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UNIQUENESS OF MEROMORPHIC FUNCTIONS
THAT SHARE THREE VALUES

By SHOU-ZHEN YE

1. Introduction and Main Results.

Let f and g be two nonconstant meromorphic functions in the complex
plane. If f and g have the same a-points with the same multiplicities, we say
f and g share the value a CM. (see [1]). It is assumed that the reader is
familiar with the notations of the Nevanlinna Theory (see, for example, [2]).
Let E denote any set of finite linear measure of 0<r<co. The notation S(», f)
denotes any quantity satisfying

S, lI=o(T(r, ) (r— oo, r&E).
H. Ueda proved the following theorem.

THEOREM A (see [3]). Let f and g be two distinct nonconstant entire func-
tions such that f and g share 0,1 CM., and let a be a finite complex number,
and a+0, 1. If a is lacunary for f, then 1—a is lacunary for g, and

(f—a)(g+a—1=a(l—a).
In [4] Y7 Hong-Xun proved more generally the following theorem.

THEOREM B. Let f and g be two distinct nonconstant entire functions such
that f and g share 0, 1 CM., and let a be a finite complex number, and a+0, 1.
If 6 (a, f)>1/3, then a and 1—a are Picard exceptional values of f and g res-
pectively, and

(f—a)(g+a—D=a(l—a).

In this paper we extend the above theorems to meromorphic functions, and,
in fact, prove the following theorem.

THEOREM 1. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0,1, coCM., and let a be a finite complex number, and
a+0,1. If
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da, +ileo, >3,

then a and 1—a are Picard exceptional values of f and g respectively, and also
oo 1s so, and
(f—a)(gtae—1)=a(l—a).

In place of Theorem 1, we prove more generally the following theorem
which is a generalization of Theorem A, Theorem B and Theorem 1.

THEOREM 2. Let f and g be two distinct nonconstant meromorphic functions
such that f and g share 0,1, oCM., and let a,, a,, -+, a, be p (=1) distinct
finite complex numbers, and a,#0, 1 (i=1,2, ---, p). If

2 2(p+1)
z=215(!1;, N+d(eo, f)>~—p+2 ) )
then there exists one and only one a, in a,, a,, -+, a, such that g, and 1—a,

are Picard exceptional values of f and g respectively, and also « is so, and

(f—a))(gta,—D=al—a,).

2. Some Lemmas.

The following lemmas will be needed in the proof of our theorems.

LEMMA 1. Let f and g be two distinct nonconstant meromorphic functions
such that f ana g share 0, 1, coCM., then

1—gf
f:l——ei‘“’ (2)

el )
1=, (3)

where a and B are entire functions and e*=l, ef=#£1, ef-2=£1 and
T(r, e)=0T(, ) (£E),
T(r, e®)=0T(r, f)) (r£E).
Proof. By assumption, we have

f=ge*® (4)
and
f—1=(g—1)e#, (5)

where both ¢® and ¢f are entire functions, and
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e%=#1, ef=£1, ef-a=£],

It follows from (4) and (5) that (2) and (3) hold.
By Nevanlinna’s second fundamental theorem, we obtain

T(r, <N(r, )+N<r, )N, @+S(r, g)<3T(r, H+5, 8).

Hence
T@r, 9)<@+o(NT(r, /) (&EE).

It follows from Nevanlinna’s first fundamental theorem that
TG, ST, NT(r, ) <UHADT(r, ) rE)
and
T(r, e)=T(r, f~D+T(r, Z L D) <UHoWT@r, /) rEE).
This completes the proof of Lemma 1.

LEMMA 2 (see [5]). Let f;(G=1,2,---,n) be n linearly independent me-
romorphic functions satisfying

Hl

3o
then for j=1, 2, -, n we have
n n 1
TG, 1< EN(r, )+ NG, f)+N G, D= S NG, £)=N(r, 3)

+0(log r-+log T »(¥)) reE),

where D denotes the Wronskian

FErT0, fRD e, f0)
and T,(r) denotes the maximum of T(r, f,) (1=1, 2, -, n).

LEMMA 3. Let b be a finite complex number, and b+0, 1. Suppose that f
and g are two distinct nonconstant meromorphic functions such that f and g share
0,1, 0o CM.. Using the notations of Lemma 1, let f,=(1/1—b)(f—b)(1—ef-2),

=(1/1—b)e?, fy=(—b/1—b)ef-2. If the f,(i=1, 2, 3) are linearly independent,
then

N(r, })<N(r,f )+, ),
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N(r = 1)<N( = b>+5(r’f)

Proof. By assumption, from Lemma 1 we easily see that all f,(=1, 2, 3)
are entire functions, and

Bre=t,
Ty(N=0T(, 1)),

where Ts(r) denotes the maximum of T'(r, f,) (=1, 2, 3).
Applying Lemma 2 to functions f, (=1, 2, 3) we obtain

TG, eﬂ)<N(r, N : — )Mo NS .

f—b

Note that ef=zconst. and (2), then we have
1 1 1
IV(l’, ?>:N(7’, ;ﬁtf>—N<r, -e?_tl‘)"{—N(T’, f)

=T(r, )= N(r, vy )+ NG, S, 1)

<N(r 25)+5 1.
Let us put
G= eI, g et g=— e, then 3g=l.

Assume that the g;t=1, 2, 3) are linearly dependent, then there would be con-
stants d;(¢z=1, 2, 3) which can’t all equal zero, such that
d1g1+dzgz+d3g3=0-

Multiplying the above equation by (b/1—b)e’~%, and noting that Zs‘, fi=1, we
=1
obtain

'ds)f1+(d2—d3)fz“d3f3:0 .

Since d,—d; and d,—d, can’t all equal zero, hence the f,t=1, 2, 3) are also
linearly dependent, contrary to the above assumption that the f,t=1, 2, 3) are
linearly independent. So the g,(:=1, 2, 3) must also be linearly independent.
Noting that e*=const. and (3), in a similar manner, we can prove that

N(r, = 1)<N(r,f )+S ).

This completes the proof of Lemma 3.
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By Nevanlinna’s second fundamental theorem, we can easily prove the
following lemma.

LEMMA 4. Let f and g be two nonconstant meromorphic functions, and let
Ci, €z and ¢y be three nonzero constants. If

afteg=cs,
then

TG, f)<1V(r, —}—)+N(r, -;—;)-’:—N(r, N+Se, f).

3. Proof of Theorem 2.
In the following, we shall use the notations of Lemma 1 and Lemma 3.

Suppose that the f,(7=1, 2, 3) are linearly independent for any b=a, (i=1,
2, -, p). By Lemma 3

N(r, %)<N(r, ﬁ)+5(n N G=1,2,p

and

N(r, L )<N(r,

Hence we have

L)Se ) G=12, ),

1

N(r, 5)<5 BN(r 25 )+,

and
N(r 7o)< 5 BN(r 7=+t 1.

By Nevanlinna’s second fundamental theorem

(b+DT(, HN<N(r, )+N(7', s+ NG, f)+2N(r, S 1)

<IN BN 2N D)+, 1)

< P2 41— otan 3, DT, P4, - (6)
Since

p+2
p

so (6) is a contradiction. Hence the f;(=1, 2, 3) are linearly dependent for at

PEELp1-( B das N+aCeo, H)F<pH1,
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least one of the a,(i=1, 2, .-+, p), say for b=qa,. Thus for the fixed value b=
a, there would be three constants (cy, ¢,, ¢3)#(0, 0, 0) such that
cifiteafetes fi=0. (7)

If ¢,=0, from (7) we have ¢,#0, c;#0 and e*=Fk,, where k,=(bc:/c,) clearly
is a constant which depends on b=qa;, and k,+0, 1. Then we have f—1+#0
by (3). Hence by Nevanlinna’s second fundamental theorem

PTG, NN (r, 2

NG EN(r )+ )

f—'az
1
f_a't

=No, P+ ZN(r — )45, £

So that

2 8a., )+, H=1,

which contradicts the condition (1) of the theorem. Thus ¢,#0.
In the following, suppose that ¢;#0. From (7) we get

—_ s s
e
Hence

(1) fut (1= 2 o= (8)

We shall discuss the following four cases:
a) Assume 1—(¢y/c¢,)#0 and 1—(¢s/¢,)#0.
If both ¢f and e®-* are nonconstants, then, by Lemma 4, we obtain

T(r, <N (r, SHN(r, 32 )+ N, e 4S0, D=0, ) (),

which is impossible. Thus at least one of ef=(1—b)f, and ¢’ *=—(1—b/b)f,
would equal a constant, so that both of them would be so by (8). Hence f
and g are reduced to constants, which is a contradiction. Therefore this case
is impossible.

b) Assume 1—(c¢,/¢;)=0 and 1—(cs/c,)#0.

Clearly ef~2=k,, where k, is a constant which depends on b=a,, and £k,
+0, 1.

Then we have f=(1—ef/1—Fk,) by (2). For any complex number ¢ we
obtain

fee= 1_1k2 (1—c(1—ky)—ef).
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If 1—c(1—£k;)#0, then
a(c, /)=0.

Since d(eo, f)=1, it follows from (1)

2 dan fr>2

p+2
Hence there exists one and only one g, in ay, a,, -+, a, such that
1—a;(1—Fky)=0.
Thus

f=a,1—ef), g=1—a,)(1—eF).

Consequently
(f—a,Xg+a;,—1)=a,(1—a,),

and in this case ¢, and 1—a, are Picard exceptional values of f and g res-
pectively, and also <o is so.

¢) Assume 1—(cy/c)#0 and 1—(cs/c,)=0.

Clearly ef=const.. As the same as the case when ¢;=0, this case is im-
possible too.

In fact, then we have f+0 and

2 8(a, H+o(e, 1

by Nevanlinna’s second fundamental theorem.

d) Assume 1—(c¢;/c;)=0 and 1—(c¢s/c,)=0. \

Clearly we have ¢;=c,=c;, which contradicts >} f;=1. Thus this case is
also impossible. i

Summarize the above, we conclude that under the hypotheses of the theorem,
there exists one and only one a, in a;, a,, -+, a, such that ¢, and 1—a, are
Picard exceptional values of f and g respectively, and also <o is so, and

(f—a)gt+a;—D=a;(1—a,).
This completes the proof of Theorem 2.
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