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THE HADAMARD VARIATIONAL FORMULA FOR THE

GROUND STATE VALUE OF -Δu=λ\u\*-
1
u

BY TATSUZO OSAWA

1. Introduction. This article is divided into three parts. In every part
we study the Hadamard variational formula for the (non-trivial) ground state
value of the semi-linear equation — Au=λ\u\p~ιu.

Let Ω be a bounded domain in RN (Λ/^2) with smooth boundary dΩ. Let
p be a smooth function on dΩ. We denote v(x) as the exterior unit normal
vector at x^dΩ. If ε is small enough, we have a new domain Ω£ bounded by

dΩε={x+εp(x)v(x); xt

Let p be a fixed number satisfying l<p<oo for N=2, Kp<(N+2)/(N—2)
for

We consider the minimizing problem

(1.1) i.=inff \lφ\zdx,

where

For the sake of simplicity we write || \\LP+HΩS) as || | |p+i,e. It is well known
that there exists at least one solution w ε eC 3 > α ( i2 ε ) satisfying | | M ε | | p + l i e = l , and

—Δu,(x)=λ9uf(x)

and uε>0 in Ωε.
The author calls λε as the Dirichlet ground state value on Ωε and uε as the

Dirichlet ground state solution.
In this note we would like to consider ε-dependence of λε, uε. One of the

main result of this paper is the following: Here Λo^Λ, uo=u.

THEOREM 1. Assume that the number of positive solution u which minimize
(l.l)o is unique. Assume that Ker(Δ+^M p~ 1)={0}. Then, we have the follow-
ing limit.
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/3w£\2

Here d/dvx denotes derivative along the exterior normal direction. Under the
same assumption as above, we have the limit

dw=lim ε~ι(uε — u)
ε-*0

exists and it satisfies

(1.3) (-A-λpuv-χ)δu(x)=δλuv(x) in Ω

-p(x)^(x) ondΩ.

Remark. When Ω is a ball the assumption that the number of positive
solution is unique is satisfied. See Gidas-Ni-Nirenberg [8]. See also p. 152 of
Dancer [4], The assumption of uniqueness of u can not be satisfied always.
Brezis-Nirenberg [3] shows a counter example for uniqueness for β^annulus.

In section 2, we prove the Lipschitz continuity with respect to ε of ground
state value. In section 3 we prove (1.2) under some assumption of Lipschitz
continuity of solutions. In section 4 we give a condition by which we have
Lipschitz continuity of solutions. In section 5 we study δu under the assump-
tion that Ker(A+λpup-ι)={0}.

The Robin problem.
We consider the minimizing problem

(1.4) J, = inf ( ί \Vφ\*dx + k\ n φ2dσx),
Xε ^JUε JoSJe /

where

Here k>0 is a positive constant. We see that there exists at least one solution
of M 6 G I £ such that it satisfies

(1.5) -Aus(x)=λeue

p(x), uε(x)>0

x— uε{x)+k uε(x)=0

We write λo=λ, uo(x)=u(x). We call λε as the ground state value and ue as the
ground state solution of (1.4)ε.

THEOREM 2. Assume that u is unique. And we assume that

Then,
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(1.6)

exists and is equal to

(1.7) \(\ltu\2

JoΩ

where l t denotes the gradient on the tangential plane at x^dΩ. Here Hi denotes
the mean curvature at x^dΩ with respect to the interior normal direction.

Under the same assumption as above we get

(1.8) 5u(x)=:\imε-\uε(x)-u(x)) in Ω

-[ {ltΓ{x, y)!tu(y)-Γ(x, y)(λu(y)*
JdΩ

+{k2-{N-l)kH1(y))u(y))}p{y)dΩ

where Γ—Γ(x, y) is the Green function of —A—λpup~ι under the Robin condition
on the boundary dΩ.

Remark. As far as the author concerns, the semilinear problem (1.5) did
not discuss in other articles.

In Part II, section 6, we examine the continuity property of λε. In section
7 we prove (1.8) under the assumption of Lipschitz continuity of uε.

Neumann condition.
We consider the minimizing problem.

(1.10) λ=inf( \lφ\2dx,
Xε JΩ£

where

If we replace Xε by Yε={φ^H\Ωε)} |lίP||p +i,β=l}. Then, we see that i , =

inf \ \lφ\2dx=Q, when ws=:constant. It is easy to show that λε>0, and there
Yε JΩS

exists at least one solution uε of (1.10) which satisfies

(1.11) -Auε(x)=λε\uε\
p-1uε(x)

-^-uε(x)=0

The author would like to call λε as the second state value and uε as the second
state solution of (1.10). The condition
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is natural, since

-[ Auε(x)dx=-[ {du/dvx)dσx=λε[ \uε\
v~ιuε{x)dx.

JΩε JdΩε JΩε

We write λo=λ, uo—u.
We have the following

THEOREM 3. We assume that Ker(Δ+^|w| p- 1)={0}. We also assume that
u is unique up to its signature. Then, we have uε (ε>0) such that

(1.12)

See uε for the Notation in section 2. Moreover,

(1.13) δλ=\ϊmε-\λε-λ)
ε-0

exists and is equal to

(1.14) δλ

Under the same assumption as above we have

(1.15) δu(x)= lim ε~\uε(x)-u(x))
e-»0

and zs

(1.16) δu(x)=~δλu(x)/(λ(p-l))

WtΓ(x, y) Ίtu(y)-λΓ(x, y)\u{y)\»^u(y)}pdσx

Here Γ=Γ(x, y) is the Green (Neumann) function of —A~λp\u\p~ι with respect
to the Neumann condition.

In section 9 we prove the Lipschitz continuity of λε.

Part I

§ 2. Lipschitz continuity of ground state value.

In this section we prove the following.

PROPOSITION 2.1. There exists a constant C independent of ε such that

\λε-λ\£Cε.

Remark. From this proposition we can deduce \\u\\Cs,acΩε^C. See the
Appendix.
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Proof of Proposition 2.1. First we would like to construct nice C°°-diffeo-
morphism between Ω and Ωε. Let Uo be a neighbourhood of dΩ in Rn such
that the following holds:

For any I G [ / 0 there exists unique x' such that \x — x'\=άιst(x, dΩ). We
write x'=P(x). Then, P e C°°(/70, dΩ). Let v(x) be an exterior normal vector
at x. Then, v<ΞC°°(dΩ, RN).

We construct the following diffeomorphism. Let Ω' be (Ωft be, respectively)
a bounded domain with boundary dΩ'={x—δv(x); xζΞdΩ] (dΩ"={x—2δv(x);
x<=3Ω\. Fix a compact set /ί in Ω. Then, KcΩ"<mΩ'(mΩ for any sufficiently
small <5>0. Fix small ε^O. Then, take δ such that Ω'<^Ωε. Take φ^C°°{Ω, R)
such that 0^p<ίl , ^ = 0 on Ω" φ=l on i2\β' . Then, we set

Then, we can take ε such that Φε is a bijection Ω2^Ωε. We see that Φ ε : Ω2^Ωε

is surjective diffeomorphism. It is easy to see that the following properties
(2.1), (2.2), (2.3) hold.

(2.1) If we put Φe(xy=x+εSt(x),
Then, Sε£ΞC°°(Ω, Rn), ||5β||σm(β)n^CTO (independent of ε) for
Conversely, there is ίeeC°°(^e, Rn) such that \\tε\\cmcΩ^n^Cm (independent
of ε) for meMj{0} satisfying Φj\x)=x + εtε(x), x^Ωε.

(2.2) For xt=K, sβ(x)=t,(x)=0.

(2.3) If xG(some neighbourhood of dΩ)Γ\Ω1 then Sε(x)=p(P(x))v(P(x)).
If xG(some neighbourhood of dΩε)Γ\Ωε, then tε(x)=-p(P(x))v(P(x)).

It is an easy exercise that JΦe(x)=l+O(ε), where JΦε(x) denotes Jacobian.
By using the above Φε we can make pull back and push foward of func-

tions. We put (Φε*/)(x)=/(Φε(x)) for function / on Ωε.

Notation. If ψ^C\Ωε), then φ=Φ*φ

ψ£ΞC°(Ω), then φ=(Φ*yιφ.

Let Δ denote the Laplacian. Then, we denote

A=Φε*~1AΦs*.

We also write ^=Φβ*lΦ*-\ V=Φε*~ιVΦε*.

Example. If u satisfies —Auε(x)=λεuε(x)p x^Ωε then, —Δuε(x)—λεuε(x)p

in
For Φε the following result hold. We do not give a proof.
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LEMMA 2.2. We have the following properties ( i )~(viii).
( i ) | /Φ,(x) |=l+O(e) uniformly for X<EΩ._
(ii) | /Φ ε " 1 (x) |= l+O(ε) uniformly for x^Ωε.
(iii) Φ ε * : Cm a(Ωε)->Cm'a(Ω),

φ*-i. cm>a{Ω)->Cm'a(Ωε),

is a bounded linear mapping for any ?n^N\J{0], O ^ α ^ l .
(iv) For φ€=C\Ωt), (dφ/dv)(x)=(d/dv)φ(x + εp(x)v(x)) xtΞdΩ.

Here d/dv denotes the normal derivative at dΩ.
(v) For φ(ΞCι+m'a(Ωε), then

for m^N\j{0}, O ^ α ^ l .
(vi) For C2+m'a(Ωε), then

for

(vii) For φ^Cm'a(Ω^jΩε)f \\φ—φ\\cm.aiQ)^Cm,Sίφ-*O as ε->0. And the con-
vergence is uniform for WφWcm

(viii) For φ^Cι+m a(ΩvjΩε), then \\φ—φ\\cm.atf^Cmε\\φ\\ci+m,a<QϊQ;) for

We give a proof of (vii), (viii) only for n— 0, a—0. φ(λ)—φ(x)-=φ(Φε{x))—
<p(x), where snp\Φε(x)—x\^Cε and the continuity implies (vii). φ(x)—φ(x)—
φ(Φε(x))-φ(x)<\Φε(x)-x\\\^φ\\cocΩUίΓ^ implies (viii).

Now we are in a time to prove Proposition 2.1. We have

= [\Ίu\2dx+O(ε)

= λ+O(ε).

On the other hand

= [ \u\p+ίdx+O(ε)

Since u\dQε=0, u^H\{Ωε). Therefore,

Conversely we also get Λ^Λε+0(ε). Thus, we get the desired result.
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§ 3. Variational formula for ground State value.

In the present time, we assume that

(3.1) Hff.-

as ε->0. Under this assumption we will prove Theorem 1. The validity of the
assumption (3.1) is discussed in sections 4 and 5.

In this section we use an idea of using Whitney's extension by which the
Hadamard variational formula for linear problem is proved. See Fujiwara-
Ozawa [5].

We can show the following.

LEMMA 3.1. There exists a C3 extension ΰε of uε to Rn such that
( ί ) ||«

(i i) \\ΰ

Proof. ( i ) is trivial. We have

II «β — tt||<72<β)=||«β— U

Then, by (3.1), | |wε—uWwo^Cε. We know that uε—Uε in Ω. Then,

by (viii) of Lemma 2.2.
For the sake of simplicity we put f(t)=\t\p-ιt. Then, fr(t)=p\t\v-\

LEMMA 3.2. The estimates

(i) ll/(β.W
(ii) \\f(Uε)-f
(iii) ||ΔS.+λ/

hold.

Proof, ( i ) is determined by Lemma 3.1. By the mean value theorem, we
have

Then, \\f(Uε)-f{u)-f\u){Uε-u)\\cκΩ, - \\ff{u + θε{nε-u))-f'{u)){nε-u)\\CHΩϊ ^

We want to prove (iii). We have Mε+λεf(uε)=0 in Ω. Then, Δ«,+Jlβ/(«,)
=Δ(w ε-w ε)+λ(/(w ε)-/(w ε))+(Δ-Δ)w ε . Since ||wε-wε||ί72cβ)^Cε, we hove ||Δ(«e

— Uε)\\caω^~O{ε) as in the proof of (ii) in Lemma 3.1. Similarly | |/(δ e)—
/(fl.)ll(7ocΛ=0(e).

We know that \λε\<±C. Therefore, as in the Appendix \\uε\\cκΩ^C, which
implies ||(Δ-Δ)β,||(7ocfi)=0(e).
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We prove the following.

LEMMA 3.3. The equality

ΰ u II , v
^ 3l> 11(70(3/3) J

holds.

265

Proof. We put x^dΩ. Then, 0=M 5 (X+S/)(XMΛ;))=M £ (X+S/)(XM4 On
the other hand

Here 0(ε) is uniform with respect to x<=dΩ. Then,

(70(3/3) ' (70(3/3)

du

By Lemma 3.1 we get the desired result.

The following Lemma 3.4 is easy to see. Thus, we omit its proof.

LEMMA 3.4. For given φ^C\ΩεKjΩ). Then,

φdx

and o(ε) is uniform with respect to φ satisfying

The following Lemma is used in the proof of variational formula for the
ground state value.

LEMMA 3.5. The equation

holds.

COROLLARY 3.6. The equation

is valid.

Proof of Lemma 3.5. We have

(3.2)
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Here we used uf'{u)—pf{u). (3.2) is equal to

The first term in the right hand side of (3.2) is o(ε) by Lemma 3.2 (ii). The
second term in the right hand side of (3.2) is O(ε2) by Lemma 3.1 (ii).

We see that

\ f(Uε)ϋεdx=\ f{u)udx—\.

Thus, the third and the fourth term in the right hand side of (3.2) is equal to

— I f(Uε)ΰεdx+\ f(ΰε)ΰεdx=-ε\ f(uε)ΰερdσ+o(ε)
JΩε jΩ jdΩ

= - s ( f(u)updσ+o(ε)=-ε\ \u\'+1pdσ+o{ε).
JdΩ jdΩ

Here we used Corollary 3.6 and Lemma 3.1, (ii), Lemma 3.2 ( i ) .
We are now in a position to prove Theorem 1. By the Green formula and

^ | ^ = 0 , we have

(3.3) f (ΔM Uε-uAΰε)dx= [φu/dv)ΰεdσ .

We have

\ Au uεdx = — λ\ f(u)ΰεdx.
JΩ }ΩJ

On the other hand,

\ uAΰεdx—\ uAuεdx-\-\ uAΰεdx
)Ω }ΩrΛΩε }Ω\Ωε

u(Aΰε+λεf(ϋε))dx

=(3.4)
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The second term in the right hand side of (3.4) satisfies

by Lemma 3.2 (iii). Thus,

Therefore, the left hand side of (3.3) is equal to

using \ uf(u)dx—l, where

]2=^(f(uε)u-f(u)Uε-(p-l)f(u)(ΰε-u))dx.

Since λε—λ=O(ε), \\f(uε)—f(u)\\Cocω—0(ε)f we have estimated a term in the above
formula. The integrand in h satisfies

\\f{tiε)u-f(u)uε-(p-l)f{u)(Uε-u)\\cκΩ,

•=Wf{ΰε)u-f{u)u-uff(u)(Uε-u)\\cκΩϊ

= \\u(f(uε)-f(u)-f'(u)(ΰε-u))\\cotπ>=o(ε)

by Lemma 3.2 (ii).
Summing up these facts we get by Lemma 3.5

(3.3)=λε-λ-ε(p-l)/(p + l)λ[ I u I p+1pdσ+o(ε)
jdΩ

= λ.-λ+o(ε).

By Lemma 3.3, the right hand side of (3.3) is equal to

-e f (du/dv)2pdσ+o(ε).
JdΩ
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Therefore, λε—λ~ — ε\ (du/dv)2ρdσ+o(ε), which implies Theorem 1.

§ 4. Variational formula for ground state solution.

In this section we assume the following.

(4.1) Ker(Δ+^u l > - 1 )={0}.

And we will show the following important result.

PROPOSITION 4.1. Assume that the minimizer of {I.I) is unique. Assume that
(4.1) holds. Then, we have (3.1).

Remark. The condition (4.1) will be closely related to bifurcation phenomena.

Proof of Proposition 4.1. By the regularity theorem (in the Appendix)
l|κ,||<78.«c£t>^C. Thus, ||β.||(78,βc5)^C. We take 0<a'<a. Then, C8 β(5)c*
Cz'a'(Ω) is a compact embedding. Thus, K given by K—{uε\ 0 < ε < l } is com-
pact in CZt<x'(Ω). As a corollary of this compactness result, we get the follow-
ing:

Assume that the ground state solution on Ω is unique, then for any ground
state solution on Ωε (ε>0), ue, we have uε->u strongly in C3>α'(i2). Thus,

We have (A+λp\u\p-1)(uε--u)=(A-{-λff(u))(ius-u)=(A-A)uε-(λε--λ)f(uε)-
λ(f(uε)-f(u)-f'(u)(ίίε-u))=gε. Here we used Auε-\-λεf(uε)=0. Also uε=u=O
on dΩ.

Thus, by the assumption and (4.1)

(4.2) W&s — uWc^a'cδ

Here

KA-A)uε\\ca><D)<Cε\\u\\C2,a>cω (Lemma 2.2 (vi))

Thus,

ll/(wε)

without any use of \\uε—uWc^Ω^Cε. We have

Then,

Then, by (4.2)

ε — U \\
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Therefore, we get the desired result.

5. Explicit representation of δu.

Assume that the ground state solution in Ω is unique. Assume that
u*-1)^^). Then, we want to show that

δu(x)= lim ε~\ue(x)—u(x))
e-0

exists and which is equal to

Here Γ(x, y) is the Green function of the operator — (A+λp\u\p~ί) under the

Dirichlet condition.

Proof. We put / ( ί ) = U l p " 1 ί , ff(t)=p\t\p~ι. We use the same notation as

before. By the Green formula we have

ΰε(x)-u(x)=-<(Ay+λf'(u(y)))Γ(x, y), ΰε(y)-u(y)}y

, y) ,

Γ(x,
dΩ

Γ 9 Γ - A
— \ -~—u£dσy

JdΩ ΰVy

We fix xefl. Then, \\dΓ/dvy\\c°yGΩ^C. Thus, by Lemma 3.3.

Ji— — ε\ -^—^- pdσy+0(ε).
JdΩ OVy OVy r

We examine /i.
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Γ(£a.+i.f(a.)+λf'(u)a.)dx

Ω (-Γλ.f(tt.)+λf'(u)β.)dx

-\QΓ(-λf{u)+λf'{u)u)dx

=\aπ-λsf(U,)+λf'(u)Us)dx

fl Γ(Aύt+λJ(ae))dχ

-\oΓ(-λf(u)+λf'(u)u)dx

= -(λ.-λ)\oΓf(u)dx

-{l.-X)\0Γ{M.)-f{u))dx

-λ\oΓ(f(a.)-f(u)-f'(uXu.-u))dx

Γ(AQ.+k.f(a.))dx

= -(λ.-λ)Jt-Jt-λJt-Jt.

We have (A+λpf'(u))u/(Z(p-l))=f(u) in Ω and u/(λ(p-l))=0 on dΩ. There
fore, Jt=-u/(λ(p-ί)). Fora'X), ||/4llci.«'<A^C|i.-Jl|||/(fi.)-/(iί)l|c«'<fl)
by Lemma 3.1 (ii). We see that /5=o(ε) by Lemma 3.2 (ii). We have

by Lemma 3.2, (iii).
Summing up these facts, we get Jι=^(εδλ/(λ(p—l)))u+o(ε), which implies
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Part II

6. Continuity of Robin ground state value.

PROPOSITION 6.1. There exists a constant C independent of ε such that
\λε—λ\<*Cε holds. Moreover, \\uε\\Cs,a(.Ωε^C.

Proof. By the same argument as in the proof of Proposition 2.1, we have

f \Vu\2dx=[ \lu\2dx+O(ε)
JΩ ε JΩ

\ \U\P+Idx = l+O(ε)
jΩε

for ύ^H\Ωε). Also, we have

[ ka2dσx=[ ku2j(x)dσx,
JdΩε JdΩ

where J(x) is a Jacobian of x-+x + εp(x)v(x). It is easy to see that J(x)=l+O(ε).

Therefore, f ku2dσ=[ ku2do+O{ε). Thus, f \lu\2dx+[ ku2dσ=λ+O(ε).
)dΩε JdΩ }Ωε JdΩε

Summing up these facts λε<λ-\-O(ε). We also have the inverse relations

We get the desired result.

PROPOSITION 6.2. Assume that the ground state solution of (1.4) ts unique.
Then, ΐίε->u strongly in C3'a'(Ω).

Proof. This is an easy consequence of regularity of solution and compact
embedding C3 α ' ( β ) c C 3 α ( β ) for a<a'.

7. Variational formula for the ground state value.

In this section we assume that \\uε—u\\c2c^=:O(ε). This is proved in the
later section.

PROPOSITION 7.1. Under the above condition

dλ=[ \

Here H1=Hi(x) is the first mean curvature at x^dΩ with respect to the inner
normal vector. Here 7 f denotes the gradient on the tangent plane.

Proof of Proposition 7.1 goes as similar as stated before. We need some
Lemmas which are characteristic to Robin problem.



272 TATSUZO OSAWA

LEMMA 7.2. The equality

holds.

Proof. v ε(x+e ί)(x)v(x))=(v(x)-e7 ( /o(Λ;)Xl+ε2 |7 { |o|2)-1 '2. Thus,

-^-ΰ.(x+εp(x)v(x))=Vΰ.(x+εp(x)v(x)) vt(x+εpv{x))

On the other hand Ut(x+ερv)=a,+ερ(dat/dv)+o(ε). Then, 0=((d/dvε)+k)Uε(x

w||c2(β)->0 implies our Lemma 7.2. Here it should be noticed that \\uε—u\\
<iCε does not used here.

LEMMA 7.3. The equality

holds.
/. For

O(e). Then,

We are now in a position to prove Theorem 2, (1.7). By the Green formula
and ((3/d»)+*)u|ao=0,

(7.1) f (Δw wε-MΔw s)ύίx=-f u(^- +

As in the proof of theorem for the ground state value of Dirichlet condition
we have

On the other hand the right hand side of (7.1) is equal to
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( {
JdΩ

Here there is the equation as the background of our calculus.

0=f lt(ultup)dσ
jdΩ

dΩ

Summing up these facts we get the desired result. It should be remarked
that the relation Δw = -Λwp, du/dv=-ku, and Aφ=d2φ/dv2+(N-l)H(dφ/dv)-{-Vt2φ
on dΩ, etc was used.

8. Variational formula for the ground state solution.

We have the following Proposition.

PROPOSITION 8.1. // the ground state solution u is unique and Ker(A+λpup~ι)
= {0}, then ||fie-tt||c2($)=O(e) holds.

The proofj is similar to the Dirichlet case using Lemma 7.3. Thus we
omit it.

We prove the following Proposition 8.2.

PROPOSITION 8.2. Assume that u is unique and Ker(A+λpup~1)={0]. Then,

δu=-(δλ/(λ(p-ΐ)))u
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-[ (ltΓΊtΓ-Γ(λup+(k2-(N-l)kH)u))dσ.
JdΩ

Proof. By the Green formula with ((d/dv)+k)u\dΩ=0, (Φ/dv)+k)Γ\dΩ=Q,
we have

As in the Dirichlet case Pί=ε(δλ/(λ(p-l)))u+o(ε) by [ Γf(u)dx=-u/(λ(p-l)).

(—kp-~ p-^-^Λ-ltultPjdσ-^o^ε) for xeίλ Therefore, we get the

desired result by Lemma 7.2.

Part III

9. Neumann second state value.

In the section we prove the following Proposition 9.1.

PROPOSITION 9.1. There exists a constant C independent of ε such that

(9.1) \λs-λ\^Cε

holds. Moreover,

(9.2) l|tt,IU«csβ>^C.

Proof. Proof of (9.2) is in the Appendix. We prove (9.1). Recall that
\Ωε). Then,

f \lu\2dx
jΩε

\ \ίί\p+1dx=:l+O(iε).

We also have

f \u\p-1udx=\ |M|p-1M|/Φβ |ύίΛ:=ί \u\p'1udx+O(e)=O(e).

We have the following Claim. The proof of this Claim is rather complicated.
So we want to prove Proposition 9.1 using this Claim 9.2.

Claim 9.2. There exists a constant Cε^R such that vε=uε+Cε satisfies
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jΩε

and C,=0(e).
We use this Claim. Then, vεfΞH\Ωε),

f \Vvε\
2dx=λ+O(ε)

JΩε

\ \vs\
p+ιdx=\ | κ ε + C ε | p + 1 = ( \uε\

p+ιdx+O(ε)=l+O(ε).
Jί2 ε J12 g J i<ί g

Therfore, /ls^-f O(ε).
Conversely we get λ^λε+O(ε) using the diffeomorphism uε2^uε. Thus, we

have the desired result.

Proof of Claim 9.2. We generalize Claim 9.2 as the following statement.
Fix φε^C\Ω) such that

( i ) W

( ϋ ) I

( i n ) J β ^
unique constant Cε(ΞΞR such that

dx^ and C.=O(e).

Proof. We put ^(0=Ulp"1ί, then g'(t)=p\t\p-\ Thus, for any x(Ξi2, the
function t-+g(φε(x)+t) is strict monotone increasing function. Since φε^C°(Ω),
we have

Urn \s(φe(x)+t)dx=±

The continuity ί -»\ ^(^£(x)+0^x is easy to see. Therefore, there exists C£

such that ί ^e+Ce)rfjc=O. We put F(t)=\ g(φε-{-tCε)dx. Then, F'(t)=

S
J12 J12

Csg\φε

JrtCε)dx. Then, by the mean value theorem there exists 0<£ε<l such
that F(l)-F(0)=F'(tε). We know that F(l)=0, F(0)=O(e). therefore

We want to show

(9.3)

We have
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>\ \φA*-ιdx, if C ε>0.

If C ε <0, then

Therefore,

Now we assume that (10.3) does not hold. Then,

[ I ψ s ^ - ' d x — > 0 o r ί \ ψ e \ p - ί d x — > 0 .

Without loss of generalities

( iφA^dx—^O.
J<Pε>°

Then, by (i) we have [ \φε\
pdx-^0, [ \φε\

p+1dx-+0. Therefore,
jφε>0 J^ε>0

On the other hand O(e)= f \φε\
p-1φεdx=([ —f \\φε\

p-ιφεdx. Therefore,

and

ί |ω ε |^
+VΛ:—>0.

We have a contradiction by (ii). Now the assertion holds.

10. Variational formula.

We impose the assumption

(10.1)

and

(10.2)

and assume that the minimizer u is unique up to its signature. Then, we have
Theorem 3.

We do not give Theorem 3, since it is a routine work for the readers who
read Dirichlet and Robin cases.
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Appendix.

We state the regularity theorem in the following manner. This is a con-
sequence of famous Sobolev embedding theorem (Adams [1]), Schauder estimate
(Agmon-Douglis-Nirenberg [2]), Lp-estimate (Agmon-Douglis-Nirenberg [2]) and
bootstrap argument.

Let λε, uε be the Dirichlet (Robin, Neumann) ground state value, solution,
respectively. Then, there is a locally bounded function Fsuch that wεeC3>α(42ε)
and \\uε\\C3,aφε^F(λε). (If p<2 then, a=p-l, If />^2, α€=(0, 1) can be taken
arbitrary.)

The reader who is unfamiliar with Hadamard's variation may be referred
by Hadamard [9], Garabedian [6], Garabedian-Schiffer [7].

Our theorem combined with Ozawa [10] we get a singular variational
formula Osawa-Ozawa [11] for nonlinear eigenvalues.
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