H. KIMURA KODAI MATH. J. 14 (1991), 296-309

ON F-DATA OF AUTOMORPHISM GROUPS OF COMPACT RIEMANN SURFACES — THE CASE OF A₅ —

By Hideyuki Kimura

Introduction.

Let X be a compact Riemann surface of genus $g(\geq 2)$. We denote by $\operatorname{Aut}(X)$ the group of all conformal automorphisms on X. We take a basis of the space of abelian differentials of the first kind on X. We consider the canonical representation $\rho:\operatorname{Aut}(X) \to GL(g, \mathbb{C})$, for the basis. We denote by $\rho(AG; X)$ and $\rho(\sigma; X)$ the images of a subgroup $AG \subset \operatorname{Aut}(X)$ and an element $\sigma \in \operatorname{Aut}(X)$ by ρ , respectively. In the previous paper [2], for the $G(\cong D_8, Q_8) \subset GL(g, \mathbb{C})$, satisfying the CY- and RH-conditions, we have investigated surjective homomorphisms $\varphi: \Gamma(G) \to G$ to determine whether G arises from a compact Riemann surface of genus g. But there exists $G(\cong A_5) \subset GL(g, \mathbb{C})$, satisfying the CY- and RH-conditions, such that we can not determine that G arises from a compact Riemann surface of genus g by the same method. Therefore we introduce the collection of nonnegative integers which consists of information about characters of ρ and fixed points of AG. We shall call this F-data. In this paper, we study F-data of A_5 and determine what F-data of A_5 arises from a compact Riemann surface of genus g.

Notation. We denote by Z, C and $Z_{\geq 0}$ the ring of rational integers, the complex number field and the set of nonnegative integers, respectively. For a finite set S we denote by #S the cardinality of S. For an element σ of a finite group we denote by $\#\sigma$ the order of σ . We denote by g an integer (≥ 2) .

The author wishes to express his gratitude to the referees for their careful reading and valuable suggestions.

§1. Preliminaries.

In this section we give preliminary results. We use the same notation and terminology as introduced in [3]. Throughout this section we denote by G a finite group.

Received January 11, 1990; revised February 27, 1991.

DEFINITION. We say that $G \subset GL(g, \mathbb{C})$ arises from a compact Riemann surface of genus g, if there exist a compact Riemann surface X of genus g and a subgroup $AG \subset \operatorname{Aut}(X)$ such that $\rho(AG; X)$ is $GL(g, \mathbb{C})$ -conjugate to G.

1.1 We give a necessary and sufficient condition for an element of prime order of GL(g, C) to arise from a compact Riemann surface of genus g, see [4] and [7].

THEOREM ([4]). Let A be an element of prime order n of GL(g, C). Then the following two conditions are equivalent:

(1) There is a compact Riemann surface X of genus g and an automorphism σ of X such that $\rho(\sigma; X)$ is conjugate to A.

(2) There are $s(\geq 0)$ integers ν_1, \dots, ν_s which are prime to n such that $\operatorname{Tr} A=1+\sum_{i=1}^s \frac{\zeta^{\nu_i}}{1-\zeta^{\nu_i}}$, where $\zeta=\zeta_n=\exp\frac{2\pi\sqrt{-1}}{n}$.

1.2 We define the CY- and RH-conditions, see [3] and [5].

DEFINITION. We say that a finite group $G \subset GL(g, C)$ satisfies the CYcondition if every element of CY(G) arises from a compact Riemann surface of genus g.

Remark. It is known that A_5 has only elements of prime orders, i.e., 2, 3 and 5. The above theorem, mentioned in 1.1, suffices to check that $G(\cong A_5)$ satisfies the *CY*-condition.

DEFINITION. We say that G satisfies the RH-condition if G satisfies the E-condition and l(H:G) is a nonnegative integer for any $H \in CY(G)$.

1.3 Now, we introduce the EX-condition, which is a necessary condition for G to arise from a compact Riemann surface. We explain a criterion whether G, satisfying the EX-condition, arises from a compact Riemann surface or not, see [6].

DEFINITION. Assume that $G \subset GL(g, C)$ satisfies the *RH*-condition. We say that G satisfies the *EX*-condition if there exists a surjective homomorphism $\varphi: \Gamma(G) \rightarrow G$ with $\#\varphi(\gamma_j) = m_j$ $(j=1, \dots, r)$.

If $G \subset GL(g, C)$ satisfies the *EX*-condition, there exist a compact Riemann surface X of genus g and an injective homomorphism $G \rightarrow \operatorname{Aut}(X)$. Then for any element σ ($\#\sigma = m > 1$) of G and $u \in \mathbb{Z}$ ((u, m)=1) we have (cf. [6])

$$\# \{ P \in X | \zeta_P(\sigma) = \zeta_m^u \} = \sum_{m+m_j} \frac{1}{m_j} \# \{ \alpha \in G | \sigma = \alpha \varphi(\gamma_j)^{u m_j/m} \alpha^{-1} \}.$$

By the Eichler trace formula, we have

$$\operatorname{Tr} \rho(\sigma; X) = 1 + \sum_{(u, m)=1} \sum_{m \mid m_j} \frac{1}{m_j} \# \{ \alpha \in G \mid \sigma = \alpha \varphi(\gamma_j)^{u m_j / m} \alpha^{-1} \} \frac{\zeta_m^u}{1 - \zeta_m^u}.$$

If there exists a surjective homomorphism $\varphi: \Gamma(G) \rightarrow G$ such

 $\operatorname{Tr} \sigma = \operatorname{Tr} \rho(\sigma; X)$ for every $\sigma \in G$,

then we see that G arises from the compact Riemann surface X.

1.4 We denote by A_5 the alternating group of degree 5, i.e., the group which consists of all the even permutations of 5 letters. The character table of A_5 is as follows:

	(1)	(12)(34)	(123)	(12345)	(13524)
χ	1	1	1	1	1
χ ₂	4	0	1	1	-1
χ,	5	1	-1	0	0
χ4	3	-1	0	$\frac{1+\sqrt{5}}{2}$	$\frac{1-\sqrt{5}}{2}$
χ ₅	3	-1	0	$\frac{1-\sqrt{5}}{2}$	$\frac{1+\sqrt{5}}{2}$

$\S 2$. A necessary and sufficient condition for CY- and RH-conditions.

2.1. PROPOSITION. Let G be a finite subgroup of GL(g, C) being isomorphic to A_5 , χ_G be the character of the natural representation $G \rightarrow GL(g, C)$. Let $n_1\chi_1 + \cdots + n_5\chi_5$, $n_i \in \mathbb{Z}_{\geq 0}$ be the decomposition into irreducible characters of χ_G . Then G satisfies the CY- and RH-conditions if and only if n_i 's satisfy the following relations:

- (1) $1 \ge n_1 + n_3 2n_4$
- (2) $1 \ge n_1 + n_2 n_3$
- (3) $1 \ge n_1 n_2 + n_4$
- (4) $n_4 = n_5$.

Remark. If G satisfies the CY- and RH-conditions, then we have

(0) $g=n_1+4n_2+5n_3+6n_4$,

which means the degree of character χ_{G} .

Proof. We prove the *if*-part. We fix an isomorphism $\iota: A_5 \rightarrow G$ and denote

by A, B and C the images of (23)(45), (142) and (12345) via ι , respectively. We remark that, by Property 6 (I-1), two of A, B and C generate G. First we show that G satisfies the *CY*-condition. To see this, it is sufficient to show that A, B and C satisfy the condition (2) in Theorem 1.1.

The case of A.

Put

$$s := 2 - 2 \chi_G(A) = 2 - 2(n_1 + n_3 - n_4 - n_5).$$

Then we see that s is a nonnegative integer by (1) and (4). If we put

$$\nu_1 = \cdots = \nu_s = 1$$
,

then we have

$$\operatorname{Tr} A = 1 + s \frac{-1}{1 - (-1)}.$$

Thus A arises from a compact Riemann surface of genus g by Theorem 1.1.

The case of B.

Put

$$s := 2 - 2 \chi_G(B) = 2 - 2(n_1 + n_2 - n_3).$$

Then we see that s/2 is a nonnegative integer by (2). If we put

$$\nu_1 = \cdots = \nu_{s/2} = 1, \ \nu_{(s/2)+1} = \cdots = \nu_s = 2,$$

then we have

Tr
$$B=1+\frac{s}{2}\left(\frac{\omega}{1-\omega}+\frac{\omega^2}{1-\omega^2}\right)$$
, where $\omega=\zeta_3$.

Thus B arises from a compact Riemann surface of genus g by Theorem 1.1.

The case of C.

Put

$$s := 2 - 2\chi_G(C) = 2 - 2\left(n_1 - n_2 + \frac{1 + \sqrt{5}}{2}n_4 + \frac{1 - \sqrt{5}}{2}n_5\right).$$

Then we see that s/2 is a nonnegative integer by (3) and (4). We take $p, q \in \mathbb{Z}_{\geq 0}$ with p+q=s/2. If we put

$$\nu_1 = \cdots = \nu_p = 1, \ \nu_{p+1} = \cdots = \nu_{2p} = 4,$$

 $\nu_{2p+1} = \cdots = \nu_{2p+q} = 2, \ \nu_{2p+q+1} = \cdots = \nu_s = 3,$

then we have

$$\operatorname{Tr} C = 1 + p \left(\frac{\zeta}{1-\zeta} + \frac{\zeta^4}{1-\zeta^4} \right) + q \left(\frac{\zeta^2}{1-\zeta^2} + \frac{\zeta^3}{1-\zeta^3} \right),$$

where $\zeta = \zeta_5$.

Thus C arises from a compact Riemann surface of genus g by Theorem 1.1.

This means that G satisfies the CY-condition. It is easy to see that G satisfies the RH-condition. In fact we have

$$l(\langle A \rangle : G) = 1 - (n_1 + n_3 - n_4 - n_5)$$

$$l(\langle B \rangle : G) = 1 - (n_1 + n_2 - n_3)$$

$$l(\langle C \rangle : G) = 1 - \left(n_1 - n_2 + \frac{1 + \sqrt{5}}{2}n_4 + \frac{1 - \sqrt{5}}{2}n_5\right),$$

which are nonnegative integers by $(1), \dots, (4)$.

The only-if-part follows immediately from the fact:

$$\chi_G(C) = \chi_G(C^2)$$
 implies $n_4 = n_5$.

Therefore we obtain our proposition.

Remark. In the case of B, since B is G-conjugate to B^2 , we have

$$#\{i | v_i = 1\} = #\{i | v_i = 2\}$$

In the case of C, since $C(\text{resp. } C^2)$ is G-conjugate to $C^4(\text{resp. } C^3)$, we have

$$\#\{i|\nu_i=1\}=\#\{i|\nu_i=4\}$$
 (resp. $\#\{i|\nu_i=2\}=\#\{i|\nu_i=3\}$).

2.2 We introduce an *F*-data of A_5 .

DEFINITION. We say that a collection of nonnegative integers $(n_1, \dots, n_5; p, q), p \ge q$, is an *F*-data of A_5 if there exists a group $G(\cong A_5) \subset GL(g, \mathbb{C})$ satisfying the *CY*- and *RH*-conditions and that

$$\chi_G = n_1 \chi_1 + \dots + n_5 \chi_5,$$

 $1 - \chi_G(C) = p + q$ for every $C(\subseteq G)$ of order 5.

Instead of $G(\cong A_5) \subset GL(g, \mathbb{C})$ which satisfies the CY- and RH-conditions, we consider an F-data $(n_1, \dots, n_5; p, q)$ of A_5 .

DEFINITION. Let $(n_1, \dots, n_5; p, q)$ be an *F*-data of A_5 . Define *g* by (0). We say that an *F*-data $(n_1, \dots, n_5; p, q)$ of A_5 arises from a compact Riemann surface of genus *g* if there exist a compact Riemann surface *X* of genus *g*, a subgroup $AG(\cong A_5) \subset \operatorname{Aut}(X)$ and an element $C(\Subset AG)$ of order 5 such that

and

$$\operatorname{Tr} \rho(\circ; X)|_{AG} = n_1 \chi_1 + \cdots + n_5 \chi_5 = \chi_G$$

$$= \{P \in X | \zeta_P(C) = \zeta\} = \#\{P \in X | \zeta_P(C) = \zeta^4\} = p, \\ \#\{P \in X | \zeta_P(C) = \zeta^2\} = \#\{P \in X | \zeta_P(C) = \zeta^3\} = q. \} \cdots (*)$$

§3. Characterization of automorphism groups.

or

Hereafter, for simplicity, we put $l(\circ) = l(\circ : G) = l(\langle \circ \rangle : G)$.

3.1. THEOREM. The notation being as in Proposition 2.1, let $(n_1, \dots, n_5; p, q)$ be an F-data of A_5 . If $(n_1, \dots, n_5; p, q)$ does not arise from a compact Riemann surface of genus g, then

$$(n_1, \dots, n_5; p, q) = (0, 1, 0, 0, 0; 2, 0) \quad (g=4),$$

= $(0, 2, 1, 0, 0; 2, 1) \quad (g=13)$
= $(1, 1, 1, 1; 0, 0) \quad (g=16).$

Remark. The *F*-data (0, 1, 0, 0, 0; 1, 1) (resp. (0, 2, 1, 0, 0; 3, 0)) arises from a compact Riemann surface of genus 4 (resp. 13) but not (0, 1, 0, 0, 0; 2, 0) (resp. (0, 2, 1, 0, 0; 2, 1)).

Before proving the theorem, we give some properties of A_5 .

-15

Property 1. For every element h of A_5 , there exist elements a, $b(\in A_5)$ such that h=[a, b], where $[a, b] = aba^{-1}b^{-1}$.

Proof. It is sufficient to consider representatives of conjugacy classes of A_5 , since we have the relation:

$$g^{-1}[x, y]g = [g^{-1}xg, g^{-1}yg]$$
for $g \in A_5$.
(1) order 2.
Put
Then we have
(2) order 3.
Put
Then we have
(3) order 5.
Put
Then we have
 $Property 2$.

$$g^{-1}[x, y]g = [g^{-1}xg, g^{-1}yg]$$
 $a = (234), b = (134).$
 $a = (234), b = (134).$
 $a = (13)(45), b = (23)(35).$
 $a = (13)(45), b = (13)(45),$
 $a_2 = (25)(34), b_1 = (13)(45),$
 $a_2 = (25)(34), b_2 = (15)(24).$

For every $\theta \in A_5$, θ is A_5 -conjugate to θ^{-1} .

Proof. In the case $\#\theta=2$, 3, it is easily verified from the character table of A_5 . In the case $\#\theta=5$, it is verified from the following relation:

$$(12345) = (25)(34)(12345)^{-1}(25)(34).$$

Property 3.

Let ε and ε' be elements of A_5 of order 5. If ε is A_5 -conjugate to ε' , then the order of $\varepsilon\varepsilon'$ is not 2.

Property 4.

Let ε and ε' be distinct elements of A_5 of order 5. If ε is A_5 -conjugate to ε' and $\varepsilon\varepsilon'$ is of order 5, then $\varepsilon\varepsilon'$ is A_5 -conjugate to ε .

To prove Properties 3 and 4, we use a result from character theory (c.f. [G]):

THEOREM. Denote the conjugacy classes of finite group G by K_i and let y_i be an element of K_i , $1 \leq i \leq r$. Then if λ_{ijk} is the number of times of given element of K_k can be expressed as an ordered product of an element of K_i and an element of K_j , we have

$$\lambda_{ijk} = \frac{\#K_i \cdot \#K_j}{\#G} \sum_{m=1}^r \frac{\chi_m(y_i)\chi_m(y_j)\overline{\chi_m(y_k)}}{\chi_m(1)}$$

for $1 \leq i, j, k \leq r$.

Proof of Property 3. We apply the above theorem. We take a conjugacy class of order 5 as K_i and the conjugacy class of order 2 as K_k . Put $K_j = K_i$. Then we have $\lambda_{ijk} = 0$. This means that there are no elements ε , $\varepsilon' \in K_i$ such that $\varepsilon \varepsilon' \in K_k$.

Proof of Property 4. We take a conjugacy class of order 5 as K_i and the other conjugacy class of order 5 as K_k . Put $K_j = K_i$. Then we have $\lambda_{ijk} = 1$. This means than $x = y = z^3$ is the unique solution of the equation $z = x \cdot y(z \in K_k, x, y \in K_i)$. This completes the proof.

Property 5.

Let θ be an element of A_5 and N a positive integer. Then there are N elements $\theta_1, \dots, \theta_N \ (\subseteq A_5, \text{ not necessarily distinct})$ being A_5 -conjugate to θ such that $\theta = \theta_1 \dots \theta_N$.

Proof. This follows from the relations $(12)(34)=(13)(24)\cdot(14)(23)$, $(14352)=(12345)\cdot(13425), (14325)=(13524)\cdot(12354)$. We prove only the case $\#\theta=2$. Case $N\equiv 0 \pmod{2}$. The above relation means that there exist elements θ', θ'' of order 2 such that $\theta=\theta'\times\theta''$. Then we may take $\theta_1=\theta', \theta_2=\cdots=\theta_N=\theta''$. Case $N\equiv 1 \pmod{2}$. We may take $\theta_1=\cdots=\theta_N=\theta$.

Property 6.

We have the following presentations (I-1), \cdots , (VI-1) for A_5 .

$$(I-1) \quad A_5 = \langle \gamma, \, \delta, \, \varepsilon \, ; \, \gamma^2 = \delta^3 = \varepsilon^5 = \gamma \delta \varepsilon = 1 \rangle.$$

(for example, $\gamma = (23)(45)$, $\delta = (142)$, $\varepsilon = (12345)$).

In the following, we write only relations and mean that ε_i 's are A_5 -conjugate to each other and ε_i 's are not A_5 -conjugate to η_i 's.

$$(I-2)$$
 $(\gamma_1)^2 = (\gamma_2)^2 = (\gamma_3)^2 = \varepsilon^5 = \gamma_1 \gamma_2 \gamma_3 \varepsilon = 1$

(for example, $\gamma_1 = (23)(45)$, $\gamma_2 = (12)(35)$, $\gamma_3 = (14)(35)$, $\varepsilon = (12345)$).

(I-3) $\gamma^2 = (\delta_1)^3 = (\delta_2)^3 = (\delta_3)^3 = \gamma \delta_1 \delta_2 \delta_3 = 1$,

(for example, $\gamma = (23)(45)$, $\delta_1 = (142)$, $\delta_2 = (123)$, $\delta_3 = (345)$).

(I-4) $\gamma^2 = (\varepsilon_1)^5 = (\varepsilon_2)^5 = (\varepsilon_3)^5 = \gamma \varepsilon_1 \varepsilon_2 \varepsilon_3 = 1$,

(for example, $\gamma = (23)(45)$, $\varepsilon_1 = \varepsilon_3 = (12345)$, $\varepsilon_2 = (13254)$).

(I-5) $(\gamma_1)^2 = (\gamma_2)^2 = (\gamma_3)^2 = (\gamma_4)^2 = (\gamma_5)^2 = \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 = 1$,

(for example, $\gamma_1 = (23)(45)$, $\gamma_2 = (12)(35)$, $\gamma_3 = (14)(35)$, $\gamma_4 = (15)(24)$, $\gamma_5 = (14)(23)$).

(I-6) $(\gamma_1)^2 = (\gamma_2)^2 = (\gamma_3)^2 = \delta^3 = \gamma_1 \gamma_2 \gamma_3 \delta = 1$,

(for example, $\gamma_1 = (15)(24)$, $\gamma_2 = (14)(23)$, $\gamma_3 = (23)(45)$, $\delta = (142)$).

(I-7) $(\gamma_1)^2 = (\gamma_2)^2 = (\varepsilon_1)^5 = (\varepsilon_2)^5 = \gamma_1 \gamma_2 \varepsilon_1 \varepsilon_2 = 1$,

(for example, $\gamma_1 = \gamma_2 = (23)(45)$, $\varepsilon_1 = (15432)$, $\varepsilon_2 = (12345)$).

(I-8) $(\gamma_1)^2 = (\gamma_2)^2 = (\gamma_3)^2 = \varepsilon^5 = \gamma_1 \gamma_2 \gamma_3 \varepsilon \eta = 1$,

(for example, $\gamma_1 = \gamma_3 = (14)(35)$, $\gamma_2 = (12)(35)$, $\varepsilon = (12345)$, $\eta = (15234)$).

(I-9) $\gamma^2 = \delta^3 = (\varepsilon_1)^5 = (\varepsilon_2)^5 = \gamma \delta \varepsilon_1 \varepsilon_2 = 1$,

(for example, $\gamma = (23)(45)$, $\delta = (142)$, $\varepsilon_1 = (14352)$, $\varepsilon_2 = (15243)$).

(I-10) $(\gamma_1)^2 = (\gamma_2)^2 = \delta^3 = \varepsilon^5 = \gamma_1 \gamma_2 \delta \varepsilon = 1$,

(for example, $\gamma_1 = (24)(35)$, $\gamma_2 = (25)(34)$, $\delta = (142)$, $\varepsilon = (12345)$).

(I-11) $\gamma^2 = (\delta_1)^3 = (\delta_2)^3 = \varepsilon^5 = \gamma \delta_1 \delta_2 \varepsilon = 1$,

(for example, $\gamma = (23)(45)$, $\delta_1 = \delta_2 = (124)$, $\varepsilon = (12345)$).

(II-1) $\gamma^2 = \varepsilon^5 = \eta^5 = \gamma \varepsilon \eta = 1$,

(for example, $\gamma = (13)(25)$, $\varepsilon = (12345)$, $\eta = (12435)$).

(II-2) $(\gamma_1)^2 = (\gamma_2)^2 = \varepsilon^5 = \eta^5 = \gamma_1 \gamma_2 \varepsilon \eta = 1$,

(for example, $\gamma_1 = (12)(35)$, $\gamma_2 = (15)(23)$, $\varepsilon = (12345)$, $\eta = (12435)$).

(II-3) $\gamma^2 = \delta^3 = \varepsilon^5 = \gamma^5 = \gamma \delta \varepsilon \eta = 1$,

(for example, $\gamma = (13)(45)$, $\delta = (245)$, $\varepsilon = (12345)$, $\eta = (12435)$).

 $(\amalg -1) \quad (\delta_1)^3 = (\delta_2)^3 = \varepsilon^5 = \delta_1 \delta_2 \varepsilon = 1,$ (for example, $\delta_1 = (354)$, $\delta_2 = (132)$, $\varepsilon = (12345)$). (III-2) $(\gamma_1)^2 = (\gamma_2)^2 = (\delta_1)^3 = (\delta_2)^3 = \gamma_1 \gamma_2 \delta_1 \delta_2 = 1$, (for example, $\gamma_1 = (15)(24)$, $\gamma_2 = (14)(23)$, $\delta_1 = (354)$, $\delta_2 = (132)$). (III-3) $(\delta_1)^3 = (\delta_2)^3 = (\delta_3)^3 = (\delta_4)^3 = \delta_1 \delta_2 \delta_3 \delta_4 = 1$, (for example, $\delta_1 = (354)$, $\delta_2 = (132)$, $\delta_3 = (123)$, $\delta_4 = (345)$). (IV-1) $\delta^3 = (\varepsilon_1)^5 = (\varepsilon_2)^5 = \delta \varepsilon_1 \varepsilon_2 = 1$, (for example, $\delta = (134)$, $\varepsilon_1 = (12345)$, $\varepsilon_2 = (13542)$). (V-1) $\delta^3 = \varepsilon^5 = \eta^5 = \delta \varepsilon \eta = 1$, (for example, $\delta = (145)$, $\varepsilon = (12345)$, $\eta = (14532)$). (V-2) $(\varepsilon_1)^5 = (\varepsilon_2)^5 = (\varepsilon_3)^5 = \eta^5 = \varepsilon_1 \varepsilon_2 \varepsilon_3 \eta = 1$, (for example, $\varepsilon_1 = (13542)$, $\varepsilon_2 = (15243)$, $\varepsilon_3 = (12345)$, $\eta = (14532)$). (V-3) $(\delta_1)^3 = (\delta_2)^3 = \varepsilon^5 = \eta^5 = \delta_1 \delta_2 \varepsilon \eta = 1$, (for example, $\delta_1 = \delta_2 = (154)$, $\varepsilon = (12345)$, $\eta = (14532)$). $(V-4) \quad \varepsilon^5 = \eta^5 = (\varepsilon \varepsilon^{-1} \eta \eta^{-1}) = 1,$ (for example, $\varepsilon = (15432)$, $\eta = (14532)$). (VI-1) $(\varepsilon_1)^5 = (\varepsilon_2)^5 = (\varepsilon_3)^5 = \varepsilon_1 \varepsilon_2 \varepsilon_3 = 1$, (for example, $\varepsilon_1 = (12345)$, $\varepsilon_2 = (12534)$, $\varepsilon_3 = (12453)$).

Proof of Property 6. It is sufficient to verify that γ , δ , ε , \cdots generate A_5 . Here we remark the following FACT.

FACT. (c.f. [ATLAS]) Maximal subgroups of A_5 are A_4 , D_{10} and S_3 . For example, we consider the case (I-1). If $\langle \gamma, \delta, \varepsilon \rangle$ is a proper subgroup of A_5 , since it has an element of order 5, $D_{10} \supset \langle \gamma, \delta, \varepsilon \rangle$. However, D_{10} does not contain an element of order 3. This means $A_5 = \langle \gamma, \delta, \varepsilon \rangle$. The remaining cases are proved by the similar method.

Proof of Theorem. Let the notation be as in Proposition 2.1. Recall that

$$RH(G) = \begin{bmatrix} n_1, 60; 2, \cdots, 2, 3, \cdots, 3, 5, \cdots, 5 \end{bmatrix}$$

and put

$$\begin{split} \Gamma(G) &= \langle \alpha_1, \ \beta_1, \ \cdots, \ \alpha_{n_1}, \ \beta_{n_1}, \ \gamma_1, \ \cdots, \ \gamma_{l(A)}, \ \delta_1, \ \cdots, \ \delta_{l(B)}, \ \varepsilon_1, \ \cdots, \ \varepsilon_p, \ \eta_1, \ \cdots, \ \eta_q \ ; \\ \prod_{j=1}^{l(A)} \gamma_j \ \prod_{k=1}^{l(B)} \delta_k \ \prod_{\ell=1}^p \varepsilon_\ell \ \prod_{m=1}^q \eta_m \ \prod_{i=1}^{n_1} [\alpha_i, \ \beta_i] = 1 \\ \gamma_1^2 &= \cdots = \gamma_{l(A)}^2 = \delta_1^3 = \cdots = \delta_{l(B)}^3 = \varepsilon_1^5 = \cdots = \varepsilon_p^5 = \eta_1^5 = \cdots = \eta_q^5 = 1 \rangle . \end{split}$$

We study whether G in Definition 2.2 satisfies the EX-condition or not. Using φ 's, we verify whether $(n_1, \dots, n_5; p, q)$ satisfy condition (*). We divide our proof into three cases according as $n_1 \ge 2$, $n_1=1$ or $n_1=0$.

We assume that $n_1 \ge 2$. We define $\varphi: \Gamma(G) \to G$ as follows: $\gamma_1, \dots, \gamma_{l(A)} \to A$, $\delta_1, \dots, \delta_{l(B)} \to B$, $\varepsilon_1, \dots, \varepsilon_p \to C$, $\eta_1, \dots, \eta_q \to C^2$, $\alpha_1 \to A$, $\beta_1 \to B$, $\alpha_2 \to U$, $\beta_2 \to V$, $\alpha_3, \beta_3, \dots, \alpha_{n_1}, \beta_{n_1} \to 1$, where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_l \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds. By virtue of Property 1, we can find them. Recall that A and B are the images of (23)(45) and (142), respectively. By Property 6 (I-1) we see that φ is surjective. To verify $\operatorname{Tr} \rho(\circ; X) = \chi_G(\circ)$, it is sufficient to check only for $\sigma = A$, B and C.

Tr
$$\rho(A; X) = 1 + 2l(A) - \frac{-1}{1+1} = 1 - l(A) = \chi_G(A).$$

Tr $\rho(B; X) = 1 + l(B) \left(\frac{\omega}{1-\omega} + \frac{\omega^2}{1-\omega^2} \right) = 1 - l(B) = \chi_G(B),$

where $\omega = \zeta_3$.

Tr
$$\rho(C; X) = 1 + p \left(\frac{\zeta}{1-\zeta} + \frac{\zeta^4}{1-\zeta^4} \right) + q \left(\frac{\zeta^2}{1-\zeta^2} + \frac{\zeta^3}{1-\zeta^3} \right)$$

= $1 - l(C) = \chi_G(C),$

where $\zeta = \zeta_5$.

Thus, in this case, we see that $(n_1, \dots, n_5; p, q)$ arises from a compact Riemann surface of genus g. In the following cases, we define only those φ 's which have the desired property.

Next, we assume that $n_1=1$.

(i) The case l(A) > 0 & l(B) > 0.

We define $\varphi: \Gamma(G) \to G$ as follows: $\gamma_1, \dots, \gamma_{l(A)} \to A, \delta_1, \dots, \delta_{l(B)} \to B, \varepsilon_1, \dots, \varepsilon_p \to C, \eta_1, \dots, \eta_q \to C^2, \alpha_1 \to U, \beta_1 \to V$, where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_l \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds. By virtue of Property 1, we can find them.

(ii) The case l(A)=l(B)=0. By the assumption, we have $l(C)=n_4 \ge 1$.

(ii-1) $l(C) = n_4 = 1$. Recall that we fix isomorphism $\iota: A_5 \to G$. We define $\varphi: \Gamma(G) \to G$ as follows: $\varepsilon_1 \to \iota((12453)), \ \alpha_1 \to \iota((354)), \ \beta_1 \to \iota((13)(25)).$

(ii-2) $l(C)=n_4\geq 2$.

(ii-2-a) $p \ge 2$.

We define $\varphi: \Gamma(G) \to G$ as follows: $\varepsilon_1 \to \iota((12345)), \varepsilon_2, \cdots, \varepsilon_p \to \iota((12534)), \eta_1, \cdots, \eta_q \to \iota((12534)^2), \alpha_1 \to U, \beta_1 \to V$, where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_l \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds.

(ii-2-b) p=q=1.

We define $\varphi: \Gamma(G) \to G$ as follows: $\varepsilon_1 \to \iota((12345)), \quad \eta_1 \to \iota((12435)), \quad \alpha_1 \to U, \quad \beta_1 \to V,$ where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_l \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds.

(iii) The case l(A)=0 & l(B)>0.

(iii-1) l(C) > 0.

We define $\varphi: \Gamma(G) \to G$ as follows: $\delta_1, \dots, \delta_{l(B)} \to B$, $\varepsilon_1, \dots, \varepsilon_p \to C$, $\eta_1, \dots, \eta_q \to C^2$, $\alpha_1 \to U$, $\beta_1 \to V$, where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_l \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds.

(iii-2) l(C)=0. By the assumption, we have $l(B)=n_4\geq 1$. Considering Property 5, we can reduce this case to $\delta_1 \rightarrow l((134))$, $\alpha_1 \rightarrow l((12345))$, $\beta_1 \rightarrow l((12435))$.

(iv) The case l(A) > 0 & l(B) = 0.

 $(iv-1) \ l(C) > 0.$

We define $\varphi: \Gamma(G) \to G$ as follows: $\gamma_1, \dots, \gamma_{l(A)} \to A$, $\varepsilon_1, \dots, \varepsilon_p \to C$, $\eta_1, \dots, \eta_q \to C^2$, $\alpha_1 \to U$, $\beta_1 \to V$, where we choose U and V so that $\varphi(\prod \gamma_j \prod \delta_k \prod \varepsilon_i \prod \eta_m \prod [\alpha_i, \beta_i]) = 1$ holds.

(iv-2) l(C)=0.(iv-2-a) $l(A) \ge 2.$

Considering Property 4, we can reduce this case to $\gamma_1 \rightarrow \iota((25)(34)), \gamma_2 \rightarrow \iota((14)(25)), \alpha_1 \rightarrow \iota((12345)), \beta_1 \rightarrow \iota((12435)).$

(iv-2-b) l(A)=1. (i.e. $n_1=n_2=n_3=n_4=n_5=1$, p=q=0.) In this case, there is no φ having the desired properties. To see this, it is sufficient to show that there are no elements α , $\beta (\in A_5)$ such that $A_5 = \langle \alpha, \beta | \#[\alpha, \beta]=2 \rangle$.

The case $\#\alpha=5$. Since α is A_5 -conjugate to $\beta \alpha^{-1} \beta^{-1}$, by Property 3, $\#[\alpha, \beta] \neq 2$.

The case $\#\alpha = \#\beta = 3$.

By the abstract definition of A_4 , i.e., $A_4 = \langle S, T | S^3 = T^3 = (ST)^2 = 1 \rangle$, we have $\#(\alpha\beta) \neq 2$, $\#(\alpha^{-1}\beta) \neq 2$, (of course $\#(\alpha\beta) \neq 1$, $\#(\alpha^{-1}\beta) \neq 1$). Suppose that $\#(\alpha\beta) = \#(\alpha^{-1}\beta) = 3$. Then $\langle \alpha, \beta \rangle$ must be contained in (3, 3|3, 3) which is a group of order 27, see [1]. This is absurd.

Therefore we have $\#(\alpha\beta)=5$ or $\#(\alpha^{-1}\beta)=5$. Assume $\#(\alpha\beta)=5$. Since $\alpha\beta$ is A_5 -conjugate to $\alpha^{-1}\beta^{-1}$, by Property 3, $\#[\alpha, \beta]\neq 2$. Next assume $\#(\alpha^{-1}\beta)=5$. Since $\alpha^{-1}\beta$ is A_5 -conjugate to $\alpha\beta^{-1}$, by Property 3, $\#[\alpha^{-1}, \beta]=\#(\alpha^{-1}[\alpha, \beta]\alpha)=$ $\#[\alpha, \beta]\neq 2$.

The case $\#\alpha=3 \& \#\beta=2$. By the abstract definitions of A_4 and S_3 , i.e., $A_4=\langle S, T | S^3=T^2=(ST)^3=1\rangle$, $S_3=\langle S, T | S^3=T^2=(ST)^2=1\rangle$, we have $\#(\alpha\beta)\neq 3$, $\#(\alpha\beta)\neq 2$. Therefore $\#(\alpha\beta)=5$.

Since $\alpha\beta$ is A_5 -conjugate to $\alpha^{-1}\beta^{-1}$, by Property 3, $\#[\alpha, \beta] \neq 2$.

The case $\#\alpha = \#\beta = 2$. Assume $\#[\alpha, \beta] = 2$. Then we have

$$[\alpha, \beta]^2 = 1 \longleftrightarrow \alpha \beta = \beta \alpha \longleftrightarrow [\alpha, \beta] = 1.$$

This is contradiction.

Thus we see that the F-data (1, 1, 1, 1, 1; 0, 0) does not arise from a compact Riemann surface of genus 16.

Finally, we assume that $n_1=0$. Then

$$l(A) = 1 - n_3 + 2n_4$$
, $l(B) = 1 - n_2 + n_3$, $l(C) = 1 + n_2 - n_4$.

By simple calculation we see that the triple (l(A), l(B), l(C)) does not coincide any one of following:

(0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 0, 0), (1, 1, 0), (0, 2, 0), (3, 0, 0),
(2, 1, 0), (1, 2, 0), (0, 3, 0), (4, 0, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 1), (2, 0, 1),
(0, 0, 2), (1, 1, 1).

In the following, instead of defining φ , we give the relation (of A_5) which guarantees the extistence of φ .

(i) The case $l(A)=0 \& l(B)=0 \& l(C) \ge 3$. (i-1) $p \ge 3$, q=0. (i-2) $p \ge 3$, q=1. (i-3) $p \ge 2$, $q \ge 2$, (i-4) p=2, q=1. sidering Property 5, we can reduce (i-1), (i-1).

Considering Property 5, we can reduce (i-1), (i-2) and (i-3) to Property 6 (VI-1), (V-2) and (V-4), respectively. In the case of (i-4), by Property 4, the *F*-data (0, 2, 1, 0, 0; 2, 1) does not arise from a compact Riemann surface of genus 13.

(ii) The case $l(A) \ge 1 \& l(B) \ge 1 \& l(C) \ge 2$.

(ii-1) $p \ge 2$, q=0.

(ii-2)
$$p \ge 1$$
, $q \ge 1$.

Considering Property 5, we can reduce (ii-1) and (ii-2) to Property 6 (I-9) and (II-3), respectively.

(iii) The case $l(A) \ge 2 \& l(B) \ge 1 \& l(C) = 1$. Considering Property 5, we can reduce this case to Property 6 (I-10).

(iv) The case $l(A)=1 \& l(B) \ge 2 \& l(C)=1$. Considering Property 5, we can reduce this case to Property 6 (I-11). (v) The case $l(A) \ge 3 \& l(B) = 0 \& l(C) \ge 1$.

- (v-1) $p \ge 1, q=0.$
- $(v-2) \quad p \ge 1, q \ge 1.$

Considering Property 5, we can reduce (v-1) and (v-2) to Property 6 (I-2) and (I-8), respectively.

- (vi) The case $l(A)=0 \& l(B) \ge 2 \& l(C) \ge 1$.
- (vi-1) $p \ge 1, q=0.$
- (vi-2) $p \ge 1, q \ge 1$.

Considering Property 5, we can reduce (vi-1) and (vi-2) to Property 6 (III-1) and (V-3), respectively.

(vii) The case $l(A)=1 \& l(B)=0 \& l(C) \ge 2$. (vii-1) $p \ge 3$, q=0. (vii-2) $p \ge 1$, $q \ge 1$. (vii-3) p=2, q=0.

Considering Property 5, we can reduce (vii-1) and (vii-2) to Property 6 (I-4) and (II-1), respectively. In the case of (vii-3), by Property 3, the *F*-data (0, 1, 0, 0, 0; 2, 0) does not arise from a compact Riemann surface of genus 4.

(viii) The case $l(A)=2 \& l(B)=0 \& l(C) \ge 2$. (viii-1) $p \ge 2$, q=0. (viii-2) $p \ge 1$, $q \ge 1$.

Considering Property 5, we can reduce (viii-1) and (viii-2) to Property 6 (I-7) and (II-2), respectively.

(ix) The case $l(A)=0 \& l(B)=1 \& l(C) \ge 2$.

(ix-1) $p \ge 2, q=0.$

(ix-2) $p \ge 1, q \ge 1$.

Considering Property 5, we can reduce (ix-1) and (ix-2) to Property 6 (IV-1) and (V-1), respectively.

(x) The case $l(A) \ge 2 \& l(B) \ge 2 \& l(C) = 0$. Considering Property 5, we can reduce this case to Property 6 (III-2).

(xi) The case $l(A) \ge 3 \& l(B) = 1 \& l(C) = 0$. Considering Property 5, we can reduce this case of Property 6 (I-6).

(xii) The case $l(A) \ge 5 \& l(B) = 0 \& l(C) = 0$. Considering Property 5, we can reduce this case to Property 6 (I-5).

(xiii) The case $l(A)=1 \& l(B) \ge 3 \& l(C)=0$. Considering Property 5, we can reduce this case to Property 6 (I-3).

(xiv) The case l(A)=0 & $l(B)\geq 4$ & l(C)=0. Considering Property 5, we can reduce this case to Property 6 (III-3). This completes the proof.

References

- [1] H.S.M. COXETER AND W.O.J. MOSER, Generators and Relations for Discrete Groups, Springer Verlag 1972 (Third edition).
- [2] H. KIMURA, On automorphism groups of compact Riemann surfaces with prescribed group structure —The cases of D_8 and Q_8 (preprint)
- [3] A. KURIBAYASHI AND H. KIMURA, Automorphism groups of compact Riemann surfaces of genus five, J. Algebra, vol. 134 (1990), 80-103.
- [4] I. KURIBAYASHI, On automorphisms of prime order of a Riemann surface as matrices, Manuscripta Math. 44 (1983), 103-108.
- [5] I. KURIBAYASHI, On an algebraization of the Riemann-Hurwitz relation, Kodai Math. J., 7 (1984), 222-237.
- [6] I. KURIBAYASHI, Classification of automorphism groups of compact Riemann surfaces of genus two. (Preprint at Tsukuba 1986).
- I. KURIBAYASHI, On automorphism groups of a curve as linear groups, J. Math. Soc. Japan, 39 (1987), 51-77.
- [ATLAS] J.H. CONWAY, R. T. CURTIS, S. P. NORTON, R. A. PARKER, AND R. A. WILSON, Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [G] D. GORENSTEIN, Finite Groups, Harper & Row, Publishers, New York, 1968.

Tokyo Institute of Technology Department of Mathematics Meguro-ku, Tokyo, Japan and Fellowships of the Japan Society for the Promotion of Science for Japanese Junior Scientists