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3-DIMENSIONAL SPACE-LIKE SUBMANIFOLDS WITH
PARALLEL MEAN CURVATURE VECTOR

OF AN INDEFINITE SPACE FORM

BY SOON MEEN CHOI

Introduction.

Let Mp+P(c) be an (n + /))-dimensional connected indefinite Riemannian mani-
fold of index p and of constant curvature c, which is called an indefinite space
form of index p. According to c>0, c=0 or c<0 it is denoted by S%+P(c),
R%+p or H^p(c). A submanifold M of an indefinite space form M%+P(c) is
said to be space-like if the induced metric on M from that of the ambient space
is positive definite. Now it is pointed out by many physicians that space-like
hypersurfaces with constant mean curvature of arbitrary spacetimes get in-
teresting in relativity theory. Also, from the differential point of view, an
entire space-like hypersurface with constant mean curvature of an indefinite
space form are studied by many authors (for examples: [1], [2], [3], [4] and
so on). For a complete space-like submanifold M with parallel mean curvature
vector of Sl+P(c), it is also seen by Cheng [3] that M is totally umbilic if n—2
and H2^c or if n>2 and n2H2<4(n — l)c, where H denotes the mean curvature,
i.e., the norm of the mean curvature vector. On the other hand, Aiyama and
Cheng [1] prove recently the following.

THEOREM. Let M be a ^-dimensional complete space-like hypersurface with
parallel mean curvature H in a Lorentzian space form M\(c). If sup Ric(M)
<3(c-H2), then M is totally umbilic, and c>H\

The purpose of this paper is to research the similar problem to the above
theorem for 3-dimensional complete space-like submanifolds with parallel mean
curvature vector of an indefinite space form and to prove the following.

THEOREM 1. Let M be a ^-dimensional complete space-like submanifold with
non-zero parallel mean curvature vector h of an indefinite space form S3

p
+P(c),

If it satisfies
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(1.1) ~c£H2^c ana Ric^M^

then M is totally umbilic.

Let M be a 3-dimensional complete space-like submanifold with non-zero
parallel mean curvature vector of an indefinite space form Mp+P(c). We denote
by 5 the square of the length of the second fundamental form of M. It is seen
in Proposition 3.2 that if M is pseudo-umbilic and if // 2 >c, then it satisfies

(1.2) S£3pH2-3(p-l)c

and also in Remark 3.2 a natural example satisfying the equality of (1.2) is
given. Conversely we can prove

THEOREM 2. Let M be a 3-dimensional complete space-like submanifold with
non-zero parallel mean curvature vector h of an indefinite space form Mp+P(c), c
£0, p^2. If it satisfies

(1.3) Ric(M)^<^-(p-3)(H2-c) and S^3pH2-3(p-l)c,

then the following assertions hold,
(1) c<0, and />^4,
(2) M is congruent to

2. H1(cι)xHί(c2)xH1(cz), 0=4, 5,

where Hn(c) denotes an n-dimensional hyperbolic space of constant curvature c.

2. Preliminaries.

Throughout this paper all manifolds are assumed to be smooth, connected
without boundary. We discuss in smooth category. Let Mγp{c) be an (n+0)-
dimensional indefinite Riemannian manifold of constant curvature c whose index
is p, which is called an indefinite space form of constant curvature c and with
index p. Let M be an n-dimensional submanifold of an (n+0)-dimensional
indefinite space form M^+P(c) of index p>0. The submanifold M is said to be
space-like if the induced metric on M from that of the ambient space is positive
definite. We choose a local field of orthonormal frames eu •••, en+p adapted to
the indefinite Riemannian metric of M%+P(c) and the dual coframe ωly •••, ωn+p

in such a way that, restricted to the submanifold M, eu ••• , en are tangent to
M. Then connection forms {WAB} of MJ+ p(c) are characterized by the structure
equations



3-DIMENSIONAL SPACE-LIKE SUBMANIFOLDS 281

(2.1)

(2.2)

where ΩAB (resp. RΆBCD) denotes the indefinite Riemannian curvature form (resp.
the components of the indefinite Riemannian curvature tensor) of M%+P(c).
Therefore the components of the Ricci curvature tensor Ric' and the scalar
curvature rr of M%+P(c) are given as

In the sequel, the following convention on the range of indices is used, unless
otherwised stated:

, B, ---^ £a, β, >-£

We agree that the repeated indices under a summation sign without indication
are summed over the respective range. The canonical forms {<OA\ and the
connection forms {(UAB) restricted to M are also denoted by the same symbols.
We then have

(2.3) ωa=0 for a=n + l,

We see that eίy •••, en is a local field of orthonormal frames adapted to the
induced Riemannian metric on M and ωly ••• , ωn is a local field of its dual
coframes on M. It follows from (2.1), (2.3) and Cartan's Lemma that

(2.4) ω β t =ΣΛt>>, hί^hft.

The second fundamental form a and the mean curvature vector h of M are
defined by

h=

The mean curvature H is defined by

(2.5) H=\h\ =

Let S=ΣX/*?>)2 denote the squared norm of the second fundamental form a of
M. The connection forms {ωίy} of Mare characterized by the structure equations

(2.6)
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where ΩtJ (resp. RιJkι) denotes the Riemannian curvature form (resp. the com-
ponents of the Riemannian curvature tensor) of M. Therefore, from (2.1) and
(2.6), the Gauss equation is given by

(2.7) Rtjk^cQuδjk-δM-JlWtlifk-hίthft).

The components of the Ricci curvature Ric and the scalar curvature r are
given by

(2.8) i?>*=(n-l)^ J k

(2.9) r = n ( n - l ) c - n 2 # 2

We also have

(2.10) dωaβ—Ίlωaγ/\(θγβ= — -κ-

where

The Codazzi equation and the Ricci formula for the second fundamental form
are given by

(2.11) h?jk-h?kJ=0,

(2.12) hfjki-hfμk^-ΣhfmRmjki-ΣhijRntH+ΣhiίjRβaki,

where h?Jk and h%jkι denote the components of the covariant differentials la
and Ψa of the second fundamental form respectively. The Laplacian Ah?-, of
the components h?} of the second fundamental form a is given by

From (2.12) we get

(2.13) ΔA ι«=ΣAa ι j /

The following generalized maximum principle due to Omori [8] and Yau [11]
will play an important role in this paper.

THEOREM 2.1. Let M be an n-dimensional complete Riemannian manifold
whose Ricci curvature is bounded from below. Let F be a C2-function bounded
from below on M, then for any ε>0, there exists a point p in M such that

F(p)<infF+ε, \gradF\(p)<ε, AF(p)>-ε.

By applying this principle the following theorem due to Nishikawa [7] is
proved.

THEOREM 2.2. Let M be an n-dimensional complete Riemannian manifold
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whose Ricci curvature is bounded from below. Let F be a non-negative ^-func-
tion on M. If it satisfies

then F—0 on M, where k is a positive constant.

3. Pseudo-umbilic submanifolds.

This section is concerned with pseudo-umbilic space-like submanifolds of an
indefinite space form M%+P(c). Let M be an n-dimensional space-like sub-
manifold with parallel mean curvature vector hφO of M%+P(c). Because the
mean curvature vector is parallel, the mean curvature is constant. We choose
en+1 in such a way that its direction coincides with that of the mean curvature
vector. Then it is easily seen that we have

(3.1) oύan+i^O, i/=constant,

(3.2) HaHn+ί = Hn+ίH\

(3.3) tτHn+1=:nH,

for any aΦn + 1, where Ha denotes an nXn symmetric matrix (h?j).
A submanifold M is said to be pseudo-umbilic, if it is umbilic with respect

to the direction of the mean curvature vector h, that is,

(3.4) h^=Hδυ.

We denote by μ an nXn symmetric matrix with components defined by μXJ—
hΐ+'-Hδij. We then have

(3.5) trμ=0, I μ 12=tr(μ)2=Σ,μlj=tr(Hn+ί)2-nH2.

So the pseudo-umbilic submanifolds are characterized by the property μ—0. A
non-negative function τ is denoted by r2=Σ/3^n+i(/i^)2. Then we have

(3.6) S=\μ\2+τ2+nH2,

which means that S^nH2, where the equality holds at a point if and only if
the point is umbilic. Hence it is seen that \μ\2 as well as τ2 are independent
of the choice of the frame fields and they are functions globally defined on M.
It is also seen that if the pseudo-umbilic submanifold satisfies r = 0 , then it is
totally umbilic.

Now, in general, it is asserted by Cheng [3] that a complete n(^3)-dimen-
sional space-like submanifold with parallel mean curvature vector h of Sp+P(c)
is totally umbilic if it satisfies
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PROPOSITION 3.1. Let M be an n-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of S%+P(c), />i>2. // M is pseudo-
umbilic and if it satisfies

(3.7) ^~^-c^H2£c,

then M is totally umbilic.

Proof. From (2.13) and the Gauss equation (2.7) and (2.10) we get

(3.8) ΔAς

for any index a. Moreover we see

^ Δ τ 2 - Σ (h?jk)
2+ Σ Af,ΔA&.

Z aφn+l aφn + l

Accordingly it follows from (3.8) and the above equation that we get

-Ur 2- Σ (hfjkf+ncτ2+ Σ
Φ+l φ+

C,
Σ (fjkf Σ &^

aΦn+l aφn+l

- 2 Σ M*Afc.H,A&+ Σ Af.
aφn+l aφn+l

-nH Σ h?mhiγh?j+ Σ Λ'f»

and hence we obtain

(3.9) ~Aτ2= Σ (h?jkγ+ncτ2

+ Σ h"kmhlMMi-2 Σ

+ Σ AS»A&*Λi,A&+ Σ
a, βφn + l a, βφn + l

Σ A£,ASt>A&+1A&-2 Σ A&+1Afi,ASJ1A&

2 J lϊimfϊmk "kj rlij—nn.
Φn+l a

We put Safi=ΣhϊMj for any α, jS^n + l. Then (S«^) is a (/>-l)X(/>-l)
symmetric matrix. It can be assumed to be diagonal for a suitable choice of
en+z, -" , en+p- Set Sa=Saa- We then have τ 2 = Σ 5 Λ . In general, for a matrix
A—(atJ), we define Λ^(τ4)=tr(τ4 tA). Then the above equation can be reduced to
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ΎAτ2= Σ (h?jkγ+ Σ {
L aΦn + l a, βΦn + l

Σ
aφn +

+2trHaHaHn+1Hn+1-nHtrHaHn+1Ha}.

By (3.2), (3.3) and (3.4) and the definition of the function τ, we have

(3.10) ~Aτ2= Σ (h?jkγ+ncτ2+ Σ (S«)2

Σ
a, βΦn +

Obviously we see

(3.11) Σ
a, βφn + i

Suppose p^2. Let

(/>-l)(/>-2)σa=2 Σ
α<J8, α, βφnΛ

Then we have

Hence we obtain

(3.12)

Σ
8, α, βφn +

Accordingly it follows from (3.10), (3.11) and (3.12) that we have

(3.13) ^Aτ2>ncτ2+-J1-ττ
i-nH2τ2

I p — 1

By the assumption of the proposition we get

By (2.8), (3.2) and (3.4) the Ricci curvature is bounded from below by a constant
—(w — 1){H2—c), we can apply Theorem 2.2 to the non-negative function τ2 and
we get

v2=0.

Thus M is totally umbilic. •
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Remark 3.1. Proposition 3.1 is essentially proved by Cheng [3],

Next the case of H2>c is investigated.

PROPOSITION 3.2. Let M be an n-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of M%+P(c), p^2. If M is pseudo-
umbilic and if H2>c, then it satisfies

(3.14) nH2^S£npH2-n(p-l)c.

Proof. Since M is pseudo-umbilic by the assumption, we have μ—0f which
implies S=τ2+nH2 by (3.6). This means that

τ2-n(p-l)(H2-c)=S-nH2-n(p-l)(H2-c)

= S+n(p-l)c-npH2.
By (3.13) we have

(3.15) ±
p l

Given any positive number a, a function F i s defined by F=l/V'S+a, which is
bounded from above by 1/Vα" and is bounded from below by 0. Since the
Ricci curvature of M is bounded from below and since M is complete and
space-like, we can apply the Generalized Maximum Principle (Theorem 2.1) to
the function F. For any given positive number ε>0, there exists a point p at
which F satisfies

(3.16) inf F>F(p)-ε, |gradF|(/>)<ε, AF(p)>-ε.

Consequently the following relationship

(3.17) ^

can be derived by the simple and direct calculations. For a convergent sequence
{εm} such that εm->0(m->oo) and ε<0, there exists a point sequence {pm} such
that \F(pm)} converges to F0='mfF by (3.16). On the other hand, it follows
from (3.17) that we have

(3.18) j

The right hand side of (3.18) converges to 0 because F i s bounded. Accordingly,
for any positive number ε(<2) there exists a sufficiently large integer m0 for
which we have

<~^- for m>m 0

This inequality and (3.15) yield
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2{S(pm)-nH*}{S(pm)+n(p-l)c-npH*}<{S(pm)+aVε,

and hence we get

(2-e)S\pm)+2{n(p-l)c-n(p+lW-aε}S(pm)

-2nH2{n(p-l)c-npH2}-a2ε<0,

which implies that the sequence {S(pm)} is bounded. Thus the infimum Fo of
F satisfies F0φ0 by the definition of F and hence the inequality (3.18) implies
that lim supΔS(/>m)^0. This means that the supremum sup 5 of the squared
norm S satisfies

Remark 3.2. Let M be a maximal space-like submanifold of Hpt^~\cf) and
let Hϊ±pr\c') be a totally umbilic hypersurface of H%+P(c) (0>c>c'), whose
mean curvature is denoted by H. Then M can be regarded as a submanifold
of H%+P(c). It is a pseudo-umbilic submanifold with non-zero parallel mean
curvature vector h and the squared norm S is given by S=S/JrnH2, where S'
is denoted the squared norm of M in i/?±?~1(c/). According to Proposition 3.2,
we have S^npH2-n(p-l)c in Hn

p

+V(c). The last equality S=npH2-n(p-l)c
is equivalent to S'—n{p—l)(H2—c). This is the second estimation of S' ob-
tained by Ishihara [5].

4. 3-dimensional space-like submanifolds.

In this section, for a 3-dimensional space-like submanifold M we shall give
a sufficient condition for M to be pseudo-umbilical. Let M be a 3-dimensional
complete space-like submanifold with non-zero parallel mean curvature vector
of M|+ P(c). From (2.13) we have

(4.1) ΔA&==~ΣAfm/?mt, *-ΣΛSt/?m^ft + Σ A ^ ^ α i *

for any indices a, i and j . By the similar discussion to that in Section 3 we
choose 64 in such a way that its direction coincides with that of the mean
curvature vector. Furthermore, for any fixed point p in M we choose also a
local frame field eίt e2, e3 such that

(4.2) hi^λtδtj

for any 1 and j . By (4.1) we have

from which combining with (4.2) it follows that

(4.3) ^
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On the other hand, since M is a 3-dimensional submanifold, its Weyl conformal
curvature tensor vanishes identically on M, i.e.,

Hence we get

for any distinct indices. By Rn-\-R22+Rz2—r, we have

r

for any distinct indices. Thus the following equation

(4.4)

is derived.

PROPOSITION 4.1. Let M be a 3-dimensional complete space-like submanifold
with non-zero parallel mean curvature vector of M|+ P(c). // it satisfies

(4.5) Ric(M)£δ1<3(c-H2)f

then M is pseudo-umbilic.

Proof. In order to prove this property it suffices to show that the function
\μ\2 vanishes identically. By (4.4) and (4.5) we have

which is equivalent to

(4.6) A\μ 1*^3^-2301/112.

From (2.9) we have

from which together with the assumption we have

Since the Ricci curvature of M is bounded from below and M is complete and
space-like and moreover since the function \μ\2 is smooth, Theorem 2.2 yields
| μ | 2 = 0 , which means that M is pseudo-umbilic. •

Remark 4.1. Proposition 4.1 is a higher codimensional version of a theorem
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due to Aiyama and Cheng [1] for a space-like hypersurface.

Proof of Theorem 1. Since the assumption of Theorem 1 satisfies (4.5), M
is pseudo-umbilic by Proposition 4.1. Accordingly we can apply Proposition
3.1 to this case and we see that M is totally umbilic. •

Next we consider the case of H2>c.

PROPOSITION 4.2. Let M be a 3-dimensιonal complete space-like submanifold
with non-zero parallel mean curvature vector of Mp+P(c). If it satisfies H2>c
and if

(p(4.7) j

then we get

(4.8) \μ\2<3(p-l)(H2-c).

Proof. From (2.9) the scalar curvature r is given by r=6c—9H2-\-S and
hence we get by (3.6) and (4.7)

r-2δί>\μ\2+τ2-6(H2-c)-3(p-3)(H2-c)

Accordingly (4.6) and the above inequality yield

A\μ\2^3\μ\2{\μ\2-3{p-l){H2-c)}.

Given any positive number a, a function F is defined by l/V\μ\2-\-a. Then,
by the similar method to that in the proof of Proposition 3.2, we obtain the
conclusion. •

5. Proof of Theorem 2.

In this section Theorem 2 is proved. Let M be an n(—3)-dimensional com-
plete space-like submanifold with non-zero parallel mean curvature vector of
Mn

p+
V(c), p^2. We assume H2^c and

(5.1) Rtc(M)£d1<j(p-3)(H2-c) and S^3pH2-3(p-l)c.

Then the scalar curvature r is given by r=3(p—3)(H2—c) and hence

r-2δί^3(p-3)(H2-c)-2δι=δ

is a positive constant. From (4.6) we have

(5.2) A\μ\2^3δ\μ\2.
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Given any positive number a, a function F is defined by F=l/V\μ\2+a, which
is bounded from above by 1/Va and is bounded from below by 0. Since the
Ricci curvature of M is bounded from below and since M is complete and
space-like, we can apply the Generalized Maximum Principle (Theorem 2.1) to
the function F. For any given positive number ε, there exists a point p at
which F satisfies (3.16). Consequently the following relationship

(5.3) ^F(pYA\μ\\p)<W+F(p)ε

can be derived by the simple and direct calculations. For any convergent
sequence {εm} such that εm—>0 (m—>oo) and ε m >0, there exists a point sequence
\pm\ such that {F(pm)\ converges to F 0 = i n f F b y (3.16). On the other hand,
it follows from (5.3) that we have

(5.4) jF(pmyA\μ\\pm)<3εm

2+F(pm)εm.

The right hand side of (5.4) converges to 0, because the function F is bounded.
Accordingly, for any positive number ε there exists a sufficiently large integer
ra0 for which we have

(5.5) F(pmyA\μ\\pm)<ε for m>m0.

Since it is seen by Proposition 4.1 that the function \μ\2 is bounded, the in-
fimum Fo of the function F satisfies FOΦQ and hence the inequality (5.5) yields
that ΠmsuρΔ|μ| 2(£m)^;0. This means that the supremum of \μ\2 is equal to
0 by (5.2), because δ is the positive constant. So we obtain μ=0, i.e., M is
pseudo-umbilic, which yields that the equality of (3.14) in Proposition 3.2 holds.
Then the equalities of all inequalities in Section 3 have to hold. Consequently,
from (3.4) and (3.13) it is seen that we have

(5.6) hfjk=O

for any t, j , k and a. Also from (3.2) and (3.11) it follows that we get

(5.7) HaHP=H?Ha

for any a and β. The equations imply that all of Ha are simultaneously
diagonalizable and the normal connection in the normal bundle of M is flat.
Hence we can choose a suitable basis {et} such that

(5.8) λδ=J?δo

for any ιy j and α. The submanifold M is said to be isoparametric [9] if
the normal connection is flat and the charactristic polynomial of the shape
operator Λξ for any local parallel normal field ζ is constant over the domain.

LEMMA 5.1. M is isoparametric.
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Proof. Since the normal connection is flat, it is seen that there exist locally
p mutually orthogonal unit normal vector fields which are parallel in the normal
bundle. So we can choose a suitable parallel basis {ea} and then we have
ωα/9=0. Hence, since we have

(5.9)

setting i=j in the above equation and using (5.6) we get dh?z=Q. Hence
is constant and M is isoparametric. •

LEMMA 5.2. M ts of non-positive curvature.

Proof. Suppose first that there exist indices i, j and a such that h^Φ
From the equation (5.9) we get

from which it follows that eyί<7=0. For any index i we denote by [z] the set
of indices k such that /i&=/i?*. Under this notation the above property shows

(5.10) ωik=0 for any k£lQ.

Accordingly, we obtain

Σωi*Λω*,=0.

In fact, the left hand side of the above equation can be regarded as

J— Σ (ϋikΛωkj+ Σ (OikA(okJ+ Σ

each term of which vanishes identically, because of (5.10). Thus, from the
structure equation

j= — -^ΣiPkijicOk Aωt,

we obtain

Next, suppose that hfi=hjj for distinct indices i and j and for any a.
Then the Gauss equation implies

= * - # 8 - Σ «?) 8 ^0,

because of H2—
Thus M is of non-positive curvature. •

Proof of Theorem 2. First of all, we notice that M is not totally umbilic
under the condition (5.1). In fact, suppose that M is totally umbilic. The
equation (3.6) means that M is totally umbilic if and only if S=nH2, from
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which combining with the second equation of (5.1) it follows that we have
H2=c—0. So M is totally geodesic and it satisfies Ric{M)—0. On the other
hand, by the first equation of (5.1), we get Ric(M)<0, a contradiction.

Now we consider an n-dimensional space-like submanifold M of Rp+P. By
a theorem due to Koike [6] and Lemmas 5.1 and 5.2 it is seen that Mis locally
congruent to the product submanifold

(5.11) HnKci)X ••• xHn<i(cq)XRm

of R%+q whose mean curvature vector is parallel in the normal bundle of M in
Rq+q, where Σ^=i^r+m— n, q^O, m^O and R%+q is a totally geodesic sub-
manifold of Rp+P. Then M can be naturally regarded as the space-like sub-
manifold of R%+p.

The condition for the codimension is next given. For the purpose the
squared norm S of the second fundamental form and the mean curvature H of
M in R£+q and hence in Ryp are calculated. In fact, the product manifold is
constructed as follows: Without loss of generality, an (n+tf)-dimensional semi-
Euclidean space Rq+q of index q^O can be first regarded as a product manifold of

jR?i+1χ ••• xRϊ«+ίxRm,

where Σr=inr+nι=n. With respect to the standard orthonormal basis of Rq+q

a class of space-like submanifolds

of Rq+q is defined as the Pythagorean product

Hn^cί)X ••• xHn*(cq)xRm

q=Rϊ1+1x ••• xRϊq+1xRm: | χ r Γ = —— >θV,
Cr i

where r = l , ••• , q and | | denotes the norm defined by the product on the
Minkowski space i?f+1 which is given by <x, x>=—(xo) 2+Σj=i(^) 2 The mean
curvature vector h of M in Rq+q and hence in Rp+P is given by

h= (n1cίx1+ •" +nqcqXq)

at x—(xu ••• , X Q + 1 ) G M , which is parallel in the normal bundle of M. So, the
squared norm S of the second fundamental form and the mean curvature H of
M in Rp+P are given by

S = - Σ, nrcr) n2H2=- Σ nr

2cr,
r = l r = ί

which yields

(5.12) S-pnH2= — j}nr(pnr-n)Cr=0.
ΐl r = i
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Suppose that p<3. Then we see Ric(M)^δ1<0 by (5.1). Since M is 3-
dimensional and it is congruent to the product submanifold (5.11), the negative
deίiniteness of the Ricci curvature means that M is totally umbilic, a contradic-
tion. We next suppose £^4. This means that M is totally umbilic by (5.12),
a contradiction.

Hence the case of c=0 can not occur.
Suppose next that c<0. By means of Koike's theorem and Lemmas 5.1

and 5.2 again, M is locally congruent to the product submanifold Hni(c1)X---X
Hn*+\cq+1) in H^Kc'), where Σ β

r t
1

1 n r = n, ^ 0 , and ΣqΆ(\/cr)=(l/c')>(l/c)9

and H$+q(c') is a totally umbilic submanifold of H%+P(c).
We investigate the relation between the mean curvature H and the squared

norm S of M in H%+P(c). We consider an n-dimensional space-like submanifold
with parallel mean curvature vector of H%+q(c'). Without loss of generality,
an (n+tf+l)-dimensional indefinite Euclidean space Rq+?+1 of index (q+1) can
be regarded as a product manifold of

where ΣΫ=ιnr~n. With respect to the standard orthonormal basis of
a class of space-like submanifolds

(5.13) HnKc1)X •

of Rqf?+1 is denned as the Pythagorean product

C r )C r

where r = l , ••• , ^ + 1 . The mean curvature vector hf of M in H%+q(c') is given

by
1 9+1

h= Σ (nrcrxr)—c'x
Π r=ί

at x—{xχ, ••• , X ? + 1 ) G M , which is parallel in the normal bundle of Min //J+?(c').
So the mean curvature H' and the squared norm Sf of the second fundamental
form of M in H^+q(cf) are given by

(5.14) n2H'2=n2c'- Σ ' nr

2cr, S'=nc'- Σ nrcr.
r=i r=l

For the mean curvature vector /i' of M in H^+q(cf) the mean curvature vector
h of M in Hl+V(c) is given by h—hfJrh\ where ft" is the mean curvature
vector of H^+q(cf) in Hp+P(c). Consequently, by using (5.14) the mean curvature
H and the squared norm S of M in H%+P(c) are given by

n2H2=n2c'~ Σ nr

2cr + {p~q)\c-cf),
r = l
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β+i

S=nc- Σ nrcr+(p-q)(c-c'),
r= 1

from which it follows that we have

(5.15) S-{npH2-n(p-l)c\

= - ΣJ nr(pnr-n)cr+ \(p-q)+pn- -(p-
71 r = l I U

Suppose that pf^3. Then we see Ric(M)<0 by (5.1). Since M is congruent
to the product manifold (5.13) and it is 3-dimensional, the negative definiteness
of the Ricci curvature means that M is totally umbilic, a contradiction. Ac-
cordingly, we obtain />^4. On the other hand, q must be less than 3, because
of n=3. In order to check whether or not these situations occur, it is divided
into three cases: #=0, 1 and 2.

First we consider the case q—0- Then M is totally umbilic, a contradiction.
Next we consider the case q—1. If p^5, then the first term of the right

hand side in (5.15) is negative and the second one is of non-positive. This also
leads a contradiction. So we have £—4 and cx and c2 are determined by con-
stant curvatures c and c', because of l / c 1 + l / c 2 = l / c / .

The case q—2. If p>6, then the first term of the right hand side in (5.15)
is negative and the second one is of non-positive. Accordingly this case can
not occur. So we have p—4 or p=5.

This completes the proof. •

Remark 5.1. A product manifold H1(cί)xH1(c2)xH1(c<i) is a canonical space-
like submanifold with parallel mean curvature vector of H\(c) and it satisfies
Ric(M)=0 and S=9H2—6c. This means that the estimate of the Ricci curva-
ture is best possible.

Remark 5.2. In the case of p—\, two conditions in (5.1) are equivalent
with each other.
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