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1-TYPE SUBMANIFOLDS OF THE COMPLEX

PROJECTIVE SPACE
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§0. Introduction.

The standard way to define the complex projective space CPm is by means
of Hopf fibration π: s2m+1-*CPm where CPm is obtained as a quotient space of
S2m+1c:Cm+ί under the natural action of the group Sl of complex numbers of
norm 1. It is not completely trivial to find an isometric embedding of CPm

into a Euclidean space, the most natural one (the first standard embedding)
defined as follows. For p<=CPm pick z(Ξ^"1(ί)c52m+1 and let φ(p)=zzt (z is
regarded as a column vector in Cm+1). Then φ is a well defined map that
embeds CPm into the set H(m-\-1) of Hermitian matrices of degree ra-f 1, the
latter being a Euclidean space of dimension N=(m+l)2. Now if x:Mn-^CPm

is an isometric immersion of a compact n -dimensional Riemannian manifold
into the complex projective space, than we also have the associated immersion
x=φ°x : Mn-*H(m+l)=EN.

On the other hand, there is a notion of finite type immersion / : Mn-^EN

whereby a compact Riemannian manifold Mn is said to be of &-type (via /) if
/ is globally decomposable as /=/0+/ι+ ••• +/*, where /0=const (could be 0)
and /Ys are vector eigenfunctions of Laplacian from k+1 different eigenspaces
[3]. For example, a well known result of Takahashi [15] characterizes compact
1-type submanifolds as minimal in a hypersphere of EN. Studying finite type
immersions is difficult in general, but there have been several results on low
type submanifolds of CPm. In particular, A. Ros has the following classification
of C^-minimal submanifolds of CPm which are of 1-type via the first standard
embedding.

THEOREM A [10]. Let Mn be a compact CR-minimal submanifold of CPm.
Then Mn is of 1-type via φ if and only if

a) n is even and Mn is congruent to the complex projective space CPn/2

immersed as a totally geodesic complex submanifold of CP™.
b) Mn is a totally real minimal submanifold of a complex totally geodesic

CPn in CPm.
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Ros' proof relies on the equivariancy of the embedding φ and uses both
assumptions CR and minimal in an essential way. In this paper, using some-
what different and more refined approach, we give an extension of this result
(Th. 1). It turns out that one can classify 1-type submanifolds of CPm

assuming them to be only CR (or with parallel mean curvature vector in CPm)
and in the case of submanifolds of low dimension or codimension, without any
a priori assumptions at all. We also give some properties of 1-tyρe submanifolds
of CPm in general, and produce an extrinsic bound on the first eigenvalue of
the Laplacian.

§ 1. Preliminaries.

Let S2m+l = {z<=Cm+ί |5ez=l} be the unit hypersphere centered at the origin.
Then by identifying z with λz, where λ&C, |Λ|=1, we get the quotient space
which defines CPm. We actually obtain the fiber bundle π : S2m+l~*CPm with
structure group S1 whose vertical space at veS2wi+1 is R{iv}. Let <#„ be the
orthogonal complement of the vertical space so that TυS

Zm+1 = R{iv}Q)Mv. One
defines the metric on CPm such that dπv: ^Cυ-^TπWCPm is an isometry for every
v. The complex structure / of CPm is defined by means of the complex struc-
ture of Cm+l and the uniqueness of the horizontal lift. Then π is a Riemannian
submersion with totally geodesic fibers and CPm is Kahler manifold with
constant holomorphic sectional curvature 4.

Let H(m+ϊ)={Pς=GL(m+l;C)\P=Pt} be the set of (m+l)X(m+l)
Hermitian matrices. Equipped with the metric

<P, <?>=(l/2)tr(PQ), P, Q(ΞH(m+l)

it becomes the usual Euclidean space EN of dimension N=(m+l)2. It is well
known that the map φ: S2m+1-»#(w+l) given by $(z)=zz*, where z^SZm+1 is
regarded as a column matrix, induces an isometric immersion φ : CPm->H(m+l)
such that

φ(CPm)={P<=ΞH(m+l)\P2=P, trP=l} .

φ(CPm) actually lies in the intersection of the hyperplane H^= {PeΞ#(m+l)|tr P=l}

and the hypersphere of EN with radius r=Vm/2(m+l) centered at //(m+1), /
being the identity matrix of H(m+l). For more details on the embedding φ
see [3], [10], [11], [13], [14].

By identifying CPm with φ(CPm}, which we will do henceforth, the tangent
and the normal space of CPm at a point PeCPm are given respectively by

Ts>CPm={X€=H(m+ϊ)\XP+PX=X}

The second fundamental form of the embedding φ at a point P is given by
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σ(X, Y)=(XY+YX)(I-2P)

and it is known that σ is parallel, Ίσ— 0. We have also

(1) <o(X, Y\ />=0, <σ(X, Y), Py^-<X, Y>.

The complex structure / and the shape operator A of φ at P are given respec-
tively by

JX= V=Ϊ(I-2P)X, ΆZX=(XZ-ZX)(I-2P) .

The following formula for the Weingarten map of φ in the direction of
σ(X, Y} is due to A. Ros [11]

(2) a,<z.y)v=2<x, YW+<Y, vyx+<x, vyγ+<jγ, vyjx+<jx,

Let / : Mn—>EN be an isometric immersion of a compact Riemannian mani-
fold into a Euclidean space, and let Δ be the Laplace operator acting on smooth
functions on M. An immersion / (or a submanifold M) is said to be of 1-type
if it can be decomposed as /=/0+/{, where /0— const and Δft=λtft. In
particular, if x : Mn-*CPm is an isometric immersion of a compact manifold
and x— φ°x : Mn-+H(m+l), we will study submanifolds of CPm with 1-tyρe %,
i.e. those for which x=xQ+xt where XQ is a constant matrix in H(m+l) and
xt a nonconstant eigenf unction of the Laplacian (more precisely, each entry of
the matrix χt is either zero or an eigenf unction from the same eigenspace).

X φ <v

For the immersions Mn -+CPm->H(m-\-l) let V denote the Euclidean con-
nection in H(m+ϊ); 7, A, D denote the (Levi-Civita) connection on CPm, Wein-
garten map and the connection in the normal bundle of φ 7, A, D denote the
induced connection on M, Weingarten map and the connection in the normal
bundle of the immersion x and h, h, H1, H denote the second fundamental forms
and the mean curvature vectors of the immersions x and x=φ°x respectively.
Γ(TM ) and Γ(TLM) will denote the set of all smooth sections (vector fields)
of the tangent and normal bundle of M respectively. We consider a local
frame of orthonormal vector fields elt ••• , en, en+1, ••• , e2m tangent to CPm

where the first n vectors are tangent to M and the remaining ones are normal
to M. In general, index i will range from 1 to n and index r from 72 4-1 to
2m, so that e^, er represent basis vectors tangent to M and normal to M
respectively. All immersions are assumed smooth and all manifolds will be
assumed compact, connected smooth Riemannian manifolds of dimension ^2.

A submanifold M of the complex projective space is called a CR-submanifold
if the tangent bundle TM splits into an orthogonal direct sum of two (differ-
entiate) distributions TM=3)®2)L such that J&C.3) and /^)1cT1M. If S)L= {0}
we have a complex (invariant) submanifold and if £)={Q} we have a totally
real one.
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§2. 1-Type submanifolds of CPm

Given a submanifold x:Mn—>CPm. Then x=φ°x is a 1 -type] immersion if
XQ+XI as above so that Δx=λt(x—xo). On the other hand,

and therefore x is of 1-type if and only if

(3) -nH-Σσfa, et}=λt(x-x0).

Differentiating this formula along an arbitrary vector field Jfe/^TMX'that is,
taking Vx of both sides we obtain (we assume for simplicity Vjsr£t— 0 at a point
where the calculation is done)

(4) nAHX-nDxH-nσ(X,

Because σ is parallel we have

(5) ^Dxσ(eι, *,)=2Σ*(7χ*,, el)=2^ίa(h(X) e*\ el)=2Σσ(ArX, er),
τ % i r

(6) nσ(X, H)=Σ(K Ar)σ(X, er).
r

From (2) we also compute

(7) Σa,Cβ<.βl)*=Σ[2*+2<*,, X>et-2<et, JX>J*Λ

=2(n+l)X-2J(JX)τ

where for a vector W tangent to CPm, Wτ and WN denote its orthogonal pro-
jections to the tangent and normal spaces TM, T1M at a given point respectively.
Therefore, by comparing parts tangent and normal to CPm in (4) and using
(5), (6) and (7) we obtain

LEMMA 1. Let x : Mn-+CPm be an isometric immersion of a compact mani-
fold. Then x=φ°x is of 1-type if and only if for every vector field X^Γ(TM)

(8) nAHX-nDχH+2(n+l)X-2J(JX)τ=λtX for some constant λt and

(9) Σσ(BrX, £r)=0, where Br=(tr Ar}I+2Ar .
r

Because AZ—^^)Z~ pi we obtain

LEMMA 2. With the assumptions as above, x is of 1-type if and only if for
any vector fields X, Y^Γ(TM) and ξ^Γ(T^ M) we have

(8) nAHX-nDχH+2(n+ΐ)X-2J(JX)τ=λtX, λ=const
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(10) ΣL<BrX, Yyer+<Jer, Y>JBrX+<JBrX,
r

(ID Σ[<βr, ξ>BrX+<Jer,

Proof. First we claim that Az—0 a Z=ρl, where p^R and / is the (ra+1)
X(m+l) identity matrix. If Z—pI then obviously Λz=0. Conversely, let us
suppose that ΆZX=(XZ—ZXXI—2P)=Q for every X^TPCPm. After multiply-
ing this formula by /—2P on the right we see that XZ—ZX. Because the
immersion is equivariant it is enough to prove the claim at the "origin"

1
0

0

/ O
Any vector X tangent to CPm at P0 can be represented as X=\ ,,

\b b
where b^Cm, and 0 is the mXm zero matrix, and a vector Z normal to CPm

at PQ has the form

IP 0\
Z=\ , where p(ΞR and S^H(m) (see [10]).

\ 0 S/

Condition XZ=ZX for every X^TCPm implies then that Sb=pb for every
b<^Cm, hence S—pI and in turn Z—pI. Now we show that (9) is equivalent
to (10) and (11) together. First observe that by (2), formulas (10) and (11) are
equivalent to ΣMσcs x e„->¥== 0 and ΣM<rc.B x β )ί—0 respectively. However, if

r r r r r r

)=0 then from the above we have *Σσ(BrX, er)=pl, but since
r

^, W), />—0 we obtain (9). If (9) is true then by tracing this argument
backwards we obtain (10) and (11).

It is easy to see now that if % is of 1-type, the conditions that M has
parallel mean curvature vector in CPm and that it is a CR submanifold of CPm

are equivalent. Namely, if M is a CR submanifold then J(JX)T is always
tangent to M and therefore from (8) DH=Q. Conversely, suppose DH—0 (so
that the mean curvature a is constant), and let X be a principal direction of
AH i.e. AHX=μX. Then from (8) we get 2(/A')Γ=[λ-2(n+l)-/ιn]/Z, so
that at any given point we have either

1
Γ. β——[Λ—2(w+l)1, equivalently (/X)r=0 or

n

2°. «=—Wί—2(72+2)], equivalently
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Therefore, there are at most two distinct principal curvatures μ\~— \_λt— 2(w+2)]
1 n

with multiplicity p and μ2— — [Λ — 2(n+l)] with multiplicity 0. Moreover,

and hence /> and q are constant. Let

Γ=0} and

Then ]3)=.S) and /^)1c:TJ-M and consequently M is a Cft submanifold. We
are now ready to prove the main theorem

THEOREM 1. Let x : Mn-^CPm be an isometric immersion of a compact
Riemannian manifold into CPm with parallel mean curvature vector (or let M be
a CR submanifold of CPm). Then x—φ°x is of 1-type if and only if one of the
following cases occurs

1) n is even, and Mn is congruent to the complex projective space CPn/z

immersed as a totally geodesic complex submanifold of CPm.
2) Mn is a totally real minimal submanifold of a complex totally geodesic

CPn in CPm.
3) n is odd, and Mn is congruent to the geodesic hyper sphere

of the complex projective space (7PC7l+1)/2 immersed as a totally geodesic complex

submanifold of CPm.

Proof. Any of the cases 1), 2) and 3) is indeed of 1-type as follows from
Theorem A of Ros and the result of [8] (also from our Lemma 2). Now
assume that the submanifold of CPm with DH=Q is of 1-type. As shown
above such submanifold is also CR, so that at each point of M we have the
following orthogonal splitting of the tangent space of CPm.

(12) TCPm=3)®3)*-®j2)L®v

where 3) and v are holomorphic subbundles and TM—3)®3)L, TLM—]3)L®v.
Let p=2k=dim£) and q=dim£)A- so that p+q—n and let elf •- , ep, ep+1, •••,
ep+q, en+ι, ~ , en+q, en+2+ι, •••, ezm be a local orthonormal basis for TCP™
adapted to the decomposition (12) where Jep+j—en+J for j=l, •••, q. Because
v is a holomorphic subbundle we can assume that {en+q+ί, •••, e2m} is a /-basis
for v i.e. it is equal to {es, es^—Jes}, s=n+q+l, •••, m+k+q. Now in formula
(11) let £=es, where s is any index in the range n+q+1, •••, m+k+q. Then
(11) reduces to
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*r, esyBrX+<Jer,

Hence, BSX—JBS^X and BS*X=—JBSX for a /-basis vector es in v. We now
show that A8=AS*= 0. Using the above we compute the trace of Bs as

because Bs* is symmetric and / skew symmetric. So tr^4s=0 and similarly
tr^4s*=0. Note that at this point we can conclude that H^]S)L since tr^4 r— 0
for any er^v. Moreover, from the above we get

(13) A..X=-JA.X.

Let Y^.2)L be arbitrary. The formula (10) becomes

(14) Σl<BrX, Yyer+<Jer,

Fix es^u and take the inner product of the above formula with es to get
<BSX, Yy=0 for every Fe.01. This implies BSX<=£) and hence ASX^2) for
any X tangent to M and any es^v, so that JASX&3) as well.

On the other hand, because CPm is Kahler we have for es^v (note also
0,*e=v) Vχ(Jes)=JVxes, i.e.

(15) -A,*X+Dze,*= -JAsX+JDxes ,

where both AS*X and JASX are tangent to M and Dχes* is normal to M.
Again choosing Y^2)L we obtain from (15)

, Y>=<JDxes-JAsX, Yy=<Dχes*-As*X, F>=0.

Obviously (JDxes, F>=0 for every Y^Ώ so that JDxes is normal to M
(actually it belongs to v). Comparing parts tangent to M in (15) we conclude
AS*X=JASX. But together with (13) this implies AS*=AS=Q.

We can assume that the constant mean curvature a is not zero because if
it is, we have a C^-minimal submanifold of 1-type and therefore by Theorem
A cases 1) or 2) occur. Since H<=]S)L we also assume from now on that the
unit normal vector en+ί is in the direction of H so that in the basis of principal
directions the Weingarten map An+1 has the following block form

lp 0 \
, where ί>=dim^), q—

o rij
and ]8=(l/nα)[λ-2(n+2)], r=(l/wα)Wt-2(n+l)]. From trAn+1=na we get
β=a-2q/n*a and γ=a+2p/n*a. Next we show that q=άim£>±=l. Let
in formula (10) so that

, Yyer+(JBrX, Yyjer~]=Q.
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Because Br=0 for r^n+q+l and Jer<^£>L for n-\-l<ίr^n-\-q we obtain
<BrX, Yy=Q i.e. BrX^3)L for every ZeΓ(TM) and every r. In particular,
for XtΞS) we get (if 3)={Q} there is no β) B7l+1Z=
so that na+2β=Q i.e.

- for every X^Γ(TM)
=0, which implies that

(16) β=a-2q/n2a=-na/2.

For r=n+j, j=2, •••, q we obtain Bn+JX=2An+j
and hence 0—(An+jg)^, ^)>—<^)J , An+J2>y so that
τ4n+; has the block form

'0 0

0 M

where M3 is qXq symmetric matrix with trM;=tryln+;=0. Furthermore, it is
known from [2] that

(17) AJXY=AJYX for X, Y^^.

Letting X=ep+1, Y=ep+J, 2^j^g in this formula we get An+jep+1=An+1ep+J=
γep+J and therefore M3 has the form

/ O - γ

(18)

where / is in the yth slot in the first row and the first column and all other
entries there are 0. We now show that ^=dim^)1 = l. Suppose that q>2.
Then for ;'J>2 we have 5^—2^4^ and from the above ^Bn+jep+Ji ep+1y=
(ep+3, Bn+jep+1y=2γ. On the other hand, putting X=ep+J, Y=ep+1 in (10) we
have

0—Σt<B r e p + J , ep+1yer—JBn+lep±j=Σ<Brep+J, ep+1yer—(na+2γ)en+}r r

and by comparing en+j-components we obtain (Bn+jep+J, ep+ly—na-\-2γ so that
a—0. Since we assumed nonzero mean curvature this contradiction proves
q—\ i.e. purely real distribution is one-dimensional and n—2k+1 is odd. Since

dimM^2 it follows that dim<2)^0. Then from (16) we find a=2/nVn+2 and

1 /-/»-ι 0
, ^1

Vn+2\
for

Therefore, the first normal space equals N1=lmh=Jg)L=R{H} and since
DH=Q, N, is parallel, i.e. DN.dN,. Also, J(TM®N1)=TM®N1 and therefore
by the reduction theorem of B. Opozda [12, Prop. 3.1] there exists a totally
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geodesic complex submanifold M of CPm so that the image of M is contained
in M and TPM=TPM@N1P for every p^M. Note that even though Opozda's
theorem is formaly proved for totally real submanifolds, it is clear that her
proof holds for CR submanifolds verbatim. The idea is as follows. Choose
pς=M and v^π~\p) and define KΌ=(π*\MυΓ\TpM®Nlp)®Spanc{v} Then Kv

is a complex subspace of Cw+1. Set Mv =π(KvΓ\S2m+1) so that Mυ is a totally
geodesic complex submanifold of CP™ and TpM—TpM^Nlp. From the condi-
tions above it follows then that Mυ does not depend on p and υ^π~l(p)\ see
also [1]. This means that M is a (real) hypersurface of some complex totally
geodesic CPC7l+1)/2 and by [8] M is the geodesic hypersphere of the case 3)
which completes the proof.

At the present time we are not able to give the classification of 1-type
submanifolds of CPm without any a priori assumptions but some general
properties of those are given in the next theorem.

THEOREM 2. // M is α 1-type submanifold of CPm with the mean curvature
vector H, then the mean curvature a of the immersion is constant, JH is tangent
to M and integral curves of JH are geodesies (if

Proof. As before, since Br is symmetric and / skew-symmetric we have
r£z, ely=Q and putting X=Y=ez in (10) and adding on i—l, ••• , n we

obtain

0=Σ(tr5r)*r + Σ <Jer,

and therefore

Now taking the inner product of (8) with H we get

τ, JHy=2<JX,

hence X(H, Hy—Xa2—^ for every tangent vector X, and therefore the mean
curvature a is constant. Letting X—JH in (8) we obtain

DJHH=Q, AHJH=—\_λt

Therefore,

On the other hand VJH(JH)=VJH(JH)+h(JH, JH), and we conclude
i. e. the integral curves of JH are geodesies.
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By way of a remark we note that having proved that a—const for 1-type
submanifolds of CPm, in Th. 1 instead of DB=ΰ we could have made slightly
weaker assumption (if aφQ) that the normalized mean curvature vector is
parallel i.e. Den+l—0.

COROLLARY 1. Let x : Mz-^CPm be an isometric immersion of a closed
surface in CPm. Then %=φ°χ is of 1-type if and only if one of the cases 1) or
2) of Theorem 1 occurs. The same conclusion holds if M is a 1-type submanifold
of codimension two.

Proof. We assume Hφΰ, otherwise M is minimal and we proceed as before
to show that M is one of the cases 1) or 2). By Theorem 2, JH is tangent
to M and is a principal direction of AH. Let Ul_JH be the other principal
direction of AH i.e. ΛHU=μU. Then U and JH span TM, and </£/, Uy=Q,
<JU, JHy=<U, Hy=Q and consequently JU(=T^M. Since also JJH^TLM we
conclude that M is a totally real surface and hence of case 2) of Theorem 1.

If M is codimension two submanifold, let H, ξ span T±M(ξ_l_H). Then
since JH1 is tangent to M we have </£, #>=-<£, /#'>=0 and <Jξ, £>=0 so
that Jξ is also tangent to M. This implies that M is a C^-submanifold and
therefore by Theorem 1 one of the cases 1) and 2).

We now want to carry out investigation of 1-type submanifolds of CPm

without any a priori assumptions. As before, we can show that there are at
most two distinct principal curvatures of AH and corresponding two distributions
S)—Ker£n+1 and ^D±=lmBn+1 with /^)-LcT-LM, but we are not able to show
JΦCLTM.

Let Ύ—Jen+1 in (10) which then becomes Σ(BrX, Jen+ίyer+JBn+1X=0

from where we obtain

(19) JBn+ιX=-Σ<BrX, Jen+ί>er(ΞT-M.
r

If we define ^•L={Z<=TM[/ZeT-LM} then we see that ImBn+iC^)1. At each
point of M we have the orthogonal decomposition

(20) TM^Ker 5n+10Im Bn+1.

Let e l f •••, ep be an orthonormal basis for KerBn+1; these are eigenvectors for
eigenvalue 0. The remaining orthonormal eigenvectors ep+ίt •••, ep+q of Bn+l

span ImBn+i Because Bn+l=(nct)I+2An+1 we see that eίf •••, ep are eigen-
vectors of An+1 for eigenvalue β= — na/2 and ep+1, •••, en are also eigenvectors
of An+1 corresponding to eigenvalue γ=(l/na)lλt—2(n+l)'] (This follows from
(8) and (19)). In other words

(βlp 0 \
(21) An+1=\ , where />=dimKerJ3n+ι, ^=dimlmβn+ι.

\ 0 γlj



1-TYPE SUBMANIFOLDS OF PROJECTIVE SPACE 291

Moreover, p ana q are constant because p+q=n and pβ+qγ=nα=const(β^γ,
see below). If α— 0 then the submanifold is CR and therefore classified by
Theorem A. From now on we assume α^O. Not all eigenvalues of An+ί can
be equal to β— — nα/2 because if that is the case we would have nα=trAn+l

——ri*α/2 which implies α— 0. Also not all eigenvalues can be equal to
r=(l/nα)[Λ t— 2(n+l)] because if it is so it would follow that (/X)Γ=0 for
every X tangent to M and hence M would be totally real submanifold and
therefore minimal by Theorem 1. It is also clear now that lmBn+1= 3)L because
if lmBn+1 is a proper subspace of 3)L there would exist a vector X<=KerBn+ι
satisfying JX^TLM. Then (8) implies An^X^(\/nα)\_λt-2(n-\-V)\X. On the
other hand for X<=KerBn+ί we have An+ιX=—(nα/2)X which is a contradiction
proving the claim. In particular we can set ep+l—~- Jen+ί^lmBn+ί. Let us
also denote ^=Ker57l+1. With respect to the decomposition (20) Bn+λ has the
following block form

O 0

0

We now prove the following lemma which enables us to classify 1-type
submanifolds of CPm for which #=

LEMMA 3. Let Mn be α 1-type submanifolds of CPm for which q=l. Then
Mn has parallel mean curvature vector.

Proof. Let X<Ξ$=KerBn+1 and ξ=Jep+1=en+l in (11). We get

and consequently BrXl_ep+ί. It follows immediately that also

(22) ArX±ep+ι, for every r=n+l, ••• , 2m and every

Further, by putting X=Y=ep+ί=—Jen+1 in (10) we get

0—

l, ep+lyer-(na+2γ)en+ι

rsn+2

and therefore Brep+1l_ep+1 for r^n+2. Because Br=2Ar we also have

(23) Arβp+ί.Lep+1 for every r=w+2, ••• , 2m

We recall the Codazzi equation (see e.g. [3])

(24) (7χAχr, Z)-(7rA)(-y, Z)=(R(X, Y)Z)N , X, Y, ZeΓ(TM) ,
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where the curvature tensor R(X, Y)Z of CPm is given by.

(25) R(x, Y)z=<γ, z>x-<x, Z>Y+<JY, zyjx-<jx, zyjγ+2^x, JY>JZ.

Let X=Z=ep+ι, Y=eif i—l, ••• , p. Then from (25) we get

so that the Codazzi equation (24) yields

)(ep+1, ep+1)

p+1eif ep+i)-h(eiy

—Dei(h(ep+1,

We have 7^+1ep+ι— 0 by Theorem 2, h(eif βp+ι)=Σ<^rei, ep+ι>er — 0 by (22),

h(ep+ι, ep+ι)=γen+ί by (21) and (23) and the equation above becomes

(26) Q=-ωϊ(ep+1)h(ek,

where ω\ denote the connection 1-forms and summation is on k=l, ••• , n.
Because 0=1, p=n— 1, β— — noί/2, we find 7=αn(n-f l)/2=const^0. Now using
(21), (22), (23) and (26) we have

and because 7^0, and Qn^-i^-De^n^i we obtain De^n^—^, ι=l, ••• , p. In other
words DχH=Q for X<^2)=KerBn+ι and from (8) we also have DXH=0 for

and therefore DH—^ and M is a C/?-submanifold.

COROLLARY 2. Let x : Ms-+CPm be a compact ^-dimensional submanifold.
Then %=φ°x is of l-type if and only if M3 is one of the cases 2) or 3) of Theorem
1 (with n=3).

Proof. If M is minimal the classification follows as before. If a 9^0 suppose
first that p=dim£)=2, 0=dim^)1=l. Then Lemma 3 and Theorem 1 give
desired classification. If />=!, and q—2y let £>=Span{Z}, ^^SpanfΓ, Z}.
In that case <JX, ^>=0, </Jf, F>=-<Z, /F>=0 and likewise <JX, Zy=Q,
which implies that M is a totally real submanifold and Theorem 1 proves the
claim again.

The same idea can be used to classify codimension 3 submanifolds of CPm

which are of l-type. Again, they are of three cases described in Theorem 1.

§3. Remarks and related results

1. The complete classification in Theorem 1 is not given because the classi-
fication of minimal totally real submanifolds Mn of CPn is not known, and
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seemingly there are quite a few of them. For example, in [7] it was shown
that the torus T2=S1XS1 can be minimally immersed in CP2 as a totally real
submanifold. Also, according to Naitoh [9, §5] there are totally real minimal
submanifolds Mn of CPn including SU(k)/SO(k) (n=(l/2)(fe+2)(fe-l)), SU(2k)/
Sp(k) (n=2kz-k-l\ SU(k)xSU(k)/SU(k) (n = k2-!) Ee/F, (n=26), and Ejiri
[5] shows that certain circle bundles (tubes) over S2 of sufficiently high even
Chern number can be minimally immersed in CP3 as a totally real submanifolds.
Note however that there are some pinching theorems stating that under certain
conditions on curvature (e.g. sectional curvature J^>0) every totally real minimal
submanifold Mn of CPn is necessarily totally geodesic; see [16], [4], [6].

2. Study of finite type immersions often provides some information on the
spectrum of the Laplacian on M. For example, if Mn is a compact manifold
that can be immersed into CPm with constant mean curvature a then the first
nonzero eigenvalue of the Laplacian satisfies

and the equality holds if and only if Mn=CPn/2 and the immersion is totally

geodesic in CPm (in which case α=0). Namely, if x— Σ %t, Δxt=λtxt, Λ0=0
ί = 0

then

( <Δx, MydV-λS <ΔJc, %ydV= Σ Λ(Λ~Λ)ί <xt,xt>dV^Q,
JM JM ίέl JM

equality holding if and only if x is of 1-type of order {!}. On the other hand,
because Δx= — nH— *Σσ(eif et\ by using the equality (2.11) of [8] and (1) wet
get <ΔJc, jc>— 72 and

<Δx, ΔJc>=n2

equality holding if and only if (JX)N=Q for every X^Γ(TM), which implies
that M is an invariant submanifold, thus CR, so that Theorem 1 proves the
claim (cf. [3, p. 314], [10]). Actually, it is easy to see from the above that
for any compact submanifold Mn of CPm(4) we have

vol(M)

3. Let φ: RPm-*SM(m+l) be the first standard embedding of the real
projective space into the set of symmetric matrices of degree m+L There is
a problem of determining all submanifolds x: Mn-*RPm which are of 1-type
viaφ, i.e. for which x=φ°x is a 1-type immersion. Chen [3] shows that the
only complete 1-tyρe submanifold of RPm which is minimal in RPm is the
totally geodesic RPn. Because of the corresponding result for CR submani-
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folds of CPm we can classify complete 1-tyρe submanifolds of RPm without
assuming minimality, thus generalizing the above result of Chen. Namely, we
can embed RPm in CPm as a totally real totally geodesic submanifold such that
the Hopf fibrations

Sm c S2m+1

RPm c CPm

are compatible. Then a 1-type submanifold MnaRPm becomes a CR (totally
real) submanifold of CPm and the 1st standard embedding of RPm is just the
restriction of the 1st standard embedding of CPm. By Theorem 1, case (2), it
follows that Mn is a totally real minimal submanifold of some totally geodesic
complex CPn in CPm. Therefore, Mn is minimal in CPm and since RPmC.CPm

is totally geodesic it follows that Mn is also minimal in RPm so that the above
result of Chen classifies Mn as a totally geodesic RPn.

As above, for a compact submanifold Mn of RPm the first non-zero eigen-
value of the Laplacian satisfies

with equality if and only if M71 is the totally geodesic RPn.

Acknowledgements. The author would like to thank Professors D. Blair and
B. Y. Chen for helpful discussions on the topic. In particular, the above classi-
fication of 1-tyρe submanifolds of RP™ is based on a remark by Chen.

Added in Proof. It should be remarked that the classification results presented
in this paper are essentially of local nature. Namely, Lemmas 2 and 3, The-
orems 1 and 2 and Corollaries 1 and 2 are valid without assuming M compact
but merely complete. That is because Lemma 1, Theorem A and the result
of [8] used in the proof are valid for any submanifold M.
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