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NONLINEAR VOLTERRA INTEGRODIFFERENTIAL

EVOLUTION INCLUSIONS AND OPTIMAL CONTROL*

BY NIKOLAOS S. PAPAGEORGIOU**

Abstract

In this paper we examine integrodifferential evolution inclusions of the
Volterra type driven by time dependent, monotone, hemicontinuous operators.
We prove two existence theorems; one for convex valued perturbations and
the other for nonconvex valued ones. We also establish a topological pro-
perty of the solution set of the "convex" problem. Then we prove a result
on the continuous dependence of the solutions on the data of the problem
(sensitivity analysis). We also consider a random version of the inclusion and
prove that it admits a random solution. Then we pass to optimal control
problems. First we establish the existence of optimal admissible pairs and
then using the notions of epigraphical and G-convergences, we obtain a varia-
tional stability result. Finally we work in detail two parabolic distributed
parameter optimal control problems, illustrating the applicability of our work.

List of symbols

Ω: Upper case Greek letter omega Wr:
Σ: Upper case Greek letter sigma &:
Sq: S subscript q dH:

SP

F: S superscript p, subscript F φ :
ω: Lower case Greek letter omega φ:

Wpq: W subscript pq δ:
Lq: L superscript q BM:
Lp : L superscript p a :

τ: Lower case Greek letter tau β :
ε : Lower case Greek letter epsilon γ:
η : Lower case Greek letter eta Γ:

X\ Script L aΐj .

W subscript r
Script P
d subscript H
Lower case Greek letter phi
Lower case Greek letter psi
Lower case Greek letter delta
B subscript M
Lower case Greek letter alpha
Lower case Greek letter beta
Lower case Greek letter gamma
Upper case Greek letter gamma
a superscript n, subscript ij

1. Introduction

In this paper we study Volterra integrodifferential evolution inclusions of
nonconvolution type with time dependent unbounded operators and with both
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convex and nonconvex multivalued perturbations. Our results are then applied
to distributed parameter optimal control problems. Our work extends those of
Chuong [9], Glashoff-Sprekels [15], Kiffe [16], Papageorgiou [27], [28], Ragi-
mkhanov [32] (on integral inclusions) and Angell [1], Cesari [8], Warga [39]
(on optimal control problems), since we allow for the presence of time varying,
unbounded nonlinear operators and also our system is an integrodifferential
equation. Furthermore for both our inclusion and optimal control problems we
conduct a detailed sensitivity (i. e. dependence on the data) analysis.

The structure of the paper is the following. In the next section we establish
our notation and terminology and we recall some basic definitions and facts
from nonlinear analysis and the theory of measurable multifunctions. In section
3 we pass to the study of the integrodifferential evolution inclusion and we have
two existence results; one for convex valued perturbations and the other for
nonconvex valued ones. Also in the "convex case", we prove the solution set
is compact in an appropriate topology. In section 4 we examine the dependence
of the solutions on the data that determine them, namely the unbounded operator,
the multivalued perturbation and the initial condition (sensitivity analysis). In sec-
tion 5 we consider a random version of the integrodifferential evolution inclusion
and using techniques from the theory of measurable multifunctions, we establish
the existence of random solutions. Our result (theorem 5.1) extends earlier ones
obtained by Chuong [9], Papageorgiou [29] and Tsokos-Padgett [37]. In section
6 we turn our attention to optimal control problems for infinite dimensional
systems governed by integrodifferential evolution equations of the Volterra type
(i. e. systems with memory). We establish the existence of optimal controls and
we also conduct a sensitivity analysis using the notions of τ-convergence (epi-
convergence) of functions and of G-convergence of operators. Finally in section
7 we work in detail two examples of distributed parameter control systems
governed by parabolic integrodifferential equations.

2. Preliminaries

Let (Ω, Σ) be a measurable space and X a separable Banach space. Throug-
hout this paper we will be using the following notations:

: nonempty, closed, (convex)}
and

: nonempty, (weakly-) compact, (convex)}.

A multifunction F: Q-*Pf(X) is said to be measurable (see Wagner [38]),
if for every x(ΞX, ω-+d(x, F(ω))=mf {\\x-z\\ : z^F(ω)} is measurable. A mul-
tifunction F: £?->2x\{0} is said to be "graph measurable", if GrF={(ω, x)&
ΩxX: x<=F(ώ)}ξ=ΣxB(X\ with B(X) being the Borel (/-field of X. For Pf(X)
valued multifunctions measurability implies graph measurability. The converse
is true if there is a σ -finite measure μ( ) on Σ and Σ is /^-complete. By SP

F(1^
p^oo) we will denote the set of measurable selectors of F( ) that belong in
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the Lebesgue-Bochner space L*(X); i.e. Sp

F={f<=Lp(X): f(ω)^F(ω)μ-a.e.}.
This set may be empty. For a graph measurable multifunction F: Ω-*2X\{0\,
SP

F is nonempty if and only if ω- +inf {||z|| : z^F(ω)}^Lp+. In particular this is
the case if ω-*\F(ai)\=sup{\\z\\: z<^F(ω)}<^Lp

+. Such a multifunction is said to
be Lp-integrably bounded. Using SF we can define a set valued integral for

F( ) by setting ^QF(ω)dμ(ω)=§J(ω)dμ(ω): /e=S>}.

Let Y, Z be Hausdorff topological spaces and G : Y-^2Z\{0} a multifunction.
We say that G( ) is upper semicontinuous (u. s. c.) (resp. lower semicontinuous
(Ls c.)), if for all FgZ open, the set G+(V)={y<=Y: G(y)^V} (resp. G~(V)=
{y^Y: G(y)Γ\Vφ0}) is open in Y. If Z is a metric space, then on P/(Z) we
can define a (generalized) metric, known in the literature as the Hausdorff metric,
by setting

h(A, B)=max{supd(a, B), supd(6, A)}

If Z is complete, then so is the metric space (P/(Z), Λ).
Finally let T=[0, r], // a separable Hubert space and Z a subspace of H

carrying the structure of a separable, reflexive Banach space which is con-
tinuously and densely embedded into H(i. e. Xc+H). Having H as our pivot
space, we get Xc+Hc+X*. Such a triple of spaces (X, H, X*} is known in the
literature as "Gelfand triple" or "spaces in normal position". By || || (resp. | | ,
H IU) we will denote the norm of J^(resp. of H, X*). Also by < , •> we will
denote the duality crackets for the pair (X, X*) and by ( , ) the inner product
of H. The two are compatible in the sense that < , >|*xιr=( , •)• ByT7p5(T)
we will denote the space of elements x^Lp(X) such that the distributional
derivative x<^Lq(X*\ p~l+q~l—l Furnished with the norm

Wpq(T) becomes a separable Banach space (reflexive if p >1) and it is well known
that Wpq(T) can be embedded in the Banach space C(T, //); i.e. Wpq(T)c+
C(T, H). So every element in Wpq(T), after possible modification on a Lebesgue-
null subset of T is equal to an H- valued continuous function defined on T.
When Xc+H compactly, from theorem 5.1, p. 58 of Lions [22], we have that
Wpq(T)c+Lp(H) compactly. When p=q=2, we will simply write W(T).

3. Integrodifferential inclusions-existence theorems

Let T=[0, r] and (X, H, X*) a Gelfand triple of spaces, with all embeddings
assumed to be compact. This setting will remain in effect for the rest of this
paper. We will be studying the following Volterra integrodiff erential evolution
inclusion :

x(t)+A(t,x(ty^k(t-s)F(s,x(s))ds a.e. on T}
Jo U
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By a solution of (*), we understand a function x( )^Wpq(T) s. t. there exists

/(OeS^c-.a-co) for which we have x(t)+A(t, x(t))=[k(t-s)f(s)ds a. e. in Z*
Jo

and *(0)=;te.
We will need the following hypotheses on the data:

H(A) : A : TxX^X* is an operator s. t.
(1) t-+A(t, x) is measurable,
(2) x-+A(t, x) is hemicontinuous, monotone,
(3) \\A(t, x)\\*£c(l+\\x\\*-1) a. e. with c>Q and p^2,
(4) <A(t, x\ xy^dM* a. e. with Cί>0.

H(F): F: TxH-*Pfc(H) is a multifunction s. t.
(1) F( , •) is graph measurable,
(2) F(t, •) has a graph which is sequentially closed in HxHw where Hw

denotes the Hubert space H with the weak topology.

(3) \F(t, x)\^α(t)+b\x\2/« a. e. with α( )(=L*+, b>0, where -ί-+— =1.

THEOREM 3.1. // hypotheses H(A), H(F), H(k) hold,

then (*) admits a solution.

Proof. First we will obtain an a priori bound for the solutions of (*). So
let x( )(=Wpq(T). By definition we have:

x(t)+A(t, x(ty)=[k(t-s)h(s)ds
Jo

χ(ty=χ*

with /ι( )<ΞS5.Fc , *(.)> Multiply the above evolution equation with #(•). We get

a. e.

Jo Jojo

Using Cauchy's inequality with ε>0, we have

2{t\'\\kUh(τ)\dτ\\x(s)\\ds
Jojo

a. e.

(see Tanabe [36], p. 151)
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^ 2εp ft , X 1 1 Λ , , 2

qεq Jojo

2εp Γ f 2
^^ ||x(s)pds+-=

p Jo #εs

Let εp=pd. Then we have:

Next let p( )<= LP(X). We have:

o o

Using Holder's inequality, we get

|| A B

Invoking theorem 1 of Pachpatte [26], we get

Then we have :

where w(s)=\ ||A(τ)|Ucίτ and ((•, ))o denotes the duality brackets for the pair
Jo

(LP(X), L9(Z*)) (see Diestel-Uhl [12], p. 98). So we have

Note that

h(τ)hdτ)qds^(r{S\\h(τ)\\%dτds<β"(r(S\h(τ)\'ldτds
/ J o j o J o j o

II?—
"5~Jo
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(where /3>0 is such that || |l*^/3| l it exists since Hc*X* continuouly). So

for some M>0.
So finally we have \\x\\L

q<x ^Mι, M3>0.
Now define the following modification of the orientor field F(t, x) :

F(t,x) if
F(t, *)=ί ι

if

Note that P(t, x)=F(t, pMl(x)\ where pMl(-) is the Mi-radial retraction in
H. Hence it is easy to see that P(t, x} has the same measurability and con-
tinuity properties as F(t, *). Furthermore \F(t, x)\ = ά(t)=a(t)+bM1 a. e., ό( )

Set V={hζΞL*(H): \h(t)\^ά(t) a. e.} and let p: V-+Wpq(T) be defined by
p(h)( )=x( ) where x( )^Wpq(T) is the unique solution of the evolution equation

x(f)+A(t, x(t}}={lk(t-s}h(s}ds a. e., x(0)=x0

(see Barbu [5] and Lions [22]).
Our claim is that this map />(•) is sequentially weakly continuous. To this

w
end let hn-+h in V. Let xn( )—P(hn}( }^ Wpq(T\ From our a priori estima-
tion in the beginning of the proof, we know that {xn(^}n^\ is relatively se-
quentially weakly compact. So by passing to a subsequence if necessary, we

w
may assume that xn -> x in Wpq(T). We have:

a. 6..

Multiply the above equation with xn(t)—x(t). We get

<xn(t\ Xn(f)-x(fΐ>+(A(t, xn(t}\ xn(V-x(t)>=<un(t\ xn(t)-x(t)y a. e.

where un(t)=('k(t-s)hn(s)ds,
Jo

Recall that (see Tanabe [36], p. 151)
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<xn(f)-x(t), xn(t)-x(ty>= j ^j I*«(0-

*.(0, xn(f)-x(f)>dt= - 1 x»(r)-

α(0, χn(t)-x(t)>dt
Jo

So we get

, xn(f)), xn(t)-x(t)>dt

Since Wpq(T)c+L*(H) compactly (see section 2) and W^ς(T)c,C(T, /ί ), by

passing to a subsequence if necessary, we may assume that xn(t) —* x(t) in H
for all teT. So we have:

Also note that M » ( i ) > w(0=^(ί-s)^(s)cίs in ^ for a11 ίe7" So we have:
Jo

Note that because of hypothesis H(A)(2) and by passing to a subsequence
XV W

if necessary, we may assume that Άxn->v in L?(Z*). Using this and relation
(1) above, we deduce that

ϊ\m((Άxn, xn)}o<((v, Λ:))O

But using hypothesis H(A\ it is easy to check that Ά( ) is hemicontinuous,
monotone, everywhere defined on LP(X), hence is pseudomonotone (see Browder

x» xv MJ Λ

[7]) and so it has property (M). Therefore .ΛΛ;— v, i.e. Λ% π — >^Λ: in
So

ί ))O=((M, ί ))β as

Since p^Lp(X) was arbitrary, we conclude that
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x(t)+A(t, *(0)=M(f) a. e.

=$x(ί)+A(t, x(0) = Γ*(ί-s)A(s)rfs a. e., jc(0)=jc0

=>/>(•) is sequentially weakly continuous as claimed.

Next let Λ : V-^P/cCF) be defined by #(A)=S>(.,pCftX.» Our claim now is
that /?( ) is u. s. c. on V with the weak topology. Note that V is bounded in
the reflexive Banach space Lq(H\ hence it is sequentially weakly compact. So
we only need to show that GrR is sequentially weakly closed in VxV (see for
example Klein-Thompson [17]). So let {(An, fn)}n*ι^GrR and assume (A n, /«)
wxw w
— > (A, /) in FxF. Then from what we proved above, we have p(hn)-+p(h)

in t F P β ( T ) ^ K A n χ θ / K A X O i n J7for all ίeT(recall Wpq(T)c»L*(H) compactly
and Wpq(T)c*C(T, #)). Because of hypothesis H(F)(2) and since F( , •) has
the same continuity properties as F( , •) we have w-\ιmF(t, £( A »XO) £/"(*, P(h)(ΐj).
So invoking theorem 4.3 of [31], we get

=Φ (A, f)^GrR i. e. #(••) is u. s. c. as claimed.

Apply the Kakutani-KyFan fixed point theorem to get AeF s. t.
Then clearly />(AX )=*( ) solves (*) with the orientor field F(t, x). Then by
the same estimation as in the beginning of the proof, we have \x(t)\<M1=^
p(t, χ(t))=F(t, x(f))=$x( )^Wpq(T) is the desired solution. Q. E. D.

An interesting consequence of the above proof, is the following property of
the solution set of (*).

THEOREM 3.2. // hypotheses H(A\ H(F) and H(k) hold, then the solution
set of (*) is a nonempty, weakly compact subset of Wpq(T).

Proof. Let P(x0) be the solution set of (*). We have already seen in the
proof of theorem 3.1 that P(x^p(V) where V^Lq(H) and p: Lq(H)-^Wpq(T)
are as in the proof of theorem 3.1. Since />(•) is sequentially weakly continuous
and V^Lq(H) is weakly compact, we have that p(V) is weakly compact in
Wpq(T). So it suffices to show that P(xQ) is sequentially weakly closed in

w

WM(T). Hence let {xn}nίl^P(x0\ xn->x in Wpq(T). We have

xn(t)+Λ(t, *»(ί))=A.(0 a.e., xB(0)=x, (1)

where h,(ϊ)=fy(t-s)fΛ(s)ds, /»eSV<..»,,<.». Note that \fn(t)\^a(t)+b\xn(t)\^
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M4. (recall the a priori estimates obtained in the proof of theorem 3.1). So
{ / r c f n s Ξ i is bounded in Lq(H), hence relatively sequentially weakly compact.

w
Thus by passing to a subsequence if necessary, we may assume that fn — > / in

Lq(H). Then invoking theorem 3.1 of [31], we have /(ί)econv wMΪϊϊϊ {/„(£)} Λ*ι

gconv w-ϊίmjF(f, #n(0) a. e.. But as before since Wpq(T)c*Lp(H) compactly and
Wpq(T)c*C(T, H), by passing to a subsequence if necessary, we may assume

that Jtn(0_->x(0 in H for all f<=T. So because of hypothesis JΪ(F)(2), we have
that w-ϊίmF(f, xn(t))^F(t, *(f))(see Delahaye-Denel [ll])=Φ/(O^F(ί, *(β) a. e. =φ

^ lϋ ^

/(•)^SV(.,ar(0). Also from the proof of theorem 3.1, we know that Άxn-+Άx
w Γ t w

in Lq(X*), while Λ n - > Λ in L«(/0 with Λ(f)=\ k(t-s)f(s)ds and *n -> * in
Jo

LQ(Z*). So by passing to the limit in (1) we get

x(t)+A(t, x(0)=A(0 a. e., *(0)=*0 (2)

From (2) we deduce that x<=P(x0)=$P(xo) is indeed nonempty, weakly com-
pact in Wpq(T). Q. E. D.

Remark. Since Wpq(T)c+Lp(H) compactly, we get that P ( x 0 ) is compact in
LP(H). Also, if p—q—2 and X is a separable Hubert space, then from Nagy
[24], we know that W(T)c^C(T, #') compactly. So, in that case, P(x0) is
compact C(T, #).

Next we will consider the case where the orientor field F(t, x) is nonconvex
valued. We will need the following hypothesis on F(t, x).

H(F)1: F: TxH-^Pf(H) is a multifunction s. t.
(1) F ( ' 9 •) is graph measurable,
(2) F(t, •) is 1. s. c.
(3) |F(ί, ^) |^α(0+^i^i 2 / g a. e. with α

THEOREM 3.3. // hypotheses H(A), H(F\ and H'(k) hold, then (*) admits a
solution.

Proof. Let B=p(V\ where V^Lq(H'} and ί : Lq(H)-+W pq(T) are as in the
proof of theorem 3.1. We know that B is a weakly compact subset of Wpq(T)

and by the Krein-Smulian theorem so is 5=conv^(see Diestel-Uhl [12], p. 51).

Let R: B->Pf(Ll(H}} be defined by R(x)=S^.tX^^9 where F(t, x) is as in the
proof of theorem 3.1. Combining hypothesis H(F)1(2) with theorem 4.1 of [31],
we get that R( ) is 1. s. c.. So we can apply the selection theorem of Bressan-
Colombo [6] and get r: β-*L\H) continuous from B with the relative weak
ΐFpα(T)-topology (which is metrizable; see Dunford-Schwartz [13], p. 434) into
L\H) with the strong topology s. t. r(x)^R(x) for all xtΞJB. Let 7?(*)(-)e
Wpq(T) be the unique solution of the evolution equation y(f)+A(t, X0)=
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Γ*(f—s)r(x)(s)ds, y(ty=x<> (see Barbu [5] and Lions [22]). Then φ(*)( )e5
Jo

and so 97: B^>B. We claim that 37( ) is continuous for the relative weak
T;F25e(T)-topology on B. Recalling that this topology is metrizable, we can use

Λ s
sequences to check the continuity of )?(•)• So let xn->x in B. Then r(%n)~>
r(» in Ll(H). Also {)?(%„)} n i>i is bounded in WPQ(T) and so we may assume

w

that η(xn)—* z in Wpβ(^). Then working as before, in the limit as n-^co we
will get that

=φ^( ) is indeed continuous as claimed.

Applying the Schauder-Tichonov fixed point theorem, we get x<=ΞB s. t.
η(x)=x. This is the solution of (*) with the orientor field P(t, x). An estima-
tion as in the beginning of the proof of theorem 3.1 gives us that \x(t)\^Mi=$
F(t, x(ty)=F(t, x(ty)=ϊx( ) solves (*). Q. E. D.

4. Sensitivity analysis

In this section we examine the dependence of the solutions of (*) on the
data of the problem; i.e. on the operator A, on the orientor field F(t, x) and
on the initial condition.

So consider the following sequence of integrodifferential evolution inclusions :

Xn(t)+An(t)xn(t)^(tk(t-s)Fn(s) xn(s))ds a. e.
Jo

and the limit integrodifferential evolution inclusion

x(ΐ)+A(t)x(t)^(tk(t-s)F(s} x(s))ds a. e.
Jo

We will need a mode of convergence for the linear operators {An(t)}n^ι^
£(X, X*) and [d/dt+An}n^. Following Zhikov-Kozlov-Oleinik [40], we make
the following definitions.

DEFINITION I. A sequence of linear operators An : X->X*n^l, G-converges
to a linear operator A: X-^X* as n-^oo, if the operators A~\ A'1: X*-*X are

w
defined and for any ;t*eΞj^*, A^x*—*A~lx* in ^(strongly in //, since Xc+H
compactly).
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DEFINITION II. A sequence of operators Pn : W(T)->L\X*)xH, w^l, "PG-
converges" to an operator P: W(T)-*Lz(X*)χH as w->co, if the operators P^1,
P-1: L\X*}xH-*W(T) are defined and for any (g, x«)<=L2(X*)xH, Pΰ\g> *0)

^P~\g, *0) in W(T) as n-*<χ>(P*\g, x0)(0 -̂  P~\g, *o)(0 as n->oo in H for
all feT).

Here the operator Pn( ) will be defined by *eϊy(T)--<*( )+^n( •)*(•), *o)e
L2(Z*)x//(the dynamics of the approximating problems) and the operator P( )
will be defined by jc(OeJ7(T)-»(*( )+^( •)*(•), *0)(the dynamics of the limit
problem). So definition I refers to the convergence of the solutions of a sequence
of elliptic problems, while definition II refers to the convergence of the solutions
of a sequence of parabolic problems.

We will need the following hypotheses on the data of problems (**)n and (**)

H(A\ : Λn, A: T-*£(X, X*) are operators s. t.
(1) t-+An(t)x, A(t)x are measurable,
(2) x-^An(t)x, A(t)x are continuous, monotone,
(3) \\AnMx\\*, \\A(f)x\\*£c\\x\\ a.e. with ^>0,
(4) <An(t)x, x>, <A(t)x, xy>,c,\\x\\* a. e.

(5) An(ί)^A(f) a.e. and given ε>0 there exists β(ε)>0 s. t. for all n^l
sup \\An(t+τ)-An(t)\\*<ε provided τe(0, 3).

H ( F ) 2 : Fn, F: TxH->Pfc(H) are multifunctions s. t.
(1) Fn( , X F( , •) are graph measurable,
(2) A(Fn(ί, Λ), Fn(ί, y))^/(OU-y I a. e. with /
(3) \Fn(t, x)\^a(t)+b\x\ a.e. with a(-)eLJ, &>0,

(4) Fn(t,x}F(t,x\
Denote the solution set of (**)Λ by Pn and the solution set of (**) by P.

THEOREM 4.1. If hypotheses H(A\, H(F\, H(k) hold and x%->x0 in H,
then ϊίmP^gP in C(T, H).

Proof. Let xn( )<=Pn, n^l and xn-*x in C(T, H). By definition we have

je»(0)=*S

with fcBeSj.n(..*„(.„. Note that
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(see [31], theorem 4.5).
Note that because of hypothesis //(F)2(3), {hn}n*ι is bounded in L2(H) and

w
so by passing to a subsequence if necessary, we may assume that hn -> h in
L\H\ Then for every u<=L\H)=L\H)* we have

(hn, w ) , , , j n . , n . n . , n c. z ζ

=Φ(A, M ) w c H ) ^ ^ 5 , . ( M ) for every u<=L\H)

(note that since S>nc..*nco> -» S>(. ,Λ ( 0>, we have σs>nC. (O)(M)

So finally we have ΛeSj.c.. *(.)).
Fix XO^^rίT^MOeWTΓ): *(r)=Q} and set

(2)

Multiply equation (1) with ;yn( ), equation (2) with *„(•) and then subtract
the new equation (2) from the new equation (1). Then integrate over T=[0, r].
We get:

-\r<An(ty*y»(t), xn(t)>dt = [<vn(t), yn(t)ydt-\\g(f), xn(t)ydt (3)
Jo Jo Jo

i t
k(t—s)hn(s}ds. Invoking lemma 5.5.1, p. 151 of Tanabe [36], we

o
can perform integration by parts on the second integral in the left hand side
of (3). Doing that we get

t=(yn(r), *n(r))-(3>»(0)f ,̂(0))-
Jo

= -(3Ίι(0), xn»)-(r<yn(t), *n(t»dt (4)
Jo

Substituting (4) in (3), we get

(5)

From theorem 10 of Zhikov-Kozlov-Oleinik [40], we know that ^n =
d - PG d

-rr+An — -> £P— -77+ A and so theorem 7 of the same paper tells us that
dt PG at

£P% — > £P*. Then invoking lemma 3 of Zhikov-Kozlov-Oleinik [40], we get that
s w

yn -> y in C(T, H). So since xn -> x in W(T\ in the limit as 72-»oo, we get
from equation (5)
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-WO), x.)=Γ(υ(0, y(t)}dt-(\g(t), x(t»dt, (v(t)=\tk(t-s)h(s)ds)
Jo Jo Jo

, y((y>dt
o

Since ;yePFr(T) was arbitrary and P^rCO is dense in L2(Z)(see Zhikov-
Kozlov-Oleinik [40]), we conclude that

0=v(0 a. e., x ( ) = x β

$
ί
k(t—s)h(s)ds, Λ( )eSj.c. *co> Hence *( )eP and thus we have

o
shown that ϊίmP^gP. Q. E. D.

Remarks. (1) If X is a separable Hubert space, then wΛ\τs\Pn^P. This
follows easily from theorem 4.1 and that_fact in this case W(T)c+C(T, H) com-
pactly (see Nagy [24]). Recall that ΠϊnPngw;-ϊίϊnPn={Λ:( )eC(T, H): x=w-

(2) It will be interesting to know if and when we have Pn -> Pin C(T, H).
Recall that K denotes the Kuratowski convergence of sets (i.e. \ΊmPn={x^
C(T, H): \imd(x, Pn)=ΰ}=P=ϊEιPn={x(.)£ΞC(T, H):]imd(x, Pn)=0] see Ku-
ratowski [19]). The difficulty here is the "memory" feature of our evolution
inclusion. Namely, because of the integral term, the velocity doesn't only
depend on the instantaneous values of the state, but also on the past ones.

5. Random version

Jn this section we examine a random version of the integrodifferential
evolution inclusion (*). So now all the data depend on a random parameter ω
belonging in a complete probability space (fl, Σ, μ).

So the integrodifferential evolution inclusion under consideration is now the
following :

x(ω, t)+A(ω, t, x(ω, 0 ) e f e ( ω , f—s)F(ω, s, x(ω, s))ds a. e. on T,
/*N
\ Jω

By a random solution of (*)ω, we understand a measurable stochastic process
x : ΩxT->X s. t. for every ωtΞΩ, x(ω, -)^Wpq(T) and x(ω, •) solves (*)ω.
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We will need the following hypotheses on the data

H(A)2: A: ΩxTxX->X* is an operator s. t.
(1) (ω, f)-+A(ω, t, x) is measurable,
(2) x-*A(ω, t, x) is hemicontinuous, monotone,
(3) \\A(ω, t, xJIU^cCωXl+IWI*"1) a. e. for all ωeβ, c(ω)>0, c( )

is measurable, p*±2,
(4) <yl(ω, ί, *)> #>^£ι(ω)IWIP a. e., Cι(ω)>0, Cι( ) is measurable.

: F: ΩxTxH-*Pf(H) is a multifunction s. t.
(1) F( , , •) is measurable,
(2) F(ω, ί, •) is sequentially closed in HxHw for F( , , •) being Pfc(H}

valued or Fίω, ί, •) is 1. s. c. for F( , , •) being simply P/(//)-valued,
(3) |F(ω, ί, x)|^fl(ω, 0+ft(ω)U|2/β a. e. for all ωeβ, a(ω, )eL5

+, α( , •)
is measurable,

H(k\: k(ω, )eL°°(T, J7(//)) and for all htΞH(ω, ί)->*(ω, f)Λ is measurable.

THEOREM 5.1. // hypotheses H(A)2, H(F)B, H(k\ hold and x0: Ω-*H is
measurable, then (*)ω admits a random solution.

Proof. Let S : Ω-*2wp*^ be defined by

S(ω)={x<=ΞWpq(T): x(f)+A(ω, t, Λ(0)=Γ*(ω, t-s)h(s)ds a. e., Λ:(0)=Λ;o(ω)

From theorem 3.1 (convex case) or theorem 3.3 (nonconvex case), we have
that S(ώ)Φ0 for all ω<=Ω. Then

GrS={(ω, x}^ΩχWpq(T}:x(t\ u(t)ydt+<A(ω, t,

, t-s)h(s)ds, u

and dH(h(t\ F(ω, t,
Jo

where dπ denotes the distance function in H. Since X is separable, LP(X) is
separable too. So let {un}n>ι^Lp(X) be a countable dense subset. We have:

GrS= Γ\ {(ω, x)<=ΩxWpq(T): (Γ<i(0, un(t)ydt+\\A(ω, t, κ(t}\ un(t)ydt
nδi Jo Jo

=Jo

r(£*(ω> t-sMs)ds, un(t))dt, x(0)=x.(ώ)

and
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Recall that x->x is a continuous map from Wpq(T) into Lq(X*). Also note

that (ω, Λ:)->\ <-4(ω, ί, *(f)), un(t)ydt is a Caratheodory function, i. e. measurable
Jo

in ω and continuous in x hence it is jointly measurable. Also from Fubini's

theorem we have that ω— M (\ k(ω, t—s)h(s)ds, un(t)]dt n^l is measurable.

Finally let i: Wpq(T}->C(T, H) be the continuous embedding map. Using the
measurability hypothesis on F( , , )(see hypothesis H(F)B(l)\ we see that
(ω, t, x, z)-^dH(z, F(ω, t, et(/(x)))(here 0t( ) is the ί-evaluation map) is measurable
in (ω, ί, x) and of course continuous in 2, thus it is jointly measurable. Hence
(ω, t, x)-+dH(h(t), F(ω, t, *(f))) is measurable from ΩxTxWpq(T, H) into R+=3

S b
dκ(h(t\ F(ω, ί, x(t)))dt is measurable. Furthermore the map ώ :

o
(ω, x)-+e0(i(xy)—Xo(ώ) is Caratheodory, hence jointly measurable. So finally

GrS= Π {(ω, x)<=QxWpq(T): (\x(t\ un(t)>dt+{\A(ω, t, x(
nsi JO Jo

(ω' t-s)h(s)ds, un(tidt, φ(ω, ^)=0,

Apply Aumann's selection theorem (see Wagner [38]) to find s: Ω-+Wpq(T)
measurable s. t. s(ω)eS(ω) for all ω^Ω. Then invoking theorem 17, p. 198 of
Dunford-Schwartz [13], we conclude that x(ω, t)=s(ω)(t) is the desired random
solution of (*)ω. Q. E. D.

Remark. The interesting feature of the above existence result is that it
covers also the nonconvex case. Most works in the literature, even for simple
differential inclusions in Rn, assume convexity and continuity of the random
orientor field (see for example Chuong [9], Nowak [25] and Papageorgiou [27],
[29]) or single valuedness of it (see for example Deimling [10], Kravvaritis-
Papageorgiou [18], Ladde-Lakshmikantham [20] and Tsokos-Padgett [37]).

6. Optimal control

In this section we consider applications to optimal control.
So consider the following infinite dimensional optimal control problem with

"memory".

( J(x> u)=\ L(t, x(f), u(ty)dt-* inf=m
Jo

s. t. x(t)+A(t, x(t))=(tk((t-s)f(s, x(s))u(s)ds. a. e.
) Jo /##*)

u(t)^U(t, x(t)) a. e., M( ) is measurable
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We will need the following hypotheses on the data. Here Y is a separable
reflexive Banach space, modelling the control space.

/: TxH-^j:(Y, H) is a map s. t
(1) ί->/(ί, *)u is measurable for all (x, u)(=HχY(Le. /(•, x) is

measurable for the strong operator topology),
(2) x->/(f, x)*h is continuous for all (ί, h)<=TxH(L e. the adjoint of /(ί, *)

is continuous in x in the strong operator topology),
(3) ||/(f, x)IUcr.iϊ)Sα(0+6|xΓ / β a.e., with α( )eL +, 6>0.

ί/: TxH-*Pfc(Y) is a multifunction s. t.
(1) £/(- ,•) is graph measurable,
(2) x-*U(t, x) has a graph which is sequentially closed in jFίxΓw(here

Fw denotes the space Y with its weak topology),
(3) \U(t, x}\<M for all (ί, x)^

H(L): L: TxHχY-*R=RU{ + ™} is an integrand s. t.
(1) L( , , •) is measurable,
(2) L(ί, , •) is 1. s. c. on HxY and convex in weF,
(3) φ(t)-M(\x\+\\u\\)^L(t, x, u) a.e. with φ( )ς=Ll, M>0.

Because of the feedback form of our control constraints and since our cost
integrand is Λ-valued, we also need the following feasibility type hypothesis:

H0: There exists an admissible "state-control" pair (x, u)^W 'pq(T)X L\Y)
for (***) s. t. J(x, u)<oo.

THEOREM 6.1. // hypotheses H(A\ H(f), H(k\ H(U), H(L) and H0 hold, then
(***) has a nonempty, sequentially weakly compact in Wpq(T)χL\Y) set of optimal
"state-control" pairs.

Proof. Let F: TxH-*Pfc(H) be defined by F(t, x ) = f ( t , x)U(t, x). We
claim that F( , •) satisfies hypothesis H(F). First note that:

GrF={(t, x, y^TxHxH: y^F(ty x)}

= {(t, xf y)t=TxHxH: y=f(t, x)u, u<=U(t, x)}

O): y=f(t, x)u, (ί, x, u

where BM(Q)={v£ΞY: \\v\\^M}.
Note that L ={(f, x, y, u)^TxHxHxBM(0): y=f(t, x)u, (t, x, u)(=GrU}

&B(T)xB(H)xB(H)xB(BM(Oy). Also ^^(0) ,̂ (i. e. BX(V) with the relative
weak topology) is compact metrizable (see Dunford-Schwartz [13], p. 434) and
β(βjf(0)w)=5(rw)Λβjf(0)=β(r)πBjf(0)=β(βjf(0))(see Edgar [14]). So invok-
ing the Arsenin-Novikov theorem (see Levin [21]), we get that
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Next we will show that GrF(t, •) is sequentially closed in HxHw. So let
sxw

(Xn, yn)^GrF(t9 •) and assume that (xn, yn) — > (x, y). We have yn=f(t, xn}un

with un(=U(t, xn). Since \\un\\^Mf w^l, by passing to a subsequence if necessary,
we may assume that un-^u and because of hypotheses /f (t/)(2) and (3) we have
that u(Ξw-ϊΐmU(t, xn}^U(ty x). Also for all h^H we have

n)un, A)=(un,

But by hypothesis ff(/)(2), *->/(*, x)*Λ is continuous. So

(Mn, /(f, *n)*A)r.r, — > (M, /(ί, *)*/Or,r*

=M/(f, X)M, A)=(;y, A) for all Aeff,

=^y=f(t,χ)u with

Finally note that |F(ί, jc)|^| |/(f, ^)||^(F,H)M^a(OM+^MU|2/9. So we have
satisfied hypothesis H(F).

Now note that every trajectory of (***) also solves the integrodifferential

S ί
k(t—s)F(s, x(s))ds, xφ)~Xo and the latter

o
has a solution set that is weakly compact in Wpq(T)(see theorem 3.2). So to
prove our theorem, we need to show that the set of optimal pairs is nonempty
and sequentially weakly closed in W 'pq(T)x Ll(Y\

To this end let {(xn, un}}n^\ be a minimizing sequence of admissible pairs,
i.e. J(xn, Un)\.m. By passing to an appropriate subsequence, we may assume

w w
that xn->x in Wpq(T) and un-*u in L\Y\ Invoking theorem 2.1 of Balder
[4] we get

L(t, x(t\ u(ty)dt^m=\imj(xn, un).

w ^ w ^
Also xn-*x and Axn-^Ax in L5(J£*)(see the proof of theorem 3.1) and

since Wpq(T)c+Lp(H) compactly and Wpq(T)c*C(T, H), we may assume that

xn(t)-+x(t) in H for all t^T and so by using hypothesis H(f)(2), we have

5 t w Γt
k(t—s)f(s, xn(t))un(s)ds->\ k(ΐ—s)f(s, x(s))u(s)ds in H. Thus for every p^

o Jo

LP(X) we have
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x ( t ) ) = [ k ( ί - s ) f ( s , x(s))u(s)ds a.e.
J O

u(t)(ΞU(t, x(t)) a.e., u( ) is measurable

=3(x, u] is an admissible "state-control" pair for (***)

=$J(x, u)—m i.e. (x, u} is optimal.

So the set of optimal pairs is nonempty. Furthermore it is clear from the
above proof that it is sequentially weakly closed in Wpq(T)χL\Y}. Thus it is
sequentially weakly compact in Wpq(T}xLl(Y}. Q. E. D.

Now we turn our attention to the variational stability of the optimal control
problems. So consider the following sequence of problems:

f Jn(x, u)=

s. t.

\ u(t))dt-+mf=mn

= f e ( f-s)/n(s , x(s))u(s)ds a.e.
o

u(t)^Un(t) a.e., u( ) is measurable

and the limit problem

( J(x, u)=(bL(t, x(t\ u(

s. t. x(t)+A(t)x(t)=[k(t-s)f(s, x(s))u(s)ds a.e.
Jo

u(t)^U(f) a.e., M( ) is measurable

Recall that if Z is a Banach space and {Cn, C}nsι£2^\{0}, we define
{z^Z: \\md(z, Cn)—0} — {z^Z: z— s-limzn, zn<=Cn,n^l], ϊϊmCn={z<ΞiZ:

\\md(z, Cn)=Q} = {ztΞZ: z=s-limznk, znk^Cnk, ni<n2<~-<nk<-'} and w-ϊΐmCn

= {z^Z: z—w-\\mznk, znk<^Cnk, 7Zι<n2< < w*< }. We say that the Cn'$

converge to C in the Kuratowski sense (denoted by Cn -» C) if and only if
limCn=C—ΠrrΐCnCsee Kuratowski [19]). We also say that the Cn's converge

to C in the Kuratowski-Mosco sense (denoted by Cn —> C) if and only if
limCw—C = ̂ -ΐίrrϊCn(see Mosco [23]). Note that we always have HmCni=ϊϊmCn

^w-ϊϊmCn. If {/„, f}nzι^Rz> then we say that the /n's epi-converge to /

(denoted by /»-»/) if and only if eρifra—> epif. Recall that epif={C?, λ)<=
ZxR: f(z)^λ] (similarly for eρifn). This mode of convergence is in general
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different from pointwise convergence and is useful in the sensitivity analysis of
variational problems. For more details we refer to Attouch [3] and Mosco [23].

We will need the following hypotheses on the data of our problems:

/n, / : TxH^£(Y, H) are maps s. t.
(1) t-+fn(t, x}u are measurable for all (x, u)^HxY,
(2) |/n(ί, *)*tt-/»(f, y}*u\<lL(t)\x-y\ a. e. with /L( )eLi, \\u\\^L, x,

(3) ||/»(ί, x)IUcr.ιr)^α(0+6UI a. e. with fl(.)e=Li, &>0,
so

(4) fn(t, x}-* f ( t , x) a. e., where so denotes the strong operator topology.

H(U\ : Un,U: T-*Pfc(Y) are multif unctions s. t.
(1) Un( ) are measurable,
(2) |C7n(ί)l ^M a. e.,

(3) Un(t)^U(t} a.e..

H(L\ : Ln, L: TχHχY->R are integrands s. t.
(1) t-+Ln(t, x, u) are measurable,
(2) (x, u)-+Ln(t, x, u\ L(t, x, u} are bontinuous, convex,
(3) |Ln(ί, x, M)|£0(0+&(l*Γ+Nl f) a.e. with 0( )eLΪ, 6>0,

(4) Ln(f, , )^L(t, , •) a.e..

THEOREM 6.2. // hypotheses H(Λ)lf H(f\, H(k\ H(U\, H(L\ hold and xn»

— > xQ in H, then mn-*m.

Proof. Let (x, u) be an admissible "state-control" pair s. t. J(x, u)=m. It
existence is guaranteed by theorem 6.1. Note that for every v^L\Y) we have:

dsjr (v)= inf \\v-w||ι = mf
un wetfl WEiSfr Jo

=j* f tmf I|v(0-A||dί===j^c»(v(0)dί

and similarly rfs^(v)= \ duw(v(t))dt. Because by hypothesis H(U\Un(t)-+U(t)

a. e. we have dUn^(v(t)}-^duw(v(t}} a. e. and so by the dominated convergence
theorem we have dsfr (v)-*dsjj(v).

Let un^Sun s. t. ύ?s^ (M)=||M —MnlUicr). Such an element exists since by
proposition 3.1 of [30], S^n is weakly compact in L\Y). Then rf^ (M)=

\\u — Un\\Li(γ)->dsι(u}=Q. Let Λ:Λ( )ePF(T) be the unique trajectory generated by
w

un('). By passing to a subsequence if necessary, we may assume that xn-+x
s

in W(T) and so *n —> jr in LZ(H). Working with the auxiliary function ^( )^
Wr(T) as in the proof of theorem 4.1, we can show that #(•) is the unique
trajectory generated by the admissible control u( ). Also from theorem 3.1 of
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Salvador! [34], we know that Jn —> J and so from Mosco [23] (see also Salvador!
s s

[34]), we know that we can find yn -> x in LZ(H) and vn-*u in Ll(Y) s. t.
lim/n(3;n, vn}^J(x, u)—m. From Rockafellar [33], we know that {/n( , )U*ι
is locally equi-Lipschitz. Thus for some &>0 we have

\Jn(Xn> Un) — Jn(yn, Vn} \ < k [||*Λ— 3>ra llz,2C/n + II Un — Vn\\L^γr\ ~> 0

=3 1/rcUrc, Un) — Jn(yn, Vn}\ -> 0

u)—m

(1)

Next let {(#n, wn)}n^ι be admissible "state-control" pairs for (***)ήn^l s. t.
Jn(xn, Un)=mn Again their existence is guaranteed by theorem 6.1. By passing

w w
to a subsequence if necessary, we may assume that xn — > x in W(T) and un-^> u
in L^F). Clearly weS^. Also, once again as in the proof of theorem 4.1,
through the auxiliary function y^.Wr(T}, we can show that (x, w) is admissible
for (***)' (note that

. )-^0 a.e. for
So

rί

Jo

in #). Then since /„ -> /, from the properties of the epigraphίcal convergence
(see Mosco [23] and Salvador! [34]), we have

(2)

From (1) and (2) above, we conclude that

mn — >m. Q. E. D.

7. Examples

In this last section of the paper we work out in detail two examples that
ilustrate the applicability of our work.

(a) In the first example we consider a distributed parameter optimal control
problem, governed by a nonlinear parabolic integrodifferential equation.

So let T=[0, r~\ and let Z be a bounded domain in Rn with smooth boundary
3Z=Γ.

The problem under consideration is the following:
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L(t, z, x(t, z), u(t, z))dzdt —> inf=m
z

s. t. -~— + Σ (— iy a } D a A a ( t , z, η(x(t, z))=\ k(t—s)f(s, z, x(t, z))
at |«|^ra Jo

u(s, z)ds on TxZ

:Γ=0|j8|^m-l, x(Q, Z)=XQ(Z\ \ \u(t, z)\2dz
JZ

(****)

^l ψ(t, z, x(t, z))2dz

Here α=(αι, •••, an] is a multi-index, Da=D^ ••• /)£> is the elementary
ί̂

partial differential operator with !>*=--—. Also \a\ — Σ \at\ is the "length"
C/^t ι=l

of the multi-index a and
We take X=H^(Z\ H=L2(Z) and Z*=#-m(Z). It is well known that this

is a Gelfand triple of spaces, with all embeddings being compact (Sobolev-
Kondrachov embedding theorem).

We will need the following hypotheses on the data of (***):

H(A\: Λa: TxZxRn^->R(n(m)= (n+m)!) are maps s.t.
\ 72 \m ! /

(1) (£, z)-»Aa(t9 z, η} are measurable,
(2) η^>Aa(t, z, η] is continuous,
(3) \Aa(t, z, η)\£a(t, z)+b\\η\\ a. e. with α( , )eL«TxZ),
(4) Σ G4α(ί, ,̂ )?ι)-^α(ί, z,

(5) c]|)9||2^ Σ ^iβtf, z, -η}ηa with c>o.

: / : TxZxR-*R is a map s. t.
(1) (t, z)-*f(t, z, x) is measurable,
(2) x-+f(t, z, x) is continuous
(3) |/(ί, ,̂ Λ)|^Mι(ί, 2τ) a. e. with Mi( ,

//(L)2: L : TxZxRxR->R is an integrand s. t.
(1) L( , , , •) is measurable
(2) (x, u)-^L(t, z, x, u) is 1. s. c. and convex in u,
(3) φ(t, z)-M(zX\x\ + \u\)£L(t, z, x, u} a.e. with

^: TxZxR->R is a map s. t.
(1) (ί, z)-*φ(t, zt x) is measurable,
(2) x-*φ(t, z, x) is continuous,
(3) \ψ(t, z,x)\£M.

Let a: TxHf(Z}xHf(Z}-*R be the time dependent Dirichlet form defined
by



VOLTERRA EVOLUTION INCLUSIONS 275

a(t, x, y)= Σ ( Aβ(ί, z, η(X(z)}}Dy

a(z}dz, x, y^Hf(Z).
\a\£mjZ

Using the Cauchy-Schwartz and Minkowski inequalities, we can show that

with ά(t)=\\a(t, )llz,2cz). So we can define a generally nonlinear operator A ( t ) :
Hf(Z)->H-m(Z] by

From Krasnoselski's theorem, we know that the Nemitsky (superposition)
operators corresponding to the maps Aa(t, , η(x( ))) are continuous from Hf(Z)
into L2(Z). Using that, it is easy to check that A(t, •) is hemicontinuous. Also
clearly from Fubini's theorem, we have that t^A(t, x) is measurable.

Next note that

<A(t, x)-A(t, y), x-y>=\ Σ (Aa(t, z, η(x(z)))-Aa(t9JZ\ a i ^m

=Φ A(t, - ) is monotone.

Finally from hypothesis H(A)9(5) we have that

c Σ \Dax(z)\2^ Σ Aa(t, z, v(x(z)))Dax(z) a. e.
\a\zm | α | ^ m

=> c\\x\\H™<z)^<A(t, x\ x> a. e.

Therefore we have satisfied hypothesis H(A).
Next let /: TxL2(Z)-»j:(L2(Z)) be defined by

( f ( t 9 x ) u ) ( z ) = f ( t , z , x ( z » u ( z ) .

Because of hypothesis H(f\ we see that /(•, •) is well defined and satisfies
hypothesis H(f\

Let L: TxL\Z)xL\Z)->R be defined by

(t, zy x(z\ u(z}}dz.

Since L( , , , •) is a normal integrand (i.e. measurable in all variables and
1. s. c. in (Xy u ) ; see for example Salvador! [34]), we can find Caratheodory in-
tegrands Ln(ty Zy x, u) s. t. Ln t L and φ(t, z)—M(z)(\x\Jr\u\^Ln(tt z, x, u)^

n. Set Ln(t, x, M)=f Ln(ί, z9 x(z\ u(z))dz. Clearly Ln( , , 0 is Caratheodory,
JZ

hence jointly measurable and by the Monotone Convergence Theorem we have
is jointly measurable. Also L(t9 , •) is 1. s. c. and convex in u.
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So we have satisfied H(L).
Finally let k: T-»j:(Z,2(Z)) be defined by k(t}I and let

U(t, x)={u^L\Z): \\u\\l*^φ(t, x)*}

where φ(ty x}—\ φ(t, z, x(z))dz. Note that because of hypothesis H(ψ)φ( , •) is
JZ

a Caratheodory function (hence jointly measurable) and so ί/(ί, x) satisfies hy-
pothesis H(U).

Now rewrite (****) as the following equivalent abstract optimal control
problem:

j(x, tt)=\ L(t, x(t\ u(t))dt —> inf=m

s. t. *(f)+Λ(f, *(β)=Γ£(f-s)/(s, *(S))M(S)</S a. e.
Jo

*(0)=*β( )

u(t)<^U(t, x(t)) a. e., w( ) is measurable

This has the form of problem (***). So invoking theorem 6.1, we have:

THEOREM 7.1. // hypotheses H(A\, #(/)2, H(k\ H(L\, H(ψ} hold and *0( )
eL2(Z), ί/ien (****) αrfmΛs an optimal solution.

(b) TA/s second example deals with the variational stability of a class of
parabolic optimal control problems.

So consider the following sequence of optimal control problem:

J rf \
\ Ln(t9 z, x(t, z\ u(t, z)}dzdt —> inf=mm0 JZ I

ox ^
S 4- X^ n ',

• t ~~ΛT Z.J 1*1 = \tk(t-s)fn(s, z, x(s, z))u(s, z)ds on TxZ
όZi Jo

^lrxr=0, *(0, *)=*S(z), |κ(ί,«3
\ JΛ

and the limit problem

/(Λ:, M)=\ \ L(t, z, x(t, z), u(t, z)}dzdt —> in
J O JZ

|«(f,ί

a. e.

, z}ds on TxZ

a. e.

Here X=H\(Z\ H>=L\Z) and J?*=if-1(Z). We will need the following
hypotheses on the data of the above problems.
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H(A)4: atj=aji) there exist mlt ra2>0 s. t. mi<a^(z)^mi and l/α?ι->l/f ln

in L°°(Z).
α /t n J nn n

11 "11 "11 "11

: fnt f : TxZχR->R are functions satisfying H(f\ and fn(t,z,x)-

H(L\: Ln, L: TxZxRxR->R are Caratheodory integrand convex in (x, u]

\Ln(t, z, x, M ) | , \L(ΐ, z, x, u)\^φι(tf z)+b(\x\2+ u\2) a. e. with φ^ , •)

r
and a. e.

H(r) : \rn(t)\^M a. e. w^l and rn(f) -> r(f) a. e..
Let Λn, A: Hl(Z)->H~\Z) be the bounded linear operators defined by

and

<Ax, yy=α(x, y

Then An, A<=£(X, X*} and because of hypothesis H(A), and Tartar's
G

theorem (see Sokolowski [35]), we have An -> A.
Also let

ln(t, x, ι / ) = L n ( f , 2:, Λ (̂ ), and ί, z, x(z\ u(z)}dz.

Then from hypothesis H(L\ and theorem 3.1 of Salvador! [34] we have

tn(t, , -)-> L(t, , •) a. e..
Finally set Un(t)={u^L\Z): \\un\\L^z^rn(t}} anάU(t)={u^Lz(Z): \\u\\LZ,z,

^r(ί)}. Since by hypothesis #(r), rn(ί)->KO a e ^ it: is easY to see tnat ^n(0

a.e..
Rewrite problems (****)^ and (****)' in the following equivalent abstract

forms.

(****);

and

s. t. x(f)+Anx(f)={^(t-s)fn(sfx(s))u(s)ds a.e.
Jo

n(ί) a.e., ω( ) is measurable
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l(t, x(f), u(ϊ))dt —> inf=m

s. t. x(t)-{-Ax(t}^ {tk(t-s}f(sJ x(s))u(s)ds a. e. L****\
JO ( \ Jt

u(t)^U(t) a. e., w( ) is measurable

These have the same forms as problems (***)„ and (***)' respectively. So
invoking theorem 6.2, we can have the following result:

THEOREM 7.2. // hypotheses H(A)4, H(f)8, H(k), H(L)3, H(r) hold and xn,
s

—> x0 in L2(Z), then mn —> m.
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