ON ALGEBRAICITY OF VECTOR VALUED SIEGEL MODULAR FORMS

By Yoshinori Takei

0. Introduction.

Let n be a positive integer and let $k, l \geqq 0$ be integers. Let $S y m^{l}$ be the natural representation of $G L(n, \boldsymbol{C})$ on $\operatorname{Sym}^{l}\left(\boldsymbol{C}^{n}\right)$, the l-th symmetric tensor product of the vector space \boldsymbol{C}^{n}.

A $\operatorname{Sym}^{l}\left(\boldsymbol{C}^{n}\right)$-valued holomorphic function f on the Siegel upper half space of degree n is called a Siegel modular form of degree n and type $\operatorname{det}^{k} \otimes S y m^{l}$ when f satifies certain automorphic condition with respect to the action of the integral symplectic group of size 2 n through the representation $\operatorname{det}^{k} \otimes S y m^{l}$.

Let $M_{k, l}^{n}$ be the \boldsymbol{C}-vector space of Siegel modular forms of degree n and type $\operatorname{det}^{k} \otimes \mathrm{Sym}^{l}$. Let $S_{k, l}^{n}$ be the subspace of $M_{k, l}^{n}$ consisting of cuspforms. Precise definitions of them are in $\S 1$ below.

The purpose of this paper is to prove several algebraic results on Fourier coefficients of $f \in M_{k, l}^{n}$ described as follows:

Results. (Precise statements are in $\xi 2$.)
Suppose that k, l are even and $k \geqq 2 n+2$.
(1) $S_{k, l}^{n}$ has a basis consisting of forms whose Fourier coefficzents lie in $\operatorname{Sym}^{l}\left(\mathbf{Q}^{n}\right)$.
(2) Let $f \in S_{k, l}^{n}$ be an evgenforms (i.e. a non-zero elgenfunction of the Hecke algebra) and let $\boldsymbol{Q}(f)$ be the extension field of \boldsymbol{Q} generated by the evgenvalues on f of the Hecke algebra over \boldsymbol{Q}. Then $\boldsymbol{Q}(f)$ is a totally real number field and the degree of extension does not exceed $S_{k, l}^{n}$.
(3) $S_{k, l}^{n}$ has an orthogonal basis consisting of eigenforms such that the Fourier coefficients of each element f lie in $\operatorname{Sym}^{l}\left(\boldsymbol{Q}(f)^{n}\right)$.
(4) Let m be a integer with $m \geqq n$ and $k>m+n+1$, let []$_{n}^{m}: S_{k, l}^{n} \rightarrow M_{k, l}^{m}$ be the Eisenstein lifting. Let $f \in S_{k, l}^{n}$ be an elgenform whose Fourier coefficients lie in $\operatorname{Sym}^{l}\left(\boldsymbol{Q}(f)^{n}\right)$. Then, $[f]_{n}^{m}$ has Fourier coefficzents in $\operatorname{Sym}^{l}\left(\boldsymbol{Q}(f)^{m}\right)$.

For the case $l=0$, i.e. $\quad \operatorname{Sym}^{0}\left(\boldsymbol{C}^{n}\right)=\boldsymbol{C}$-valued case, above results are proved by several authors. The assertion (2) is due to Kurokawa [6]. In [5], Garrett
showed the "Pullback Formula" which reduces problems on Siegel modular forms to smaller degree ones, and using this formula he showed (a similitude of) (4). Böcherer [4] showed (3), by effective use of the pullback formula. In [7], Mizumoto gave a way to prove (3), (4) as well as (1) simulatenously, also using the pullback formula.

In the paper [2] of Böcherer-Satoh-Yamazaki, they have obtained the pullback formula for the case $l \in \mathbf{Z Z}>0$, which enables us to apply the above proofs for the case $l=0$ to the case $l \in \mathbf{Z} \boldsymbol{Z}>0$ without essential change. A brief description of the pullback formula is given in $\S 3$, where we shall also a connection between Fourier coefficients of eigen cuspforms and the partial Fourier expansion of pullback of Siegel's Eisenstein series.

The stated results shall be proved in $\S 4$.
The author would like to express his gratitude to Professor S. Mizumoto for helpful advices, and to Professor T. Harase for constant encouragement.

1. Notations and definitions.

Let n be a positive integer and k, l be positive even integers. Let $\boldsymbol{x}:=$ $\left(x_{1}, \cdots, x_{n}\right)$ be a row vector with x_{1}, \cdots, x_{n} being indeterminantes. We define a \boldsymbol{C}-vector space

$$
V:=\boldsymbol{C} x_{1} \oplus \cdots \oplus \boldsymbol{C} x_{n}
$$

and a Hermitian inner product on V by

$$
\begin{equation*}
\left(\sum_{i=1}^{n} a_{\imath} x_{\imath}, \sum_{i=1}^{n} b_{i} x_{\imath}\right):=\sum_{\imath=1}^{n} a_{i} \bar{b}_{\imath} \tag{1.1}
\end{equation*}
$$

where $a_{\imath}, b_{i} \in \boldsymbol{C}(1 \leqq i \leqq n)$ and \bar{b}_{i} denotes the complex conjugate of b_{i}. Put $V^{(l)}:=\operatorname{Sym}^{l}(V)$, the l-th symmetric tensor product of V, which is identified with $\boldsymbol{C}\left[x_{1}, \cdots, x_{n}\right]_{(l)}$, the \boldsymbol{C}-vector space of homogeneous polynomials in x_{1}, \cdots, x_{n} of degree l. The inner product (1.1) induces an inner product on $V^{(l)}$ by

$$
\begin{equation*}
\left(\alpha_{1} \cdots \alpha_{l}, \beta_{1} \cdots \beta_{l}\right):=\frac{1}{l!} \sum_{\sigma \in \Theta_{l}} \prod_{l=1}^{l}\left(\alpha_{\sigma(j)}, \beta_{j}\right) \tag{1.2}
\end{equation*}
$$

where $\alpha_{\jmath}, \beta_{j} \in V$, denotes the symmetric tensor product and \mathfrak{S}_{l} denotes the symmetric group of degree l.

Let $\rho=\rho_{k, l}^{n}$ be the representation

$$
\operatorname{det}^{k} \otimes S y m^{l}: G L(n, \boldsymbol{C}) \longrightarrow G L\left(V^{(l)}\right)
$$

Let \mathfrak{H}_{n} be Siegel upper half space of degree n, and $\Gamma_{n}:=\operatorname{Sp}(n, \boldsymbol{Z})$ be the group of integral symplectic group of size $2 n$.

For a function $f: \mathfrak{g}_{n} \rightarrow V^{(l)}$ and $M \in S p(n, \boldsymbol{R})$, put

$$
\left.f\right|_{k, l} ^{n} M(Z):=\rho(C Z+D)^{-1} f(M\langle Z\rangle)
$$

with

$$
M\langle Z\rangle:=(A Z+B)(C Z+D)^{-1}
$$

for $Z \in \mathfrak{G}_{n}$ and $M\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$.
The \boldsymbol{C}-vector space of $V^{(l)}$-valued Siegel modular forms of degree n and type k, l with respect to Γ_{n} is defined by
(1.3) $\quad M_{k}{ }^{n}{ }_{l}\left(V^{(l)}\right):=\left\{f: \mathfrak{g}_{n} \rightarrow V^{(l)} \mid f\right.$ is holomorphic on \mathfrak{g}_{n} (and at the cusps if $n=1$), and $\left.f\right|_{k, l} ^{n} M=f$ for all $\left.M \in \Gamma_{n}\right\}$,
and the space of cuspforms by

$$
\begin{align*}
S_{k, l}^{n}\left(V^{(l)}\right) & :=\left\{f \in M_{k, l}^{n}\left(V^{(l)}\right) \mid\right. \tag{1.4}\\
& \left.\lim _{\lambda \rightarrow \infty} f\left(\begin{array}{cc}
z & 0 \\
0 & \sqrt{-1 \lambda}
\end{array}\right)=0 \text { for all } z \in \mathfrak{V}_{n-1}\right\}
\end{align*}
$$

In the notations (1.3) and (1.4), we omit $\left(V^{(t)}\right)$ whenever V is obvious. For $l=0, M_{k, 0}^{n}\left(V^{(0)}\right)=M_{k, 0}^{n}(\boldsymbol{C})$ is the space of Siegel modular forms of weight k.

Each $f \in M_{k, l}^{n}\left(V^{(l)}\right)$ has a Fourier expansion of the following type:

$$
\begin{equation*}
f(Z)=\sum_{R \geq 0} a(R ; f) \mathbf{e}(R Z) \quad\left(a(R ; f) \in V^{(l)}, Z \in \mathfrak{H}_{n}\right) \tag{1.5}
\end{equation*}
$$

where $\mathbf{e}(\cdot):=\exp 2 \pi \sqrt{-1}$ trace (\cdot), and R runs through symmetric, semiintegral, semipositive matrices of size n (We denote such R by " $R \geqq 0$ " or by " $R^{(n)} \geqq 0$ "). If f is a cuspform, then $a(R ; f) \neq 0$ only for $R>0$. Throughout this paper, $a(R ; f)$ denotes the Fourier coefficient of f at R.

Let $\operatorname{Aut}(\boldsymbol{C})$ be the group of all field automorphisms of \boldsymbol{C}. For $\boldsymbol{\tau} \in \operatorname{Aut}(\boldsymbol{C})$ and a function $f(Z)=\sum_{R \geq 0} a(R ; f) \mathbf{e}(R Z)$, set

$$
\begin{equation*}
f^{\tau}(Z):=\sum_{R \geq 0} a(R ; f)^{\tau} \mathbf{e}(R Z) . \tag{1.6}
\end{equation*}
$$

Let K be any subfield of \boldsymbol{C}. Put

$$
\begin{aligned}
& V_{K}:=K x_{1} \oplus \cdots \oplus K x_{n} \\
& M_{k, l}^{n}\left(V^{(l)}\right)_{K}:=\left\{f \in M_{k, l}^{n} \mid a(R ; f) \in V_{K}^{(l)} \text { for all } R^{(n)} \geqq 0\right\}
\end{aligned}
$$

and for any subset X of $M_{k, l}^{n}\left(V^{(l)}\right)$, set

$$
\begin{equation*}
X_{K}:=X \cap M_{k, l}^{n}\left(V^{(l)}\right)_{K} . \tag{1.7}
\end{equation*}
$$

Let $r \leqq n$ and put $V_{r}:=\boldsymbol{C} x_{n-r+1} \oplus \cdots \oplus \boldsymbol{C} x_{n}$.
For $1 \leqq r \leqq n$ with even $k>n+r+1$, the Langlands-Klingen type Eisenstein series $[f]_{r}^{n} \in M_{k, l}^{n}\left(V^{(l)}\right)$ is attached to $f \in S_{k, l}^{r}\left(V_{r}^{(l)}\right)$ by
where $Z \in \mathfrak{W}_{n}, M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right), M\langle Z\rangle^{*}$ denotes the lower-right $r \times r$ block of $M\langle Z\rangle$, and $P_{n, r}=\left\{\left(\begin{array}{cc}* \\ 0^{(n-r, n+r)} & *\end{array}\right) \in \Gamma_{n}\right\}$ which is a subgroup of Γ_{n}. The linear map [] $]_{r}^{n}: S_{k, l}^{r} \rightarrow M_{k, l}^{n}$ is called the Eisenstein lifting. We define [$]_{n}^{n}$ as the identity map on $S_{k, l}^{n}$. When $l=0$, the Eisenstein lifting is also defined for $r=0$. In this case, we understand that $M_{k, 0}^{0}(\boldsymbol{C})=S_{k, 0}^{0}(\boldsymbol{C})=\boldsymbol{C}$, and the Eisenstein lift of $f=1$

$$
\begin{equation*}
E_{k}^{n}(Z):=[1]_{0}^{n}(Z)=\sum_{M \in P_{n, 0} \backslash \Gamma_{n}} \operatorname{det}(C Z+D)^{-k} \tag{1.9}
\end{equation*}
$$

is Siegel's origınal Eisentein series [8].
For $f, g \in M_{k, l}^{n}\left(\right.$ at least one in $\left.S_{k, l}^{n}\right)$, their Pertersson inner product (f, g) is defined by:

$$
\begin{equation*}
(f, g):=\int_{\Gamma_{n} \mathfrak{\mathfrak { \xi } _ { n }}}(\rho(\sqrt{Y}) f(Z), \rho(\sqrt{Y}) g(Z))(\operatorname{det} Y)^{-n-1} d X d Y \tag{1.10}
\end{equation*}
$$

with $Z=X+\sqrt{-1} Y, X, Y$ real and (,) in the right-hand side is the inner product (1.2) defined on $V^{(l)}$.

We note that if $r<n$, then

$$
\begin{equation*}
\left(f,[\phi]_{r}^{n}\right)=0 \quad \text { for all } \quad f \in S_{k, \imath}^{n} \quad \text { and } \quad \phi \in S_{k, l}^{r} \tag{1.11}
\end{equation*}
$$

Let $L_{C}^{(n)}\left(\right.$ resp. $\left.L_{\boldsymbol{Q}}^{(n)}\right)$ be the abstract Hecke algebra of degree n over \boldsymbol{C} (resp. \boldsymbol{Q}) and let

$$
t: L_{\boldsymbol{c}}^{(n)} \longrightarrow \operatorname{End}_{\boldsymbol{c}}\left(S_{k, l}^{n}\right)
$$

be the \boldsymbol{C}-algebra homomorphism defined as in [1].
We put $\boldsymbol{T}_{c}:=t\left(L_{\boldsymbol{c}}^{(n)}\right)$ and $\boldsymbol{T}_{\boldsymbol{Q}}:=t\left(L_{\boldsymbol{Q}}^{(n)}\right)$. Let $f \neq 0 \in S_{k, l}^{n}$ be a common eigenfunction to all $T \in \boldsymbol{T}_{C}$ (such f is called an eigenform), and for each T, let $\lambda(T) \in \boldsymbol{C}$ be the eigenvalue on f :

$$
\begin{equation*}
T f=\lambda(T) f \quad \text { for all } \quad T \in \boldsymbol{T}_{c} \tag{1.12}
\end{equation*}
$$

Then λ is a \boldsymbol{C}-algebra homomorphism $\lambda: \boldsymbol{T}_{\boldsymbol{C}} \rightarrow \boldsymbol{C}$ and each element of $\widehat{\boldsymbol{T}_{\boldsymbol{c}}}:=$ $\operatorname{Hom}_{C \text {-alg }}\left(\boldsymbol{T}_{\boldsymbol{c}}, \boldsymbol{C}\right)$ is obtained in this way.

For each $\lambda \in \widehat{\boldsymbol{T}_{\boldsymbol{c}}}$, put

$$
S_{k, l}^{n}(\lambda):=\left\{f \in S_{k \downarrow}^{n} \mid T f=\lambda(T) f \text { for all } T \in \boldsymbol{T}_{c}\right\} .
$$

Then the space of cuspforms decomposes into eigenspaces:

$$
S_{k, l}^{n}=\underset{\lambda \in \widehat{r_{C}}}{ } S_{k, l}^{n}(\lambda)
$$

We note that for any $f_{1} \in S_{k, l}^{n}\left(\lambda_{1}\right)$ and $f_{2} \in S_{k, l}^{n}\left(\lambda_{2}\right),\left(f_{1}, f_{2}\right)=0$ if $\lambda_{1} \neq \lambda_{2}$.
For each $\lambda \in \widehat{\boldsymbol{T}_{c}}$, define an extension field of \boldsymbol{Q} by

$$
\begin{equation*}
\boldsymbol{Q}(\lambda):=\boldsymbol{Q}\left(\lambda(T) \mid T \in \boldsymbol{T}_{\boldsymbol{Q}}\right), \tag{1.13}
\end{equation*}
$$

and for $f \in S_{k, l}^{n}(\lambda)$ put $\boldsymbol{Q}(f):=\boldsymbol{Q}(\lambda)$.

2. Statement of the Theorems.

Theorem 1. Let $q \geqq 1$ be an integer, let $k, l \geqq 0$ be even integers satisfying

$$
k \geqq 2 q+2 .
$$

Then, the following holds.

$$
\begin{equation*}
S_{k, l}^{q}=S_{k, l_{Q}}^{q} \otimes_{Q} C . \tag{1}
\end{equation*}
$$

In partıcular, $\operatorname{Aut}(\boldsymbol{C})$ acts on $S_{k, l}^{q}$ by $f \mapsto f^{\tau}$ in the notation (1.6).
(2) Let $\lambda \in \widehat{\boldsymbol{T}}_{c}$ and $f \neq 0 \in S_{k}^{q}{ }_{l}(\lambda)_{Q}(\lambda)$.
(i) $\boldsymbol{Q}(\lambda)$ is a totally real finite extention of \boldsymbol{Q} with

$$
[\boldsymbol{Q}(\lambda): \boldsymbol{Q}] \leqq \operatorname{dim}_{c} S_{k, l}^{q}
$$

(ii) Let $c(f)$ be the constant of (3.5) below. Then,

$$
\left(\frac{c(f)}{(f, f)}\right)^{\tau}=\frac{c\left(f^{\tau}\right)}{\left(f^{\tau}, f^{\tau}\right)} \quad \text { for all } \quad \tau \in \operatorname{Aut}(\boldsymbol{C})
$$

(iii) Let $m:=\operatorname{dim}_{C} S_{k, l}^{q}(\lambda)$. There exists an orthogonal basis $\left\{f_{j}\right\}_{j=1}^{m}$ of $S_{k, l}^{q}(\lambda)$ such that

$$
f_{1}=f \quad \text { and } \quad f_{j} \in S_{k}^{q},(\lambda)_{Q}(\lambda)(1 \leqq \jmath \leqq m) .
$$

THEOREM 2. Let $p \geqq q \geqq 1$ be integers, let $k, l \geqq 0$ be even integers satisfying

$$
k>p+q+1
$$

Let $\lambda \in \widehat{\boldsymbol{T}}_{c}$ and $f \neq 0 \in S_{k, l}^{q}(\lambda)_{\boldsymbol{Q}}(\lambda)$. Then,

$$
\left([f]_{q}^{p}\right)^{\tau}=\left[f^{\tau}\right]_{q}^{p} \quad \text { for all } \quad \tau \in \operatorname{Aut}(\boldsymbol{C})
$$

3. Differential operators and the Pullback formula.

The first part of this section is a brief description of the "Pullback Formula" of Böcherer-Satoh-Yamazaki [2].

Let $p, q \geqq 1$ be integers. Put

$$
\begin{aligned}
& V_{\boldsymbol{x}}:=\boldsymbol{C} x_{1} \oplus \cdots \oplus \boldsymbol{C} x_{p}, \quad \boldsymbol{x}:=\left(x_{1}, \cdots, x_{p}\right) \\
& V_{\boldsymbol{y}}:=\boldsymbol{C} y_{1} \oplus \cdots \oplus \boldsymbol{C} y_{q}, \quad \boldsymbol{y}:=\left(y_{1}, \cdots, y_{q}\right) .
\end{aligned}
$$

and for $r \leqq \min (p, q)$, put

$$
\begin{aligned}
V_{\boldsymbol{x}, r} & :=\boldsymbol{C} x_{p-r+1} \oplus \cdots \oplus \boldsymbol{C} x_{p} \\
V_{\boldsymbol{y}, r} & :=\boldsymbol{C} y_{q-r+1} \oplus \cdots \oplus \boldsymbol{C} y_{q}
\end{aligned}
$$

and define an isomorphism $\sigma: V_{x, r} \rightarrow V_{y, r}$ by $\sigma\left(x_{p-\jmath}\right)=y_{q-\jmath}(\jmath<\min (p, q))$.
Let $\mathcal{B}=\left(\boldsymbol{3}_{i j}\right)_{1 \leq \imath, j \leq p+q}$ be a variable on \mathfrak{S}_{p+q} and

$$
\left(\frac{\partial}{\partial \mathbb{3}}\right)=\left(\frac{1+\delta_{i j}}{2} \frac{\partial}{\partial \mathfrak{ß}_{i j}}\right)_{1 \leq i, j \leq p+q} .
$$

For a holomorphic function $f: \mathfrak{Y}_{p+q} \rightarrow\left(V_{\boldsymbol{x}} \oplus V_{y}\right)^{(l)}$, we define the operators

$$
\begin{aligned}
& D f:=\frac{1}{2 \pi \sqrt{-1}}\left(\begin{array}{ll}
\boldsymbol{x} & \boldsymbol{y}
\end{array}\right)\left(\frac{\partial}{\partial \mathbb{B}}\right) f\binom{{ }^{t} \boldsymbol{x}}{{ }_{\boldsymbol{y}}}, \\
& D_{\uparrow} f:=\frac{1}{2 \pi \sqrt{-1}}\left(\begin{array}{ll}
\boldsymbol{x} & 0
\end{array}\right)\left(\frac{\partial}{\partial \mathbf{B}}\right) f\binom{t \boldsymbol{x}}{0}, \\
& D_{\downarrow} f:=\frac{1}{2 \pi \sqrt{-1}}\left(\begin{array}{ll}
0 & \boldsymbol{y}
\end{array}\right)\left(\frac{\partial}{\partial \mathbf{B}}\right) f\binom{0}{t_{\boldsymbol{y}}} .
\end{aligned}
$$

Let d be the diagonal embedding

$$
\begin{array}{r}
d: \mathfrak{H}_{p} \times \mathfrak{H}_{q} \longrightarrow \mathfrak{H}_{p+q} \\
(Z, W) \longmapsto\left(\begin{array}{lr}
Z & 0 \\
0 & W
\end{array}\right)
\end{array}
$$

and let d^{*} be the pullback of d.
The differential operator $L^{(l)}$ is defined in [2] as follows:

$$
\begin{aligned}
L^{(l)}= & d^{*} \frac{1}{k^{[l]}} \\
& \times \sum_{0 \leq 2 \leq \leq l} \frac{1}{\nu!(l-2 \nu)!(2-k-l)^{[2]}}\left(D_{\uparrow} D_{\downarrow}\right)^{2 \nu}\left(D-D_{\uparrow}-D_{\downarrow}\right)^{l-2 \nu},
\end{aligned}
$$

where

$$
a^{[b]}:= \begin{cases}\frac{(a+b-1)!}{(a-1)!} & \text { for } a>0 \\ 1 & \text { otherwise }\end{cases}
$$

for integers a and b.
This defines a linear map

$$
L^{(l)}: M_{k, 0}^{p+q}(\boldsymbol{C}) \longrightarrow M_{k, l}^{p}\left(V_{x}{ }^{(l)}\right) \otimes M_{k, l}^{q}\left(V_{y}{ }^{(l)}\right) .
$$

Theorem A [2, Prop. 4.4]. Let $p, q \geqq 1$ be integers and $k, l \geqq 2$ be even integers satesfying $k>p+q+1$. For each $1 \leqq r \leqq \min (p, q)$, let $d(r):=\operatorname{dim}_{c}$ $S_{k, l}^{r}\left(V_{y, r^{l}}{ }^{(l)}\right)$ and $\left\{f_{j, r}\right\}_{j=1}^{d(r)}$ an orthonormal basis of $S_{k, l}^{r}\left(V_{y, r}{ }^{(l)}\right)$ consisting of
eigenforms.
Let $E_{k}^{p+q} \in M_{k, 0}^{p+q}(\boldsymbol{C})$ be Siegel's Eisenstein serves (1.10) of degree $p+q$ and weight k. Let $\alpha_{k, l}$ and $C_{k, l, r}$ be the constants

$$
\begin{align*}
\alpha_{k, l}= & \left(-\frac{1}{2 \pi \sqrt{ }-1}\right)^{l} \frac{(2 k-2)^{[l]}}{l!(k-1)^{[l]}}, \tag{3.1}\\
C_{k, l, r}= & 2^{r(r-k+1)-l+1} \sqrt{-1^{r k+l}} \frac{\pi^{r(r+1) / 2}}{k+l-1} \\
& \times \prod_{u=1}^{r-1} \frac{\Gamma(2 k-2 r+2 u-1)(2 k-r+u-2)^{[l]}}{(k-r-1+u) \Gamma(2 k+u+l-r-1)} .
\end{align*}
$$

For an eigenform $f \in S_{k, l}^{r}\left(V_{\left.y, r^{(l)}\right) \text {, put }}\right.$

$$
\begin{aligned}
\theta f(Z) & :=\overline{f(-\bar{Z})}, \\
\Lambda(f) & :=\left(\zeta(k)^{-1} \prod_{\imath=1}^{r} \zeta(2 k-2 i)^{-1}\right) L(k-r, f, \boldsymbol{S} t),
\end{aligned}
$$

where ζ denotes Riemann zeta function and $L(*, f, \boldsymbol{S} t)$ denotes the standard L function attached to f, respectively.

Then, following equation holds

$$
\begin{align*}
L^{(l)} E_{k}^{p+q}(Z, W)= & \alpha_{k, l} \sum_{r=1}^{m 2 n(p, q)} C_{k, l, r} \sum_{j=1}^{d(r)} \tag{3.2}\\
& \Lambda\left(f_{J, r}\right)\left[\theta \sigma^{-1} f_{\jmath, r}\right]_{r}^{p}(Z)\left[f_{J, r}\right]_{r}^{q}(W) .
\end{align*}
$$

In the rest of this section, we study a connection between Fourier coeffi, cients of eigenforms and the partial Fourier expansion of $L^{(l)} E_{k}^{p+q}$.

Let p, q, k be as in the assumption of Theorem A and suppose also $p \geqq q$. Let $R=R^{(p)} \geqq 0$ be a symmetric, semiintegral, semipositive matrix of size p. Let $X_{p}=\left\{\xi=\Pi_{i=1}^{p} x_{\imath}^{\alpha_{i}} \mid a_{i} \in \boldsymbol{Z} \geqq 0, \Sigma_{i} a_{i}=l\right\}$, which is an orthonormal basis of \boldsymbol{C} vector space $V_{x}{ }^{(l)}$.

We attach a $V_{y}{ }^{(l)}$-valued modular form $g_{R, \xi}^{p, q} \in M_{k}{ }^{q},\left(V_{y}{ }^{(l)}\right)$ for each $R \geqq 0$ and $\xi \in X_{p}$ through the partial Fourier expantion of $L^{(l)} E_{k}^{p+q}$:

$$
\begin{equation*}
L^{(l)} E_{k}^{p+q}(Z, W)=\sum_{R \geq 0} \sum_{\xi \in X_{p}} g_{p, \xi}^{p_{R}^{p_{\xi}} q_{\xi}(W) \xi \mathbf{e}(R Z) .} \tag{3.3}
\end{equation*}
$$

Since the Fourier coefficients of Siegel's Eisenstein series are rational, and $L^{(l)}$ preserves rationality of Fourier coefficients, we have

$$
\begin{equation*}
g_{R, p_{\xi}^{p_{\xi}} q_{\xi}} S_{k, l}^{q}\left(V_{\boldsymbol{y}}{ }^{(l)}\right)_{\boldsymbol{Q}} . \tag{3.4}
\end{equation*}
$$

For $F \in M_{k, l}^{p}\left(V_{x}{ }^{(l)}\right)$ and $R=R^{(p)} \geqq 0$ and $\xi \in X_{p}$, let $a(R ; F ; \xi)$ denote the ξ component of the Fourier coefficient $a(R ; F)$.

For each eigenform $f \in S_{k, l}^{q}\left(V_{y}{ }^{(l)}\right)$, put

$$
\begin{equation*}
c(f):=\alpha_{k, l} C_{k, l, q} \Lambda(f) . \tag{3.5}
\end{equation*}
$$

We note that $c(f)$ is a nonzero constant depending only on $\lambda \in \widehat{\boldsymbol{T}_{\boldsymbol{c}}}$ such that $S_{k, l}^{q}\left(V_{y}{ }^{(l)} ; \lambda\right) \ni f$. We occasionally write $c(f)$ as $c(\lambda)$ for such λ. By Theorem A, taking inner product of f and $L^{(l)} E_{k}^{p+q}(-\bar{Z}, *)$ on $S_{k, l}^{q}\left(V_{y}^{(l)}\right)$, we obtain

$$
\begin{equation*}
\left(f, g_{R, ~}^{p, q}\right)=c(f) a\left(R ;\left[\sigma^{-1} f\right]_{q}^{p} ; \xi\right)\left(R^{(p)} \geqq 0, \xi \in X_{p}\right) . \tag{3.6}
\end{equation*}
$$

In the rest of the paper, we simply write $M_{k, l}^{q}\left(V_{\boldsymbol{y}}{ }^{(l)}\right)\left(\right.$ resp. $\left.S_{k, l}^{q}\left(V_{\boldsymbol{y}}{ }^{(l)}\right)\right)$ as $M_{k, 2}^{q}\left(\right.$ resp. $\left.S_{k, l}^{q}\right)$.

Let $h_{R, q_{\xi}^{p}, ~ b e ~ t h e ~ p r o j e c t i o n ~ o f ~} g_{R, \xi}^{p, q}$ to $S_{k, l}^{q}$. Then, for each eigenform $f \in$ $S_{k, l}^{q}$, we get

$$
\begin{equation*}
\left(f, h_{R, \xi}^{p, q}\right)=c(f) a\left(R ;\left[\sigma^{-1} f\right]_{q}^{p} ; \xi\right)\left(R^{(p)} \geqq 0, \xi \in X_{p}\right) . \tag{3.7}
\end{equation*}
$$

In particular, when $p=q$,

$$
\begin{equation*}
\left(f, h_{R, \xi}^{q, q}\right)=c(f) a\left(R ; \sigma^{-1} f ; \xi\right)\left(R^{(q)} \geqq 0, \xi \in X_{q}\right) \tag{3.8}
\end{equation*}
$$

Proposition. Let $q \geqq 1$ be an integer and $k, l \geqq 0$ be even integers satısfying

$$
\begin{equation*}
k \geqq 2 q+2 \text {. } \tag{3.9}
\end{equation*}
$$

Then,

$$
\begin{equation*}
S_{k, l}^{q}=\left\langle h_{R, \xi}^{q, q} \mid R^{(q)}>0, \xi \in X_{q}\right\rangle_{C}, \tag{3.10}
\end{equation*}
$$

where $\left\rangle_{c}\right.$ means the C-linear span.
Proof. Let S be the space in the right-hand side of (3.10), and S^{\perp} be its orthogonal complement in $S_{k . l}^{q}$. Let f be any eigenform in $S_{k, l}^{q}$. By (3.8), $f \in$ S^{\perp} if and only if $f=0$. Since $S_{k, l}^{q}$ has an orthogonal basis consisting of eigenforms, we see that $S^{\perp}=0$.

4. Proof of Theorems.

We shall prove Theorems 1,2 by similar way as in [7]. First, we introduce a condition on (p, q).

Condition $C(p, q)$:

$$
h_{R, \xi}^{p, q} \in S_{k, l_{Q}}^{q} \quad \text { for all } \quad R=R^{(p)} \geqq 0 \quad \text { and } \quad \xi \in X_{p} .
$$

We first show that Theorems 1,2 are valid for (p, q) which satisfy $C(p, q)$ and $C(q, q)$.

We write the assertion of Theorem 1 for q as $A(q)$ and the assertion of Theorem 2 for (p, q) as $B(p, q)$.

Proposition 4.1. (I) Suppose $q \geqq 1$ satisfies $C(q, q)$. Then $A(q)$ holds.
(II) Suppose $p \geqq q \geqq 1$ satisfy $C(p, q)$ and $C(q, q)$. Then $B(p, q)$ holds.

Proof. (I) Suppose that $k \geqq 2 q+2$. From (3.10) and $C(q, q), A(q)$ (1) fol-
lows immediately. Next, we show $A(q)(2)(i)$ following [6]. There exists the action of $\operatorname{Aut}(\boldsymbol{C})$ on $\widehat{\boldsymbol{T}_{c}}$ which is defined by

$$
\lambda^{\tau}(T):=\lambda(T)^{\tau} \quad\left(T \in \boldsymbol{T}_{\boldsymbol{Q}}\right)
$$

with $\lambda \in \widehat{\boldsymbol{T}_{c, \tau}} \in \operatorname{Aut}(\boldsymbol{C})$ and by

$$
T_{C}=T_{Q} \otimes_{Q} C
$$

By $A(q)(1)$ and similar argument to [6, Theorem 1], we have

$$
(T f)^{2}=T\left(f^{2}\right) \quad \text { for all } \quad f \in S_{k, l}^{q}, T \in \boldsymbol{T}_{\boldsymbol{Q}}, \tau \in \operatorname{Aut}(\boldsymbol{C}) .
$$

In particular, for all $\tau \in \operatorname{Aut}(\boldsymbol{C})$ we have

$$
\begin{equation*}
f^{\imath} \in S_{k, l}^{q}\left(\lambda^{2}\right) \quad \text { for } \quad f \in S_{k, l}^{q}(\lambda) \quad \text { and } \quad \tau \in \operatorname{Aut}(\boldsymbol{C}) \tag{4.1}
\end{equation*}
$$

and

$$
\boldsymbol{Q}\left(\lambda^{2}\right)=\boldsymbol{Q}(\lambda)^{\tau} .
$$

Since $\operatorname{Aut}(\boldsymbol{C})$ acts on $\widehat{\boldsymbol{T}_{\boldsymbol{C}}}$ whose cardinality $\leqq \operatorname{dim}_{C} S_{{ }_{k, l}}$, we get $[\boldsymbol{Q}(\lambda): \boldsymbol{Q}] \leqq$ $\operatorname{dim}_{C} S_{k, l}^{q}$. The field $\boldsymbol{Q}(\lambda)$ is totally real since all $T \in \boldsymbol{T}_{\boldsymbol{Q}}$ are Hermitian.

Next, we shall show $A(q)(2)$ (iii). Put $d=\operatorname{dim}_{c} S_{k, l}^{q}$. We choose $\left\{\left(R_{\imath}, \xi_{\imath}\right) \mid\right.$ $\left.R_{\imath}>0, \xi_{i} \in X_{q}, 1 \leqq i \leqq d\right\}$ so that

$$
\left\{h_{R_{i}, \xi_{i}}^{q, q} \mid i=1, \cdots, d\right\}
$$

is a \boldsymbol{C}-basis of $S_{k, l}^{q}$. We claim that this is also a \boldsymbol{Q}-basis of $S_{k, l_{Q}}^{q}$. For any $h \in S_{k, l_{\boldsymbol{Q}}}^{q}$, there exists unique ($\alpha_{1}, \cdots, \alpha_{d}$) $\in \boldsymbol{C}^{d}$ such that

$$
h=\sum_{i=1}^{d} \alpha_{i} h_{R_{i}, \xi_{2}}^{q_{2}} .
$$

Since $h, h_{R_{i}, \xi_{i}}^{q} q_{k}^{q} \in S_{k, l_{Q}}^{q}$ by the assumption, we get

$$
h=\sum_{i=1}^{d} \alpha_{i}^{\tau} h_{R_{i}, \xi_{2}}^{q_{,}^{q}} \quad \text { for all } \quad \tau \in \operatorname{Aut}(\boldsymbol{C}),
$$

but by the uniqueness of ($\alpha_{1}, \cdots, \alpha_{d}$), we get $\left(\alpha_{1}, \cdots, \alpha_{d}\right)^{2}=\left(\alpha_{1}, \cdots, \alpha_{d}\right)$ for all $\tau \in \operatorname{Aut}(\boldsymbol{C})$.

Hence, $\left(\alpha_{1}, \cdots, \alpha_{d}\right) \in \boldsymbol{Q}^{d}$, and we see that

$$
\begin{equation*}
\left\{h_{R_{i}, \xi_{i}, \xi_{i}}^{q_{2}} \mid \imath, d\right\} \tag{4.2}
\end{equation*}
$$

is a \boldsymbol{Q}-basis of $S_{k, l_{Q}}^{q_{Q}}$.
For $T \in \boldsymbol{T}_{\boldsymbol{Q}}$ let $B(T) \in M_{d}(\boldsymbol{C})$ be the representation matrix of T with respect to the basis (4.2). Since $S^{q_{k, l}}$ is $\boldsymbol{T}_{\boldsymbol{Q}}$-stable, $B(T)$ lies in $M_{d}(\boldsymbol{Q})$.

For $\lambda \in \widehat{\boldsymbol{T}_{c}}$, put $m=m(\lambda):=\operatorname{dim}_{c} S_{k, l}^{q}(\lambda)$. Let $\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{m}\right\}$ be column vectors in \boldsymbol{C}^{d} which spans $\left\{\boldsymbol{a} \in \boldsymbol{C}^{d} \mid\left(B(T)-\lambda(T) 1_{d}\right) \boldsymbol{a}=0\right.$ for all $\left.T \in \boldsymbol{T}_{\boldsymbol{Q}}\right\}$. Since $B(T) \in$ $M_{d}(\boldsymbol{Q})$ and $\lambda(T) \in \boldsymbol{Q}(\lambda)$, we can take such $\left\{\boldsymbol{a}_{1}, \cdots, \boldsymbol{a}_{m}\right\}$ in $\boldsymbol{Q}(\lambda)^{d}$. Put

$$
\boldsymbol{\phi}_{J}=\left(h_{R_{1}, \xi_{1}}^{\sigma_{d}} \cdots h_{R_{d}, \xi_{d}}^{q_{,}^{q}}\right) \boldsymbol{a}_{J} \quad(1 \leqq j \leqq m) .
$$

Then, $\left\{\phi_{j}\right\}_{j=1}^{m}$ is a \boldsymbol{C}-basis of $S_{k, l}^{q}(\lambda)$, which is also a $\boldsymbol{Q}(\lambda)$-basis of $S_{k, l}^{q}(\lambda)_{Q}(\lambda)$.
For given $f \neq 0 \in S_{k, l}^{q}(\lambda)_{Q(\lambda)}$, we choose an index \jmath_{0} so that $\left\{\phi_{j} \mid 1 \leqq j \leqq m, j \neq\right.$ $\left.\jmath_{0}\right\} \cup\{f\}$ is a $\boldsymbol{Q}(\lambda)$-(resp. \boldsymbol{C}-) basis of $S_{k, l}^{q}(\lambda)_{\boldsymbol{Q}(\lambda)}\left(\right.$ resp. $\left.S_{k, l}^{q}(\lambda)\right)$. Let $\jmath_{0}=m$ by changing order.

For any $\psi \in S_{k, l}^{q}(\lambda)_{Q(\lambda)}$, (3.8) implies

$$
\begin{aligned}
\left(\psi, \phi_{j}\right) & =\left(\left(\psi, h_{R_{1}, \xi_{1}}^{q, q}\right) \cdots\left(\psi, h_{R_{d}, \xi_{d}}^{q_{d}}\right)\right) \boldsymbol{a}_{J} \\
& =c(\lambda)\left(a\left(R_{1} ; \sigma^{-1} \psi ; \xi_{1}\right) \cdots a\left(R_{d} ; \sigma^{-1} \psi ; \xi_{d}\right)\right) \boldsymbol{a} \\
& \Leftrightarrow c(\lambda) \cdot \boldsymbol{Q}(\lambda) \quad(1 \leqq \jmath \leqq m-1)
\end{aligned}
$$

and in particular,

$$
\frac{\left(\psi, \phi_{j}\right)}{\left(\phi_{j}, \phi_{j}\right)} \in \boldsymbol{Q}(\lambda) \quad\left(1 \leqq \jmath \leqq m-1, \psi \in\{f\} \cup\left\{\phi_{j}\right\}_{j=1}^{m-1}\right)
$$

Hence, by Gram-Schmidt orthogonalization on $\{f\} \cup\left\{\phi_{j}\right\}_{j=1}^{m-1}$, we get the required basis of $S_{k, l}^{q}(\lambda)$.

Next, we prove $A(q)(2)\left(\right.$ ii). For given $f \neq 0 \in S_{k, l}^{q}(\lambda)_{Q(\lambda)}$, take $R>0$ and $\xi \in$ X_{q} so that $a\left(R ; \sigma^{-1} f ; \xi\right) \neq 0$. Let $h(\lambda)$ be the projection of $h_{R, \xi}^{q, q}$ to $S_{k, l}^{q}(\lambda)$. Using $h_{R, \xi}^{q, q} \in S_{k, l_{Q}}^{q_{Q}}$ and (4.1), we see

$$
\begin{equation*}
h(\lambda)^{\tau}=h\left(\lambda^{\tau}\right) \tag{4.3}
\end{equation*}
$$

for $\tau \in \operatorname{Aut}(\boldsymbol{C})$. Let $\left\{f_{1}(=f), \cdots, f_{m}\right\}$ be the orthogonal basis of $A(q)(2)(\mathrm{iii})$.
Writing

$$
h(\lambda)=\sum_{j=1}^{m} \beta_{j} f_{2} \quad\left(\boldsymbol{\beta}_{j} \in \boldsymbol{Q}(\lambda)\right),
$$

we have

$$
\begin{equation*}
(f, h(\lambda))=\left(f, h_{R, \xi}^{q, q}\right)=c(f) a\left(R ; \sigma^{-1} f ; \xi\right) \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
(f, h(\lambda))=\left(f, \sum_{j=1}^{m} \beta_{\jmath} f_{j}\right)=\beta_{1}(f, f) . \tag{4.5}
\end{equation*}
$$

On the other hand, we get for $\tau \in \operatorname{Aut}(\boldsymbol{C})$,

$$
\left.\left(f^{\imath}, h(\lambda)^{\tau}\right)\right)=\left(f^{\tau}, h_{R, \xi}^{q, q}\right)=c\left(f^{\tau}\right) a\left(R ; \sigma^{-1}\left(f^{\imath}\right) ; \xi\right)
$$

by (4.4) and

$$
\left(f^{\tau}, h\left(\lambda^{\tau}\right)\right)=\left(f^{\tau}, h(\lambda)^{\tau}\right)=\beta_{1}{ }^{\tau}\left(f^{\tau}, f^{\imath}\right)
$$

by (4.5).
Therefore

$$
\left(\frac{c(f)}{(f, f)}\right)^{\tau}=\frac{\beta_{1}{ }^{\tau}}{a\left(R ; \sigma^{-1}\left(f^{\tau}\right) ; \xi\right)}=\frac{c\left(f^{\tau}\right)}{\left(f^{\tau}, f^{\tau}\right)},
$$

Thus the part (I) is proved.
(II) Suppose that $k>p+q+1$. By $C(q, q)$ and $k \geqq 2 q+2, A(q)$ is valid. For any $R=R^{(p)} \geqq 0$ and $\xi \in X_{p}$, let $h(\lambda)$ be the projection of $h_{R, \xi}^{p, q}$ to $S_{k, l}^{q}(\lambda)$. By $C(p, q),(4.3)$ holds again for this $h(\lambda)$, and by the same argument as in (I), we find a $\beta \in \boldsymbol{Q}(\lambda)$ such that

$$
\begin{gathered}
\beta \frac{(f, f)}{c(f)}=a\left(R ;\left[\sigma^{-1} f\right]_{q}^{p} ; \xi\right), \\
\beta^{z} \frac{\left(f^{\tau}, f^{\tau}\right)}{c\left(f^{\tau}\right)}=a\left(R ;\left[\sigma^{-1}\left(f^{\imath}\right)\right]_{q}^{p} ; \hat{\xi}\right) \quad \text { for all } \quad \tau \in \operatorname{Aut}(\boldsymbol{C}) .
\end{gathered}
$$

Then, from $A(q)(2)$ (ii) and the expression above,

$$
a\left(R ;\left[\sigma^{-1} f\right]_{q}^{p} ; \xi\right)^{\tau}=a\left(R ;\left[\sigma^{-1}\left(f^{\tau}\right)\right]_{q}^{p} ; \xi\right)
$$

for any $R=R^{(p)} \geqq 0, \xi \in X_{p}$ and $\tau \in \operatorname{Aut}(\boldsymbol{C})$. Part (II) is proved.
Remark. $A(q)$ (ii) and (4.1) imply the existence of an orthogonal basis B_{q} of $S_{k, l}^{q}$ such that:
(1) B_{q} is permuted by the action of $\operatorname{Aut}(\boldsymbol{C})$.
(2) Each $f \in B_{q}$ satisfies $f \in S_{k, l_{Q(f)}^{q}}^{q}$.

Now, we shall show that the condition $C(p, q)$ actually holds when k is sufficiently large.

Proposition 4.2. Let $p \geqq q \geqq 1$ be integers and $k, l \geqq 0$ be even integers such that

$$
k>p+q+1 .
$$

Then,
(1) $C\left(p^{\prime}, 1\right)$ holds for $1 \leqq p^{\prime} \leqq p$.
(2) Suppose that

$$
C(p, r), C(q, r) \text { and } C(r, r) \text { hold for } 1 \leqq r<q \text {. }
$$

Then, $C(p, q)$ holds.
Proof. (1) Let $R^{(p)} \geqq 0$ and $\xi \in X_{p}$ be arbitrary. In this case, $g_{R, \xi^{p}, \xi^{1}}$ and $h_{R, \xi^{1}}^{p^{\prime},{ }^{1}}$ are identified with elliptic modular forms by

$$
V_{\boldsymbol{y}}=\boldsymbol{C} y_{1}
$$

and

$$
M_{k, l}^{1}\left(V_{\boldsymbol{\nu}}{ }^{(l)}\right)=M_{k+l, 0}^{1}(\boldsymbol{C}) \cdot y_{1}{ }^{l} .
$$

Therefore

$$
g_{R, \xi}^{p_{\xi}^{\prime}, 1}-h_{R, \xi}^{p, \frac{1}{\xi}}=a\left(0 ; g_{R, \xi}^{p, \frac{1}{\xi}} ; y_{1}^{l}\right) E_{k+1}^{1} y_{1}^{l},
$$

where $E_{k+l}^{1}: \mathfrak{g}_{1} \rightarrow \boldsymbol{C}$ is the elliptic Eisenstein series, whose Fourier coefficients
lie in \boldsymbol{Q}. Then, by $g_{R, \xi}^{p, 1} \in M_{k, l_{\boldsymbol{Q}}}^{1}$, we see $h_{R, \xi}^{p},{ }_{\xi}^{1} \in S_{k, l_{Q}}^{1}$.
(2) By the assumption and Proposition 4.1, we can assume $A(r)$ of Theorem $1, B(q, r)$ and $B(p, r)$ of Theorem 2 for $1 \leqq r<q$, noting that $k>p+r+1 \geqq q+$ $r+1>2 r+1$. In particular by $A(r)(2)$ (iii), for each r, there exists an orthogonal basis B_{r} of $S_{k, l}^{r}$ as stated in the Remark above.

By Theorem A of section 3, together with (3.6), (3.7), (3.8), we have

$$
\begin{equation*}
g_{R, \xi}^{p_{R} q_{\xi}}-h_{R, \xi}^{p, q}=\sum_{r=1}^{q-1} \sum_{f \in B_{r}} \frac{c(f)}{(f, f)} a\left(R ;\left[\sigma^{-1} f\right]_{r}^{p} ; \xi\right)[f]_{r}^{q} \tag{4.6}
\end{equation*}
$$

for any $R=R^{(p)} \geqq 0$ and $\xi \in X_{p}$.
Since B_{r} is permuted by $\operatorname{Aut}(\boldsymbol{C}), f \in B_{r}$ satisfies $f \in S_{R, l_{Q(f)}, \text {, and }}^{r}$ $A(r)(2)(\mathrm{ii}), B(q, r), B(p, r)$, we see the right-hand side of (4.6) is invariant under $\operatorname{Aut}(\boldsymbol{C})$. Thus, $h_{R, \xi}^{p, q_{\xi} \in S_{k, l_{Q}}^{q} \text {. }}$

Theorems 1, 2 are proved by induction using Proposition 4.2.
Proof of Theorem 1. Let q, k, l satisfy the assumption. Then, $C(1,1)$ is valid by Proposition 4.2(1).

Let $1 \leqq q^{\prime}<q$ and suppose that

$$
\begin{equation*}
C(m, n) \text { is valid for }(m, n) \text { with } 1 \leqq n \leqq m \leqq q^{\prime} . \tag{4.7}
\end{equation*}
$$

Again by Proposition 4.2(1), $C\left(q^{\prime}+1,1\right)$ is valid. By (4.7) and repeated use of Proposition $4.2(2), C\left(q^{\prime}+1, n\right)$ holds for $1 \leqq n \leqq q^{\prime}+1$ (Note that $k \geqq 2 q+2 \geqq$ $2\left(q^{\prime}+1\right)+1$).

Thus we have:

$$
\begin{equation*}
C(m, n) \text { is valid for (} m, n \text {) with } 1 \leqq n \leqq m \leqq q^{\prime}+1 \text {, } \tag{4.8}
\end{equation*}
$$

and finally we obtain $C(q, q)$, which imply Theorem 1 by Proposition 4.1.
Proot of Theorem 2. Let p, q, k, l satisfy the assumption. Then, $C(m, n)$ is valid for $1 \leqq n \leqq m \leqq q$, as seen above. We have $C(p, 1)$, and using Proposition 4.2(2) repeatedly, we get $C(p, q)$ and the assertion of Theorem 2.

References

[1] Andrianov, A.N., Euler products corresponding to Siegel modular forms of genus 2, Russ. Math. Surv. 29 (1974), 45-116 (Engl. transl.).
[2] Böcherer. S., Satoh, T. and Yamazaki, T., On the Pullback of a Differential Operator and its Application to Vector Valued Eisenstein Series, Commentarii Math. Univ. st. Pauli. 41 (1992) 1-22.
[3] Böcherer, S., Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen, Math. Z. 183 (1983), 21-46.
[4] Böcherer, S., Über die Fourier-Jacobi-Entwicklung Siegelscher Eisensteinreihen. II., Math. Z. 189 (1985), 81-110.
[5] Garrett, P.B., Pullbacks of Eisenstein series, applications, Prog. in Math. 46
(1984), 114-137.
[6] Kurokawa, N., On Siegel Eigenforms, Proc. Japan. Acad. 57A (1981), 47-50.
[7] Mizumoto, S., Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann. 289 (1991), 589-612.
[8] Siegel, C.L., Einführung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116 (1939), 617-657.
[9] Ž ${ }_{\text {ARKOVSKAJA, }}$ N.A., On the connection of the eigenvalues of Hecke operators and the Fourier coefficients of eigenfuncions for Siegel's modular forms of genus n, Math. USSR Sb. 25 (1975), 549-557. (Engl. transl.)

Minama 2-1-1105,
Urayasu-shi, Chiba, 279,
Japan

