g. Then g is of exponential type.

We recall that g is of exponential type, if p(g)^l and

.. \ogMg(r) . ,
l imsup — g < + oo.

r-»+oo γ

LEMMA 3 (Urabe [8]). Let H(z) (^constant} be a periodic entire function
with period 2πi and of exponential type. Then there exist a rational function
R(w) with at most two poles at w—Q and w — oo such that H(z)=R(e*}.

LEMMA 4 (Ogawa [4]). Let h(w] be single-valued and regular inQ<\w\<oo.
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// h(ez) is of finite order, then h(w) is of order zero around w=Q and w = co.

In general, if h(w) is regnlar in 0<\w\ <oo, there exist two entire functions
hj(w) (/=1, 2) such that

The above lemma 4 suggests p(hj)—0 for /=!, 2.

LEMMA 5. Let F(z) be the same function in the theorem. And let F(z)=
f(g(zΐ) with an entire function f and g(z)=z+Q(ez), where Q(w) is a rational
function with at most two poles at 10 =0, oo. Then /0(/)< + oo.

Proof. By Pόlya's result,

for some positive constant d. And by the form of F, there exists a positive
constant K such that

for any r^rίt Further for any ε>0, there exist r2(>0) and some natural
number c such that

for
Therefore, there exists R0 (>0) such that

Γ/ R \2A7CΊ

MX^^exp^—) J

for R^R0. It means that p(f)< + <χ>. q. e. d.

§3. Proof of theorem. By the assumption of theorem,

Here the function R2(ez)+Rί[ez+R*<ieZ:>'] is a periodic function with period 2πi.
By lemma 1, if

F(z)=f(g(z» (1)

with non-linear entire functions / and g, then

where Hlt H2 are periodic with period 2πc2i, 2πi respectively. Substituting these
Into (1), we have c^c2—l and hence
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and

belong to J(2πi). Therefore, without loss of generality, we may assume that

where H3 (j=l, 2) are periodic entire functions with period 2πi. Further, in
general, a periodic entire function with period 2πi is represented as h(ez) with
some regular function h(w) in 0< u;|< + oo. Hence

(2)
•)

where hj(w) are regular in 0<|u; |<H-oo 0'— 1, 2).
Since p(Rι(ez))=K + oo and R2(e*) is of exponential type, g must be of ex-

ponential type by lemma 2. And then Λ 2 must be a rational function by lemma
3. By (1) and (2), we have

Now we put w— ez. Then

u; βΛ2c lϋ)] . (3)

This gives a key of our proof of this theorem. By the above investigation,
we assume that

= 1,2),

Similarly we write

Aι(u;)=A1

+(u;) + Ar(u;)>

where in this case both hί

+(w) and hr(l/w) are entire functions. By lemma 5,
|t>(/— 2)=/t>(/)< + oo. And by lemma 4, /o(Ai+)=/o(Ar(l/M;)=0.

In the following we shall prove that Λ i must be a rational function. Now
we assume that h^ is a transcendental function. Then we will show that
tt2^Λ/2 as follows. As noted above, p(hί

+)=0> and hence by cos πp— theorem,
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for any ε(>0), there exists an unbounded sequence of positive real numbers
{rn} such that

(n = l, 2, •••), (4)

where wftl+(r) is the minimum modulus of h^, that is,

min \h^(w)\ .
I w\=r

Here assuming n2<N2, we consider the following equation:

(5)

As is well-known, the set of roots of equation (5) tend to w — oo as |ί|-*oo
and possesses 2N2 lines :

-Γ 2jπ 0=, 0, 1, -, N9-l; as

),r 0-0, 1, -, JV.-l; as f->-

as asymptotic lines. If w2>0, then (because of n2<N2), among these 2NZ lines,
we have a line, say /, on which

And there exists a subset (continuity) {w(f)} of roots of (5) such that

R2+(w(t))=2πti

and further {w(t)} possesses the line / as asymptotic line. Therefore by R2(w(t))

(as ί-^ + oo, or as f -*—«>) (6)

and further, there exists some constant L(>0) such that

| 0 Λ 2 ( i o < 0 ) > ^ L . | t o C O I » 2 as | ^ | _>+cX) (7)

by the assumption of {w(t)\. Here, consider a sequence {ίn} of real numbers
such that

\w(tn) eh*w»»\=rn.

Then by (3), (4), (6), (7) and maximum modulus principle, we have

(tn)\κ) (n = l, 2, -.-) (8)

for some constant K. Since hι+ is assumed to be transcendental, this leads us
to a contradiction. Hence n2^N2. Now let us note that, even if n2=Q, the
above inequality (8) can be shown to be valid without using the special line /
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and hence we get to the same conclusion.
Similarly, if hr is transcendental, then we can prove m2^M2.
Since hz is non-constant, n2>0 or ra2>0. Without loss of generality, we

may assume w2>0.
Let, for a sufficiently small <5>0 (|6n2

2 |/2>δ),

By h2(w)=bn*'Wn*'(l+o(l)} (|w;|-H-oo), it is noted that the function hS(
is bounded in OzΓ\{\w\>Rύ] and hl~(weh^w^ is bounded in O,CΛ{\w\ >RQ}
By (3),

M(r, Rl[,weR^^']-h2(w)^R2(w)}^ \ h&we**™] \ . (9)

Also we have

lr \w\=r>R0) (10)
and

for some positive constant K.
Now assuming that h^ is transcendental, we use (4) with ε=l/2. Then

there exists {rn\ such that

m(rn, hS)^M(rn) /z/) 1 / 2 .

Then we can find an unbounded sequence {tn} of real numbers such that
\weh^w^\—rn for some w (w^Ol and \w =tn). In this case,

, /iι+)1/2 (11)

On the other hand, for any natural number TV, there exists RQ=R0(N) such
that

M(R, hS)>RN (for R^RQ)

because of transcendency of hι+. Therefore (11) becomes

Now by (10), rn>tn'e
κ'tnn2. Hence (noting (9)), we have the inequality

for some constants c and ^ (>0). This contradicts w 2^TV 2and the arbitrariness
of N. And hence h^ must be a polynomial.

We can prove that hr(l/w) must be a polynomial in the similar way.
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Hence we deduce that hl is a rational function, as is to be proved.
Finally we prove that both sides of (3) are constants. Putting h2(w)—R2(w)

— G(w) and assuming that G(w) is a non-constant rational function, then we have

Furthermore let us substitute w by ez, then

G(e2)--AιC^+Λ2(e2)+ί?ce2)]+^ιCe2+Λ2Ce2)] (12)

Assuming that /?2(w)+G(u;)^constant, then we can easily show that

T(r, G(e*))=o{T(r, ez+R*^} ,

T(r, G(e*»=o{T(r, e

z+R^+G^}}

as r-»-foo. By BoreFs unicity theorem [3], (12) is immpossible, because that
AI(U ) and Rι(w) are rational functions in w whose coefficients are constants.

Next if R2(w)+G(w)=constant, say c, then

Hence (12) is immpossible in the similar way.
Therefore G(w) is a constant, say K.
Then by (3),

(13)

Hence

Let x be w eκ eR2(iw\ then we have

By (2), (13) and (14),

Then

with z=T(w)=w+K. This completes the proof of our theorem. q. e. d.
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