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ON THE FREQUENCY OF COMPLEX ZEROS OF

SOLUTIONS OF CERTAIN DIFFERENTIAL

EQUATIONS

BY STEVEN B. BANK1

Abstract.

In this paper, we investigate the frequency of zeros of solutions of linear
k-\

differential equations of the form wck:>-\- 2] QjWί^-{-(Q0-\-Rep)w~0, where
1

k^2, and where Qo,~ ,Qk-u R and P are arbitrary polynomials with
and P non-constant. All solutions / ^ 0 of such an equation are entire func-
tions of infinite order of growth, but there are examples of such equations
which can possess a solution whose zero-sequence has a finite exponent of
convergence. In this paper, we show that unless a special relation exists
between the polynomials Qo, ,Qk-i> and P, all solutions of such an equation
have an infinite exponent of convergence for their zero-sequences. This
result extends earlier results for the equation, wck>-\-(Q0+Rep)w—0.

1. Introduction. Several recent papers (e.g. [7], [8], [9], [10], [11], [15])
have dealt with the investigation of the frequency of zeros of solutions of
equations of the form,

(1.1) wίk^+(Rep+Q)w=0t

where k^2, and where R, P, and Q are polynomials with R^O and P non-
constant. It was shown in [7; § 5(b), p. 356] that for any polynomial P{z) of
degree r ^ l , there exists a polynomial Q(z) of degree 2r—2 such that the
second-order equation,

(1.2) w"+(ep+Q)w=0,

possesses two linearly independent solutions each having no zeros. This result
led to an investigation in [8] of the more general equation (1.1) of arbitrary
order k^2, and it was shown in [8] that if the degree of Q is less than kr—k,
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then the exponent of convergence (denoted λ(f)) of the zero-sequence of any
solution / ^ 0 of (1.1) satisfies ;}(/)= oo. More recently, it has been shown in
[9] that when the degree of Q exceeds kr—k, then the conclusion λ(f)—oo for
all solutions / ^ 0 of (1.1) holds except possibly when a special relation exists
between P and Q (see § 4(B) below).

To the author's knowledge, no examples have been found of an equation
(1.1) of order k>2 which possesses a solution / ^ 0 for which λ(f)<oo. However,
the situation concerning examples of solutions satisfying Λ(/)<oo is far different
for the broader class of equations obtained by allowing middle terms with poly-
nomial coefficients in the equations (1.1), namely for the class of equations of
the form,

(1.3) w<*> + kilQjwa>+(Qo+Rep)w=O,
.7 = 1

where Qo, ••• , Qk-i, R and P are polynomials with i?^0 and P non-constant.
For example, it was shown in [6 p. 357] that each of the third-order equations,

(1.4) w"-w'-ea'w=0,

and

(1.5) 2

possess a fundamental set of zero-free solutions. In fact, we show in § 9 below
that zero-free solutions of (1.3) can exist for any choice of the polynomial P,
and can occur regardless of the order k.

In this paper, we investigate the frequency of zeros of solutions for the
whole class of equations (1.3) of arbitrary order k^2. We can assume that
Qk-^O by the usual device of making the change of dependent variable w=φu,

where </)=expf — \(Qk-ι/k\ which has the effect of preserving the zero-sequence

of a solution, as well as making the coefficient of uik~Ό equal to zero in the
transformed equation. Thus, it suffices to treat the class of equations of the
form,

(1.6) +Σ

where k>2, and where Qo, ••• , Qk- z, R and P arbitrary polynomials with
and P non-constant. In spite of the examples (1.4), (1.5) and those constructed
in §9 which have zero-free solutions, our main result (§3 below) shows that
unless a special relation exists between the polynomials Qo, ••• , Qk-2, and P in
(1.6), all solutions / ^ 0 of (1.6) will satisfy Λ(/)=oo. The precise form of this
special relation requires certain notation from [5] which is presented in §2
below for the reader's convenience. It should be noted that for any given
equation (1.6), it is easy to check whether or not the special relation holds for
the equation. We remark that the results in [8] and [9] for the equation (1.1)
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are encompassed by our main result here (see §4(B) below). In addition, our
main result also sheds light on the situation for (1.1) when the degree of Q
equals kr—k, which is not treated in [8] and [9]. (See §4(B) below.)

The proof of our main result follows a pattern similar to the pattern of
the proof in [9] for equation (1.1), but with additional complications. We
examine the behavior of a solution / ^ 0 of (1.6) satisfying Λ(/)<°°, in a sector
where ep grows rapidly and in an adjoining sector where ep decays. Our ana-
lysis in the first sector is very similar to that in [9] for (1.1), but in the second
sector is much more complicated for the following reason: In a sector where
ep decays, the equation (1.6) can possess a property which was first investigated
in [1] and is called the "global oscillation property" (see [5; p. 276]). This
means that for any ray, arg z~ θ lying in the sector, and for any ε>0, there
is a solution / ^ 0 of (1.6) which has infinitely many zeros in the sector |arg
z— θ\<ε. (A simple example (see §7 below) of an equation (1.6) with this
property is

(1.7) w<k:>+z2w'f+zw'+(l+ep)w=O for &^4,

where P is any nonconstant polynomial. A third-order example can be obtained
by taking k=3 in (1.7) and applying the usual change of variable mentioned
earlier to annihilate the second-order term.) When an equation (1.6) has the
global oscillation property, a linear combination of a fundamental set in the
sector need not have one term in it which asymptotically dominates the remaining
terms, and the argument in [9; pp. 307-308] for (1.1) is no longer valid for
(1.6). A new approach is thus required in this case, and this new approach is
based on results which are proved in § 7 below.

The author would like to acknowledge very valuable conversations concern-
ing these results with his colleague, J.K. Langley.

2. Preliminaries for Main Result. Given an equation (1.6) where Qo, ••• ,
Qk-2, R, and P are polynomials, we will call the equation,

(2.1) w<*>+kJ:Qj(z)wa>=0f
J = 0

the associated equation to (1.6). (The associated equation has polynomial coeffi-
cients.) We first rewrite (2.1) in terns of the operator θ which is defined by
θw—zw'. (It is easy to prove by induction that for each m = l , 2, ••• ,

( m \

ΣbJmθJw),
.7 = 1 /

where θ3 is the j t h iterate of the operator θ, and where the bjm are integers
with bmm = l. In fact, as polynomials in x,

(2.3) Σ bJnx'=x(x-l) - (*-(n-l)).)
l
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When written in terms of θ, let (2.1) have the form,

(2.4) Σβ/*)0'u/=O, where θ°w=w.
.7 = 0

(Of course, the Bj(z) are rational functions.) By dividing the equation (2.4)
through by the highest power of z which occurs in all Laurent expansions of
the Bj(z) around z=oo, we may assume that for each /, we have 23,=O(l) as
2->oo, and there exists an integer p>0 such that B3=o(l) as z—>oo for j>pf

while Bp has a finite nonzero limit at oo. As in [5; §3], the integer p is called
the critical degree of (2.1). When (2.1) is written in the form (2.4), we then
form the algebraic polynomial,

(2.5) H(z,v)=Σ>zJBj(z)vJ~p.

Then, clearly, H(z, v) is a polynomial in v of degree k — p, having rational
functions for coefficients, and satisfying H(z, 0 )^0 . By a Newton polygon
method (see [14; p. 105]), we determine the first terms czβ of the k — p possible
expansions (in descending powers of z) around z—°° of the algebraic function
defined by the equation H(zt v)—0. The set of these first terms, {cxz^y ••• , csz

βs}
is called the exponential set for (2.1) as in [5; §3], and it is easy to see that
8j> — 1 for each /. (Of course, if k — p then the exponential set will be empty.)

Finally, if g{z) is an analytic function on the slit plane \argz\<π, which
has a representation of the form,

(2.6) g(z)=cz-ι+aa+oa)) as z—> oo,

where c is a nonzero complex number and d is a positive real number, then as
in [5; p. 270], the indicial function for g is defined to be the function,

(2.7) IF(g, β)=cos(dθ±argc) for -

3. Main Result. We now state our main result. The proof will be given
in §8.

THEOREM. Given an equation (1.6) where k^2, and where Qo, ••• Qk-2> R
and P are any polynomials with R^ΞO and P non-constant. Let Γ denote the
exponential set for the associated equation to (1.6). Assume that for some real
number θ0 in (—π, π] for which 1F(P', ΘQ)—0, the following two conditions
hold (a) For any element N in Γ for which A^/Pr->oo as z->&> in | a r g ^ | < π ,
we have IF(N, θo)Φ0; (b) For any element N in Γ for which N/Pf tends to a
finite non-zero limit, say cN, as z—>oo in | a r g ^ | < π , we have cNφ—(k — l)/2k and

(3.1) IF{(cN+((k-l)/2k))P'9 θ*)Φb.

Then, the zero-sequence of any solution /=£0 of (1.6) has an infinite exponent of
convergence.
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4. Remarks and Examples.

(A) In view of example (1.4), it might be of interest to apply our result
to the equation,

(4.1) wm-w'+Repw=0,

where R and P are arbitrary polynomials with R^O and P non-constant. The
associated equation is ww—w'=0. Using (2.2) and (2.3), we write the associated
equation in the form (2.4), and we obtain,

(4.2) z-zθBw-3z-3θhv-(z-ί-22-3)θw=0.

Thus the critical degree of the associated equation is p=l, and the algebraic
polynomial (2.5) is

(4.3) H(z, v)=zv2-3v-(l-2z~2)z.

The Newton polygon shows that the exponential set of the associated equation
is Γ={N1} N2} where M = l and N2=-l. If the degree of P i s at least 2, then
Nj/P'->0 for 7 — 1, 2 as z-+°°, so that the conditions (a) and (b) in the theorem
are satisfied vacuously for any θ0 for which IF(P', 0O)=O. Thus λ(f)—oo for
all solutions of (4.1) if P has degree at least 2.

We now assume P(z) is of degree 1, say P(z)~rz+s. If r is real, the
hypothesis (b) in the theorem is violated for the following reasons: First, the
only possible values of θ0 are ±π/2. Second, the two possible values of cN are
± l / r . If r = ± 3 , we have cN~—(k — l)/2k for one of the two elements of Γ.
If r is real but not ±3, then (3.1) is violated at both θo=±π/2. Thus, if r is
real, our theorem is not applicable which is in accord with the example (1.4).

If r is not real, then the theorem is applicable and we can conclude λ{f)—oo
for all solutions / ^ 0 of (4.1). This can be seen as follows: Let θ0 be any
value for which 1F{P', 0O)—0. It is easy to check that if (3.1) is violated for
either M = l or N2= — 1, then r would have to be real since any two zeros of
the cosine must differ by a multiple of π.

(B) We remark here that for the special equation (1.1), where k^2 and
where R, P, and Q are polynomials, with R^O and P of degree rϊ^l, our main
result encompasses the results in [8] and [9]. To see this, we note first that
the equation associated to (1.1) is wik^ + Qw=0. If QΞΞO, the critical degree is
k, so the exponential set is empty. If Q^O, say Q(z)=αnz

n(l+o(l)), then it is
easy to see that the elements of Γ are the functions czn/k where ck + αn=0.
Thus, if n<kr—k, then either Γ is empty or each element N in Γ satisfies
N/P'->0 as z-^oo so the hypotheses (a) and (b) of our main result are satisfied
vacuously. Thus we can conclude λ(f)=°o for all solutions if n<kr~k. If
?t>kr—k, then N/P'->°o as z-^oo for all elements N in Γ. Hence, the hypo-
thesis (b) is satisfied vacuously, and the condition given in [9] to conclude
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)=oo for all solutions, is precisely the condition that hypothesis (a) be satisfied
for all Nin Γ. Of course, when n — kr—k (which is the case that is not treated
in [8] and [9]), we have N/P' tending to a finite non-zero limit for all N in
Γ, and hence for those equations (1.1) satisfying hypothesis (b), we can conclude
that Λ(/)=oo for all solutions

5. Concepts from the Strodt theory [17].

(a) [17; §94]: The neighborhood system F{a, b). Let —π^a<b^π. For
each nonnegative real-valued function g on (0, (b—a)/2), let V(g) be the union
(over all δe(0, φ~a)/2)) of all sectors, a+δ<arg(z-h(δ))<b-δ} where Λ(ί)=
g(δ)eHa+b)/2. The set of all V(g) (for all choices of g) is denoted F(a, b\ and
is a filter base which converges to oo. Each V(g) is a simply-connected region
(see [17; §93]), and we require the following simple fact (see [5; p. 269]):

LEMMA 5.1. Let V be an element of F(a, b), and let ε>0 be arbitrary.
Then there is a constant R0(e)>0 such that V contains the set, α + ε<Jarg z^b—
ε, \

As in [2], we will say that a statement holds except in finitely many direc-
tions in F(a, b), if there exist finitely many points r1<r2<" <rq in (α, b) such
that the statement holds in each of F(a, rx), F{ru r2), ••• , F(rq, b) separately.

(b) [17 § 13] : The relation of asymptotic equivalence. If f(z) is an analytic
function on some element of F(a, b), then f{z) is called admissible in F(a, b).
If c is a complex number, then the statement f-*c in F(a, b) means (as is cus-
tomary) that for any ε>0, there exists an element V of F(a, b) such that
\f(z)—c\<ε for all ZZΞV. The statement / < 1 in F{a, b), means that in addi-
tion to /-»0, all the functions 0$/->O in F(a, b), where θ3 denotes the operator
θJf=z(Logz)--(LogJ-1z)f'(z), and where (for k^O), θ) is the kύ\ iterate of θ3.
The statements fx<f2 and / i ~ / 2 in F(a, b) mean respectively / i / / 2 C l and
/ i — / 2 < / 2 . (This strong relation of asymptotic equivalence is designed to
ensure that if M is a non-constant logarithmic monomial of rank <p (i.e. a
function of the form,

(5.1) M(z)=Kza«(Logz)ai ». (Logpz)ap.

for real aJt and complex KφO), then / ~ M implies f'^M' in F(a, b) (see 17;
§28]). As usual, za and Logz will denote the principal branches of these func-
tions on | a r g z | < π ) . If / ~ M in F(a, b) where M is given by (5.1), then we
will denote a0 by δo(f), ax by δi(/) etc..

The following two facts are proved in [12, p. 309] and [17; §28] res-
pectively :

LEMMA 5.2. Let f(z) be admissible in F(a, b). Then:
(A) // /->0 in F{a, b), then zf'(z)->0 in F(a, b).
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(B) / / / « 1 in F(a, b\ then 0 , / « l in F(a, b), for each / = 1 , 2, ••• .

We will write Λ ~ / 2 in F(a, b) to mean that / i ~ c / 2 for some nonzero
constant c. An admissible function f{z) in F(a, b) is called trivial in F(a, b)
if f<tz~a in F(α, 6) for every a>0. If / ^ ^ - 1 + d in F(a, 6), where c^O and
d>0, then the indicial function of / is the function lF(f, φ) defined by,

(5.2) IF(f,φ)=Cos(dφ+argc) for a<φ<b.

(It is obvious that IF(f, φ) has at most finitely many zeros on {a, b)). If g is

any admissible function in F(a, b), we will denote by \g, any primitive of g

in an element of F(a, b). We will require the following two facts (see [5; p.
270]):

LEMMA 5.3. Let f^cz~1+d in F(a, b), where cφO and d>0. If (au fa) is

any subinterval of (a, b) on which lF{f, φ)<0 (respectively, IF(f, φ)>0), then

for all real a, exp\f€za (respectively, exp\/>z α ) in F(aλ, bx).

LEMMA 5.4. Let a=a-\-bi be a complex number. Then for any ε>0, we
have za-ε€za and za<za+ε in F(-π, π).

We will also require the following facts. The first is obvious and the second
follows from [17; Lemma 30]:

LEMMA 5.5. (a) // b is a real number, then on | a r g z | < π , we have \zbι\^L
e l5 |7Γ and \zbι\ >e~ι^π.

(b) // / is a trivial function in F(a, b), Then f is also a trivial function
in F(a, b).

(c) [17; §49], A logarithmic domain of rank zero (briefly, an LDQ) over
F(a, b) is a complex vector space L of admissible functions in F(a, b), which
contains the constants, and such that any finite linear combination of elements of
L, with coefficients which are logarithmic monomials of rank ^p for some p^O,
is either trivial in F(a, b) or is ~ to a logarithmic monomial of rank <p in
F(a, b). (Examples of such sets L (where we can take (a, b) to be any open
subinterval of (—π, π)) are the set of all polynomials, the set of all rational
functions, and the set of all rational combinations of logarithmic monomials of
rank ^ 0 . More extensive examples can be found in [17; §§128, 53]).

If / belongs to an LD0 over F(a, b), then in F(a, b), clearly either / is
trivial or f~cza for some complex cφO and real a (so that δo(f)=a). If / is
trivial, we set δo(f)— — °°.

(d) [3; §3]. If G(v) is a polynomial in v, whose coefficients belong to an
LDo over F(a, b), then a logarithmic monomial M is called a critical monomial
of G if there exists an admissible function h^M in F(a, b) such that G(h) is
not ^G(M) in F(a, b). The set of critical monomials of G can be produced by
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using the algorithm in [3 § 26] which is based on a Newton polygon construc-
tion. This algorithm shows that the critical monomials are of rank <JO. (In
the special case where the coefficients of G(v) are rational functions, the critical
monomials are precisely the functions cza which form the first term of one of
the expansions around z=oo of the algebraic function defined by G(v)=0. (This
fact follows from [3; §5(c)].))

6. A result from [2].

Let k be a positive integer, and let {RQ(z), -- , Rk(z)\ be contained in an
LD0 over F(a, b) for some {a, b) with —π<a<b^π, and assume that Rk(z) is
non-trivial (see §5(b)) in F(a, b). Using (2.2), rewrite the equation,

(6.

in

(6.

1)

the

2)

form,

k

Σ

Rk(z

Bj(z)θ>

)wc*>-f•Rk-i(z)w< "1:

where θ°w

»+ -. +R0(z)w=0.

= wf and θw—zwr.

By dividing equation (6.2) through by the highest power do(Bj) of z which
occurs in the expansions of all the functions Bj(z) for all / = 0 , •••,&, we may
assume that for each j , we have either 5/<Cl or J B , « 1 in F(α, b), and there
exists an integer p^O such that J3, <1 for j>p, while Bp is ~ to a nonzero
constant (denoted Bp{oo)). The integer p is called the critical degree of the
equation (6.1). The equation,

(6.3) F * ( α ) = Σ S / o o ) α > = 0 ,

is called the critical equation of (6.1). Clearly F*(a) is a polynomial in a, of
degree p, having constant coefficients. Let the distinct roots of F*(a) be a0,
••• , ar, with aq having multiplicity mq. (Thus, Σιfnq=p.) Let Mlt ••• , Mv be
the /? distinct functions of the form za*(Logzy for 0^q<^r, and integers /
satisfying 0<^j£mq—1. We call the set {Mi, ••• , Mp}, the logarithmic set for
(6.1). (If ί = 0 , the logarithmic set is empty.) The following result was proved
in [2; § 7 ] :

L E M M A 6.1. Let k be a positive integer, and let {R0(z), ••• , Rk(z)\ be con-
tained in an LD0 over F(a, b), and assume Rk(z) is not trivial in F(a, b). Let
p be the critical degree of equation (6.1) and let {Mu - , Mp) be the logarithmic
set for (6.1). Then, except in finitely many directions in F{a, b), the equation
(6.1) possesses admissible solutions ψι(z), ••• , φp(z) such that φ^Mj for 7 = 1, ••• , p.

Under the hypothesis and notation of Lemma 6.1, any set {φu •••, φp\ of
admissible solutions of (6.1) satisfying φ^Mj for / = 1 , •••, p in some F(au W
is called a complete logarithmic set of solutions of (6.1) in F(au bx). (See [2;
§11].) The following fact was shown in [2; §10]:
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LEMMA 6.2. Under the hypothesis of Lemma 6.1, any complete logarithmic
set of solutions {φu ••• , φv) of (6.1) which is admissible in F(aί} bx) has the
following property If clf ••• , cv are any complex constants for which Σj%iCjψj
is a trivial function in F(alf bι), then all c}—0.

We return now to the equation (6.1) which we assume has been written in
the form (6.2), and has critical degree p. We form the algebraic polynomial
H(v) in v of degree k — p defined by,

(6.4) H(v)= ΣzJBj(z)vJ-p.

The set of critical monomials of H(v) (see § 5(d)) is called the exponential set
for (6.1). (In view of the remark in §5(d), this definition agrees with the de-
finition of exponential set for (2.1) given in §2.) If k — p, the exponential set
for (6.1) will be empty. The algorithm in [3; §26] shows that each element
of the exponential set for (6.1) is of the form czβ where β> — l.

7. Main lemma on asymptotic integration. We begin with the concept of
a "logarithmic differential field" which is defined in [16; p. 244].

DEFINITION 7.1. Let Φo denote the set of all functions of the form czn for
complex cφO and real a. A logarithmic differential field of rank zero (briefly,
an LDFo) over F(a, b), is a set Γo of functions, each defined and admissible in
F(a, b), with the following properties: ( i ) Γo is a differential field (where, as
usual, we identify two elements of ΓQ if they agree on an element of F(a, b));
(ii) Γo contains Φo; (iii) For every element / in Γo except zero, there exists M
in Φo such that f^M over F(a, b). (The simplest example of such a field over
F(—π, π) is the set of rational combinations of the elements of Φo. This field
contains the rational functions.) We remark that it follows immediately from
[18; §2.76 and §7 : 2.73] that every LDFo over F(a, b) is an LD, over F(a, b),
and so the concepts and results in § 6 are valid for LDFo. It also follows from
[17; §53(c)] that if Γ o is an LDFo over F(a, b), then the set of functions of
the form f+T, where / belongs to Γo and T is trivial in F(a, b), also forms
an LDo over F(a, b). The following theorem is proved in [5; Theorem 3.3]:

LEMMA 7.1. Let k be a positive integer, and let Λ0(z)t Aλ(z), ••• , Ak(z) be
functions which belong to an LDFo over F{a, b), and assume Ak(z)^0. Let p be
the critical degree of the equation,

(7.1) Ak(z)w<*>+Ak-1(z)w<k-ι>+ ••• +A0(z)w=0,

and let {Nlt ••• , Ns) denote the exponential set for (7.1). Using (2.2), let (7.1)
have the form Ω(w)—Q, where Q{w)—^kj=oBj{z)ejw, when written in terms of
the operator θ. Then, there exist a nonnegative integer d, with s^d^k — p,
and a set {Vu ••• , Vd} of d distinct functions such that all of the following hold.
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(a) For each j , the function V} belongs to a logarithmic differential field
of rank zero over F(a, b), and there exists n e ( l , •••, s} such that Vj^Nn over
F(a, b).

(b) // jφm, then there exists a strictly positive real number c—c(j, m) such
that Vj-Vmπ2-

1+C over F(a, b).
(c) For each /e{ l , ••• , d), the equation Ωj(u)=O, where

(7.2)

has coefficients belonging to a logarithmic differential field of rank zero over
F(a, b), and has a strictly positive critical degree t}.

(d) tx+'

Remark. The functions Vu ••• , V d can be explicitly calculated from the
equation (7.1) (see [5; p. 276]).

We are now ready to state and prove a result on the asymptotic integration
of (1.6) in sectors where ep decays. We will prove the result for a more general
class of equations.

L E M M A 7.2. Let k be a positive integer, and let A0(z), ••• , Ak(z) be functions
which belong to an LDF0 over F(a, b). Assume Ak(z)^0 and consider the equa-
tion (7.1). Let p, Nlt ••• , Ns, Ω(w), Vu ••• , V d, Ωx(u), ••• , Ωd(u), h, ••• , td be
exactly as in the statement of Lemma 7.1. Let G^z), ••• , Gk(z) be any admissible
functions in F(a, b) which are trivial in F(a, b) (see §5(b)), and consider the
equation,

(7.3) h{As{z)+G,(z))wi»=Q.

Using (2.2), let (7.3) have the form Λ(w)=0 where Λiw^^^H^Θ^, when
written in terms of the operator θ. For each j^{l, ••• , d), let Λj{u) denote
the operator,

(7.4) Λ(u)=

Then, all of the following conclusions hold
(a) Each of the equations, Λ(w)=0, Al(u)=0, ••• , Ad(u)=0 has coefficients

belonging to an LD0 over F(a, b).
(b) The critical degree of Λ(w)=Q is p, and for j — 1 , ••• , d, the critical

degree of Aj(u)=0 is t3.
(c) Except in finitely many directions in F(a, b), the following two con-

clusions ( i ) and (ii) hold:
( i ) The equation Λ(w)—0 possesses a complete logarithmic set of solutions

{ψι> '" > ψp}, and for each /e{ l , ••• , d}, the equation Λ/w)=0 possesses a com-
plete logarithmic set of solutions {<pJti, ••• , ψj.tj} ',

(i i) // we set Δo^ {^Ί, , <pp\, and
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(7.5)

for ; e { l , ••• , d], then the set Δ0UΔ1U ••• KjAd is a fundamental set of solutions
of equation (7.3).

(d) // (ai, bι) is any open subinterval of (a, b) such that the elements of
Δo, Δi, ••• , Ad are all admissible in F(aϊf bx) and such that none of the indicial
functions IF(VJf φ) (for / e { l , ••• , d)) and IF(V,-Vm, φ) (for all j and m with
jΦm) have any zeros on (aίy bi), then the following is true. If /^ΞO IS any
solution of (7.3) which is admissible in F(alf bx), then there exist a trivial func-
tion G(z) in F(au W and constants cm which are not all zero, such that on some
element of F(aly bx) either

(7.6) f=cιψι+ .- +cpφp + G

or for some n E {1, ••• , d}f

(7.7)

Proof. Set Φ(u/)=Σj=oG^u;CJ). Using (2.2), let the equation Φ(w)=0 have
the form Ψ(w)=Q, where Ψ(w)—Σtk

J^oEjθ
Jw, when written in terms of the

operator θ. It then follows easily that

(7.8) Λ(w)=Ω(w)+Ψ(w) and HJ=BJ+EJ for all j .

Since all the functions Gj are trivial in F(a, b), clearly the same is true for the
functions E3. (We note that the coefficients of Λ(w)—Q belong to an LD0 over
F(a, b) since A(w)=Q is the equation (7.3) whose coefficients Λn-{-Gn are con-
tained in an LD0 by the remark in Definition 7.1).

For each j , define Ψj(u) by the formula,

(7.9) y>(u)=

and so clearly from (7.8) we have,

(7.10) ΛJW^ΩJW+ΨJW for / = 1 , ••• , d.

Since the coefficients of Ωj(u) belong to an LDF0 while the coefficients of Ψ3(u)
are all trivial in F(a, b) (since all Ej are trivial), it now follows as above that
the coefficients of each equation Aj(u)=0 belong to an LD0 over F(a, b). This
proves conclusion (a) completely.

Since the critical degree of Ω(w)—0 is p, and since the functions E} are
trivial, it now follows from (7.8) and the definition of critical degree that
Λ(w)=Q also has critical degree p. Similarly, since the critical degree of
Ωj(u)—§ is tj, the same is true for Λ/w)=0 by (7.10) since the coefficients of
Ψj(u) are all trivial in F(a, b). This proves conclusion (b).

Part ( i ) of conclusion (c) now follows from Lemma 6.1 and conclusions (a)
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and (b). The fact that the elements of Δo, ••• , Ad are all solutions of equations
(7.3) follows from the definition of Λj(u) in (7.4).

Now let F(a1} bι) be any neighborhood system with (au bx)^{ay b), on which
the elements of Δo, , Ad are all admissible, and such that none of the indicial
functions 1F(VJ, ψ) (for all /) and lF(Vj—Vm, φ) (for jΦm) have any zeros on
{au bι). (See Parts (a) and (b) of Lemma 7.1). By applying Lemma 5.3 with
f=Vj, and then with f=Vj—Vm for jΦm, it follows that the set of functions,

(7.11) r = { l , expjlΛ,

has the following property which we will refer to as Property (*): The ratio
of two distinct elements of Y is either trivial in F{au W or its reciprocal is
trivial in F(au bx). It then follows from Lemma 5.4 that if g^An and ΛeΔTO,
where m and n are distinct elements of {0, 1, ••• , d}, then either g/h or h/g
is trivial in F(alt bx). Thus the sets Δo, ••• , Ad are mutually disjoint, and hence
their union has precisely k elements since tx-\- ••• Λ-td — k — p by Lemma 7.1. To
prove that these k solutions are linearly independent on any element of F(au bx)
on which they are admissible, we assume the contrary. Thus, on some element
T of F(ai, bι)f there is a linear combination of the union Δ0U UΔ d, with some
nonzero coefficient, which vanishes identically. Letting / denote the subset of
{0, 1, ••• , d) consisting of all j for which some element of Δ, appears in the
combination with a nonzero coefficient, we can write the dependence relation as
Σ e/ ^ = 0 , where each <s3 is a linear combination of elements of AJy and where
some coefficient in the combination a3 is nonzero. In view of Property (*) for

Γ, there exists an element n £ / such that exp\Fn asymptotically dominates all

other explF; for j^I in F(alf bι) (where we define V3 to be the zero function

if 7=0). Writing the dependence relation as,

(7.12) * » = - Σ { * , : /e/-{n}} ,

and dividing through by exp\Vn, the right-hand side of (7.12) becomes a trivial

function in F(aίf bx) by Property (*), while the left-hand side becomes a linear
combinations (with a nonzero coefficient) of a complete logarithmic set of solu-
tions of Λn(u)=0 (or Λ(w)=0 if n=0). This is a direct contradiction of Lemma
6.2, and thus we have shown that ΔoW VjΔώ is a fundamental set for (7.3).
This proves conclusion (c).

To prove conclusion (d), we let / ^ 0 be a solution of (7.3) which is admis-
sible in F(alf bι). Thus by conclusion (c), there is an element T of F(au bx)
on which / can be written as a linear combination of the elements of Δ0W •••
KjAd, and clearly not all coefficients in the combination can be zero. As in the
proof of conclusion (c), if we let 1 denote the subset of {0, 1, ••• , d\ consisting
of all for which some element of Aj appears in the combination with a
nonzero coefficient, then we can write the relation as / = Σ i e / <*]> where a3 is
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a linear combination of the elements of AJ} and where some coefficient in σ, is
nonzero. Using Property (*) for Y in (7.11), we have as before that there is

an element « G / such that exp\Fn asymptotically dominates all other exp\F ;

for JΪΞI in F(au bλ) (where V3 is defined to be the zero function if j—0).
Writing the relation for / as

(7.13) f= ,

we see that if n=0, then (7.13) is of the form (7.6) where G is trivial in

F(au bι), while if nΦO, we obtain (7.7) when we factor the term exp\Fn from

the right-hand side of (7.13). This proves conclusion (d).
Remark. In § 1, it was stated that an equation (1.6) could have the "global

oscillation property" in a sector where ep decays. To see this, we note that
in a sector a<zvgz<b where ep decays, the function ep is trivial in F(a, b)
by Lemma 5.3 so that (1.6) is an equation of the form (7.3) and hence we can
apply Lemma 7.2 to it. Writing (1.6) in terms of the θ operator so it has the
form Λ(w)—0, and letting Vu ••• , Vd and Λγ{u)f ••• , Λd{u) be as in Lemma 7.2,
we can assert that the equation (1.6) will have the global oscillation property
if either of the following holds: ( i ) The critical equation of Λ(w)=0 possesses
at least two distinct roots having the same real part; (ii) For some J G { 1 , •• ,U((,
the critical equation of Λj(u)=0 possesses at least two distinct roots having the
same real part. To see this, assume that ( i ) holds so that by conclusion (c)
of Lemma 7.2, we have that except in finitely many directions in F(a, b), the
equation (1.6) possesses solutions fι^za and f2^zβ, where a and β are distinct
but have the same real part. For any F(aίf b\) where /Ί and f2 exist, we can
use [5; Lemma 7.1] to construct for any θ^(aίt bι) and any ε>0, an appropriate
linear combination of fί and / 2 which has infinitely may zeros on |argz— 0 | < ε .

If (ii) holds, the solutions / x and f2 are of the form fm=(exmVλgm for m—

1, 2 where gx^za and g2^zβ. We again use [5; Lemma 7.1] to construct an
appropriate linear combination of gx and g2 as before, say clgi

Jrc2g2, and thus
C1/1+C2/2 will have infinitely many zeros on |argz— θ\<ε.

For the example (1.7), when it is written in terms of θ using (2.2), it has
the form (6.2) where B0=l+ep, 5 t < l , B2^l, and 5 ,«1 for ; > 2 . Thus in any
F(a, b) where ep is trivial, the critical equation (6.3) of (1.7) is α 2 + l = 0 , and
so (1.7) satisfies condition ( i ) above and thus possesses the global oscillation
property in F(a, b).

We will also require the following result in the proof of our main result:

L E M M A 7.3. Let n be a positive integer. Let φu G, Gu ••• , Gn and σ be

admissible functions in an F(a, b) such that G, Gu ••• , Gn and a each —»0 over

F(a, b) while for some nonzero constant K, we have φ{~>K over F(a, b). Let

β, βu ••• , βn be any nonzero complex numbers, ana let λu ••• , λn be n distinct

nonzero real numbers. Set
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(7.14) H=

Then the following hold:

(a) // 7i = l, then over F(a, b) we have,

(7.15) zH'(z)/zιλ^—>Kt where K^KβJλ^O.

(b) // n>\, then over F{a, b), zH\z)/zιλ^ is of the form,

(7.16)

where OΊ—>0 over F(a, b).

Proof. We differentiate (7.14) and compute zH'(z). Since G, G,, ψι—K,
and a all ->0 over F(α, ύ), we know by Lemma 5.2 that the same is true for
zG'', zGj, zσ'', zφ[, and hence also for zφ'Jφi. Since zxλJ is bounded by Lemma
5.5, it now follows from the formula for zHr that,

(7.17)

where σ2-»0 over F(a, b). Dividing the relation (7.17) by zιλί and using the
fact that zιλl is bounded from below by a nonzero constant by Lemma 5.5, we
easily obtain (7.15) if n = l and (7.16) if n > l .

Remark. Since relation (7.16) is of the same general form as (7.14) but has
one fewer term in the summation, it is clear that Lemma 7.3 can be used re-
peatedly to reduce the summation to one term so that Part (a) of Lemma 7.3
is eventually applicable. Thus, if H is given by (7.14) with n>l, then repeated
operations of differentiation and multiplication by a complex power of z will
eventually yield a function which tends to a finite nonzero limit in F(a, b).

8. Proof of the Main Result. We assume we are given an equation (1.6)
satisfying the hypothesis of the theorem. We also assume initially that ΘQ^
(—π, π) and we will handle the case θo=π at the end of the proof. Since
1F(P', 0O)=O, we can assume without loss of generality that for some εi>0,
we have

(8.1) 1F(P', θ)>0 on (θQ-εl} 0O) and 1F(P', θ)<0 on (θ0, θo+εj

since our argument will be symmetric if we interchange the two intervals in
(8.1).

To prove the theorem, we assume contrary to the conclusion that (1.6)
possesses a solution / ^ 0 satisfying λ(f)<<*>. Using the theory of canonical
products [19; p. 251], we may write f—Gen, where G and h are entire func-
tions with G of finite order of growth. Since / solves (1.6), we obtain,
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(8.2) (A/

where Φk-i(h') is a differential polynomial of total degree at most k — l in h',
h", •••, whose coefficients are polynomials in G'/G, G"IG, ••• , Ga:>/G, and Qu

•••, Qk-2, having constant coefficients, and whose terms of total degree k — l are

(8.3) k(h')k-\G'/G)+(k(k-l)/2Xh')*-2h".

The relation (8.2) is essentially the same relation that was obtained in [9;
Formula (5.1), p. 304]. By following exactly the steps in the proof in [9;
Formulas (5.1)-(5.21)], we determine an admissible function W(z) in F(#o—ε 2,
0o+ε2) for some ε2>0, which has all of the following properties: ( i ) W(z) is
analytic and of finite order of growth for large \z\ in a sectorial region
\argz—0o|<ε3 for some ε 3 >0; (ii) there is a nonzero constant / such that,

(8.4) W(reiθ)—> JΦO as r—>+™ for θ»-ε,<θ<θ«.

(iii) The function W{z) has the form,

(8.5) W

where Dλ is an analytic branch on F(—π, π) of the algebraic function R< k-v/2k

f

and where ψ is an admissible function on F( — π, π) which for some nonzero
constant Kz satisfies,

(8.6) φ—>K3ΦQ over F(ΘQ> 00+ε2).

We observe that it follows from Lemma 5.2(B) that,

(8.7) Either Dί/D^z'1 or Dί/D^z'1 over F(-π, π).

In addition, we observe that from property ( i ) above for W(z) and the Phragmen-
Lindelof principles [19; §§5.61, 5.64], it follows easily from (8.4) that W->J as
z->oo in any closed sector θι^argz^θ2, where θι>θQ—εz and Θ2<ΘQ. Thus
from [17; §97], we can assert that

(8.8) W(z)—>JΦ0 over F(θ,-εz,θ,).

We now consider W(z) on F(θ0, ^o+ε3). By (8.1) and Lemma 5.3, clearly
Rep is trivial in F(θ0, θo+ε*) so that (1.6) is of the form (7.3), and hence we
can apply Lemma 7.2 to (1.6) taking (α, b) equal to (θ0, ^o+ε3). Clearly the
hypothesis of Part (d) of Lemma 7.2 is satisfied when we take (alt bι) to be
(θ0, Θo+Si) for a sufficiently small ε4>0, and so the solution / is either of the
form (7.6) or (7.7) on some element of F(θ0, #0-f ε4).

We assume first that / has the form (7.6). Then it follows from the
definition of the ψ3 that for some a>0, we have f<za in F(θ0, # 0 +ε 4 ) . Since
R(z) is a polynomial, clearly D^Czn for some a>0, and so since e°*~OP/2k is
trivial in F{θ0, 0o-hε4), it follows from (8.5) and (8.6) that,
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(8.9) W{z)—>0 over F(θ0, 0o+e4).

In view of Lemma 5.1 (and the fact that W(z) is of finite order on F(θ0—ε4,
#o+ε4)), it is now clear that (8.8) and (8.9) contradict the Phragmen-Lindelδf
principle [19; §5.64].

We now assume that / has the form (7.7). In view of (8.5) and (8.6), there
is an element of F(θ0, # 0 +ε 4 ) on which W(z) has the form,

(8.10) W^ψi

where

(8.11) U=Vn+((k-l)/2k)P'

(and so U is admissible in F(—π, π))t and where

(8.12) £ = I}cm<pn,m+G,
m = i

and finally where for some nonzero constant KΛt

(8.13) φx—>K4Φ0 over F(θo, 0 o +ε 4 ) .

By Lemma 7.2, there is an element Nq of the exponential set for (7.1) such
that Vn^Nq over F( — π, π). But (7.1) is just the associated equation to (1.6),
so by the notation in the main result, we have that Nq belongs to Γ. We now
distinguish three subcases:

Subcase A. Nq€P' over F{—π, π). In this case, we have from (8.7) and
(8.11) that over F(-π, π), U~((k-l)/2k)P'. Thus from Lemma 5.3, we have

that explί/ is trivial in F(θOt #0-fε4), so from (8.10) we obtain (8.9) which gives

the same contradiction as before.

Subcase B. Nq>P' over F(-π, π). Thus by (8.11) we have ί/~Nq over
F(—π, π), and hence by the hypothesis of the theorem, we have

(8.14) IF(U, ΘO)ΦO.

If lF(JJt θQ)<0, then 1F(U, θ)<0 on some interval (θo-e5, ^ 0 + ε 5 ) , and hence

by Lemma 5.3, we have exmU is trivial in (θo—εδ, # 0 +ε 5 ) . In view of (8.10)

this again yields (8.9) which gives the same contradiction as before. If IF(U,
0o)>O, then IF(U, θ)>0 on some interval (θo—εδ, #o-fε5), so by Lemma 5.3,

(8.15) exp(—ft/) is trivial on F(θQ-ε5f θ<*+εb).

Now set,
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(8Λ6) WQ^W exp(-^u) on F(θo-ε5, 0o+ε5).

Clearly WQ is of finite order of growth on its domain. In view of (8.8) and
(8.15), it follows that for all real a, we have zaW0-*0 over F(#o—ε 3, θ0), and
so by [4; Lemma 7], we have

(8.17) PFo is trivial in F ( # 0 - ε 3 , 0O).

Now, on F(θo, θo+ε4), we have W^ψλE by (8.10), where E is given by (8.12)
and ψί satisfies (8.13). In the expression for E, we know that in F(0O, #o+ε4),
the function G is trivial, while for each m—l, ••• , tn, we have

(8.18) φn.m=zam(Logzγm(l+Lm), where L m « l ,

and where am is a complex number while βm is a nonnegative integer, and
where the pairs (am, βm) are all distinct. Let 1 be the set of all m such that
cmφ0 in (8.12). Write am=σm+iλm where σm and λm are real. Let a be the
maximum of all σm for m e / , and let J\ be the subset of / consisting of those
m for which a^—a. Let β denote the maximum of all βm for m(Ξlu and let
U be the subset of lx consisting of those m for which βm—β. It is then easy
to see (using Lemmas 5.4 and 5.5) that,

(8.19) E=zσ(Logzγ(
τne/2

where Wi->0 over F(θ0, θo+εA). Let ]2={?nlf ••• , m,}, and let S=z f f + ι ^
where m—mγ. If s = l, then from (8.10), (8.13), (8.19), and Lemma 5.5, we have,

(8.20) Wo/S—>K4cmiΦ0 over F(θQ, #0-fε4).

But from (8.17) and Lemma 5.4, we have the WJS—>0 over F(θo—ε^ θ0) and
so again we have a contradiction of the Phragmen-Lindelof principle.

If s > l , we have from (8.19) that

(8.21) Wo/S=<pl(cm(l+LM)+ Σ cqz
xa<ι-λ™\\ +

where Wa-̂ 0 over F(θo, ̂ o+ε4) by Lemma 5.5, and where m—mγ. Noting that
the numbers λq~λm for ^ e / 2 — {m} are all distinct and nonzero (since the pairs
(aq, βq) in (8.18) are distinct), we see that (8.21) has the form (7.14) and so
Lemma 7.3 is applicable. If s—2, then by Lemma 7.3(a), the function,

(8.22) W^zQVo/SYz1'*™-^, where r=m2,

has the property that Wλ tends to a finite nonzero limit over F(θ0, θQ+ε4).
However, in view of (8.17) and Lemma 5.4, clearly WΊ~>0 over F(θo—εs, θo).
This again violates the Phragmen-Lindelof principle. (We note that Wx is of
finite order of growth over F(θo—ε4, #o+ε4), since Wo and all of its derivatives
have this property by the representation for Wo developed in [9; Formula



182 STEVEN B. BANK

(5.16)].) If s>2, then Lemma 7.3(b) applied to (8.21) shows that Wx is given
by an expression of the general form (7.16) which has one fewer term in the
summation than (8.21) has. Of course, (7.16) is again of the general form (7.14),
and so Lemma 7.3 can now be applied to Wx. Clearly, the process can be
repeated and eventually reduces the summation to one term which results in a
function which violates the Phragmen-Lindelδf principle as above. Thus Subcase
B is impossible.

Subcase C. If neither of the previous subcases hold, we must have Nq^Pf

over F(—π, π) (see [17; §41]), say Nq^bqP
f where bq is a nonzero constant.

By the hypothesis of the theorem, bqφ—(k — l)/2k, so by (8.11) and (8.7), we
have

(8.23) U~(bq+(k-l)/2k)P' over F{-π,π).

By the hypothesis (3.1) of the theorem, 1F(U, θo)Φθ. This is exactly the same
condition (8.14) as we had in Subcase B, and the proof that both possibilities,
IF(U, #o)<O and IF(U, #0)>0, lead to contradictions, is exactly as in Subcase
B. Thus the proof of the theorem is complete in the case 0oe(—π, π).

In the case where θo—π, we perform the change of variable ζ = — z in (1.6)
which results in an equation which is satisfied by all functions /(—ζ) for which
f{z) satisfies (1.6). A routine calculation (using [3; §26]) of the exponential
set of the transformed equation shows that this equation satisfies the hypotheses
of the theorem for the value Θo—O. Thus λ(g)=<χ> for all solutions g^O of the
transformed equation, and it follows that the same conclusion holds for the
original equation (1.6).

9. Examples. In this section, we construct examples of equations (1.6)
having zero-free solutions.

Example 1. Let P(z) be any nonconstant polynomial, and let Ku K2, and
AΓ3 be the cube roots of —1. Then, the three functions,

(9.1) Λ=exp((-P/3)+Jβ'/r^8) for ; = 1, 2, 3,

all solve the equation

(9.2) wl/f+Q1w'+(ep-(P'P"/9)+(P»/3))w=0,

where Q1=(2P/f/3)-((Pf)2/9).
This example is easily verified by routine calculation, and shows that zero-

free solutions of (1.6) can occur for any choice of the polynomial P(z). (The
examples (1.4) and (1.5) arise by taking P(z)=3z-{-πi and P(z)=3z2+πz respec-
tively in Example 1.) The exponential set for the equation associated to (9.2)
consists of two elements Nj where Nj<^±P'/3 over F(—π, π) and hence hypo-
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thesis (b) in our theorem is violated for (9.2) since k—3.

Example 2. This example shows that zero-free solutions of (1.6) can occur
for any order k. We prove:

PROPOSITION. Let k be a positive integer greater than one, and let c—-~

(k —1)/2. Then, the zero-free function, exp(cz-|-£2), solves an equation (1.6) where

QQ, '" , Qk-2 are constants, R=—l and P(z)—kz.

Proof. Let h(z)—cz-\-ez and f—eh. Then, it is easy to verify (e.g. see
[13; Lemma 3.5]) that for each n — \, 2, ••• , there are constants βHtJ such that

(9.3) f™/f=ent+nΣβnje».

Our choice of c shows that βk,k-ι=O, so that

(9.4) ek*=fikyf—kϊlβkje3'.

Thus, if k—2, we are done. Assuming k>2, we have from (9.3) for n — k~2,

(9.5) 0 (*-2 )Wc*~2Y/-*i]3i3*-2.;^.

We then substitute this into (9.4). In the resulting relation, we then substitute
the expression for g<*-3)* given by (9.3) for n — k — 3. We continue this process
for gc*~"4)2, ••• , ez, and the resulting expression is the desired equation for /.
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