HYPERSURFACE SECTIONS OF TORIC SINGULARITIES

By Hiroyasu Tsuchinashi

Introduction

As is well-known, we can obtain much information about hypersurface singularities $\{f=0\}$ in \boldsymbol{C}^{n+1} by the Newton polyhedra $\Gamma_{+}(f) \subset \boldsymbol{R}^{n+1}$ of the defining equations f. (For instance, see [5] and [11].) In this paper, we define the Newton polyhedra also for hypersurface sections (X, x) of any toric singularity (Y, y) and show that a part of the results in [11] are valid. On the other hand, as we see in the last of $\S 2$ and in $\S 3$, we obtain as (X, x) many singularities, a part of which are not complete intersections. For instance, 2-dimensional cusp singularities with multiplicities greater than 4 and a 3 -dimensional singularity with a resolution whose exceptional set is an Enriques surface. Moreover, in the case that the ambient space Y has only an isolated singularity, these singularities (X, x) are obviously smoothable. Hence we can obtain examples of smoothable cusp singularities (see §3). In this paper, we are mainly concerned about singularities (X, x) with the plurigenera $\delta_{m}(X, x)$ which are not greater than 1 and at least one of which is equal to 1 . (For the definition of plurigenera, see [11].) We call such singularities, periodically elliptic singularities, following Ishii [2].

In Section 1, we recall some facts about toric singularities, necessary in this paper.

In Section 2, we show a sufficient condition on the Newton polyhedra of defining equations f of X, under which (X, x) are periodically elliptic singularities and give some examples.

In Section 3, we show a sufficient condition on a 3-dimensional non-terminal Gorenstein toric singularity (Y, y), under which hyperplane sections (X, x) of (Y, y) are simple elliptic singularities or cusp singularities. We can determine the multiplicities of these singularities.

In Section 4, we show that if $H^{1}\left(X \backslash\{x\}, i^{*} \Theta_{Y}\right)=0$ and $\operatorname{dim} X \geqq 3$, then we can concretely construct a locally semiuniversal family of deformations of (X, x) and that any small deformation of (X, x) is also a hypersurface section of Y, where $i: X \subset Y$ lis [the inclusion map and Θ_{Y} is the tangent sheaf of Y. The above condition is satisfied, if Y is a quotient of \boldsymbol{C}^{n+1}, by torus actions.

We use the notation and the terminology in [4] freely.
I would like to thank Professor M. Tomari who pointed out me the facts

[^0]that hypersurface sections (X, x) of toric singularities (Y, y) are Cohen-Macaulay and that (X, x) are smoothable, if (Y, y) is an isolated singularity.

§ 1. Toric singularities

Let N be a free \boldsymbol{Z}-module of rank $n+1$ and let $N_{\boldsymbol{R}}=N \otimes_{\boldsymbol{Z}} \boldsymbol{R}$. Let $M=$ $\operatorname{Hom}(N, \boldsymbol{Z})$ be the \boldsymbol{Z}-module dual to N with the canonical pairing $\langle\rangle:, M \times N \rightarrow \boldsymbol{Z}$. Let $\sigma=\boldsymbol{R}_{\geq 0} u_{1}+\boldsymbol{R}_{\geq 0} u_{2}+\cdots+\boldsymbol{R}_{\geq 0} u_{s}$ be an ($n+1$)-dimensional strongly convex rational polyhedral cone in $N_{\boldsymbol{R}}$. Here we may assume that $\boldsymbol{R}_{\geq 0} u_{\tau}$ are 1-dimensional faces of σ, for $i=1$ through s. Let Y be the complex space associated to $\operatorname{Spec}\left(\boldsymbol{C}\left[M \cap \sigma^{*}\right]\right)$ and let $\boldsymbol{e}(v): Y \rightarrow \boldsymbol{C}$ be the natural extension to Y of the character $v \otimes 1_{C^{\times}}: T_{N} \rightarrow \boldsymbol{C}^{\times}$for each v in $M \cap \sigma^{*}$, where $\sigma^{*}:=\left\{v \in M_{R} \mid\langle v, u\rangle \geqq 0\right.$ for all $u \in \sigma \backslash\{0\}\}$ is the dual cone of σ and $T_{N}=\operatorname{Spec}(\boldsymbol{C}[M])\left(\cong\left(\boldsymbol{C}^{\times}\right)^{n+1}\right)$. Then any holomorphic function f on a neighborhood U of $y=\operatorname{orb}(\sigma)$ is expressed as the series:

$$
f=\Sigma_{v \in \sigma * \Omega M} c_{v} \boldsymbol{e}(v) .
$$

Hence we can define the Newton polyhedron $\Gamma_{+}(f)$ and the Newton boundary $\Gamma(f)$ of f in the same way as in the case of $Y=\boldsymbol{C}^{n+1}$. More precisely, $\Gamma_{+}(f)$ is the convex hull of $\cup_{c_{v} \neq 0} v+\sigma^{*}$ and $\Gamma(f)$ is the union of the compact faces of $\Gamma_{+}(f)$. Let $D=D_{1}+D_{2}+\cdots+D_{s}$, where D_{\imath} is the closure of $\operatorname{orb}\left(\boldsymbol{R}_{\geq 0} u_{\imath}\right)$. Here we note that $Y \backslash D=T_{N}$ and that Y is a Cohen-Macaulay space by [4, Corollary 3.9]. Let $\left\{v_{1}, v_{2}, \cdots, v_{n+1}\right\}$ be a basis of M and let $w_{i}=\boldsymbol{e}\left(v_{i}\right)$ for $i=1$ through $n+1$. Then $\left(w_{1}, w_{2}, \cdots, w_{n+1}\right)$ is a global coordinate of T_{N}. Let $\nu=\left(d w_{1} / w_{1}\right) \wedge$ $\left(d w_{2} / w_{2}\right) \wedge \cdots \wedge\left(d w_{n+1} / w_{n+1}\right)$. Then ν is a nowhere vanishing holomorphic $(n+1)$ form on T_{N} whose natural extension to Y has poles of order 1 along D.

Definition 1.1. (Y, y) is said to be r-Gorenstein, if there exists a nowhere vanishing holomorphic r-ple ($n+1$)-form on $U \backslash \operatorname{Sing}(U)$ for an open neighborhood U of y, where $\operatorname{Sing}(U)$ is the singular locus of U.

Since (Y, y) is a Cohen-Macaulay singularity, (Y, y) is Gorenstein, if it is 1-Gorenstein.

Proposition 1.2. ([6, the footnote of p294]) (Y, y) is r-Gorenstein, if and only if there exists an element v_{0} in M_{Q} such that $r v_{0} \in M$ and that $\left\langle v_{0}, u_{\nu}\right\rangle=1$ for $i=1$ through s, where we assume that u_{1}, u_{2}, \cdots and u_{s} are primitive elements in N. (Here we note that the above v_{0} is uniquely determined by σ, if it exists.)

Proof. Let v_{0} be an element in $M_{\boldsymbol{Q}}$ satisfying the above condition. Then $\theta:=e\left(r v_{0}\right) \nu^{r}$ is a nowhere vanishing holomorphic r-ple $(n+1)$-form on $Y \backslash \operatorname{Sing}(Y)$, because $\boldsymbol{e}\left(r v_{0}\right)$ has zeros of order $\left\langle r v_{0}, u_{2}\right\rangle=r$ only along D. Conversely, assume that (Y, y) is r-Gorenstein, i.e., there exists a nowhere vanishing holomorphic r-ple $(n+1)$-form θ on $U \backslash \operatorname{Sing}(U)$ for an open neighborhood U of y. Then $f:=\theta / \nu^{r}$ is a holomorphic function on $U \backslash \operatorname{Sing}(U)$ which does not vanisn on
$T_{N} \cap U$ and whose vanishing order at D_{\imath} is equal to r. Since the codimension of $\operatorname{Sing}(Y)$ is greater than $1, f$ is extended to U, by [1, Chapter II, Corollary 3.12]. Hence f ie expressed as the series $\Sigma_{v \in(\sigma *(0)) \cap M} c_{v} e(v)$. Suppose that $\Gamma_{+}(f)$ has a compact face Δ with $\operatorname{dim} \Delta \geqq 1$. Then there exist a primitive element u_{0} in $\operatorname{Int}(\sigma) \cap N$ and a positive integer t such that $\left\langle v, u_{0}\right\rangle=t$ (resp. $>t$) for any element v in Δ (resp. $\left.\Gamma_{+}(f) \backslash \Delta\right)$. Let Y_{0} be the complex space associated to $\operatorname{Spec}\left(\boldsymbol{C}\left[\left(\boldsymbol{R}_{\geq 0} u_{0}\right)^{*} \cap M\right]\right)\left(\cong \boldsymbol{C} \times\left(\boldsymbol{C}^{\times}\right)^{n}\right)$ and let $D_{0}=\operatorname{orb}\left(\boldsymbol{R}_{z 0} u_{0}\right)$. Then we have a holomorphic map $\pi: Y_{0} \rightarrow Y$ such that $\pi_{\mid T_{N}}=i d$ and that $\pi^{-1}(y)=D_{0}$, because $\boldsymbol{R}_{>_{0}} u_{0} \subset \operatorname{Int}(\sigma)$. Take a basis $\left\{v_{1}^{\prime}, v_{2}^{\prime}, \cdots, v_{n+1}^{\prime}\right\}$ of M so that $\left\langle v_{1}^{\prime}, u_{0}\right\rangle=1$ and that $\left\langle v_{i}^{\prime}, u_{0}\right\rangle=0$ for $i=2$ through $n+1$. Let $z_{i}=\boldsymbol{e}\left(v_{i}^{\prime}\right)$ for $i=1$ through $n+1$. Then $D_{0}=\left\{z_{1}=0\right\}$ and $f=z_{1}^{t} g_{0}+z_{1}^{t+1} g_{1}+\cdots+z_{1}^{t+2} g_{i}+\cdots$ on $U \cap \boldsymbol{T}_{N}$, where $g_{2}=\Sigma_{v \in L_{\imath}}$ $c_{v} e\left(v-(t+i) v_{1}^{\prime}\right)$ and $L_{\imath}=\left\{v \in \Gamma_{+}(f) \cap M \mid\left\langle v, u_{0}\right\rangle=t+i\right\}$. Here we note that g_{\imath} are polynomials with variables z_{2}, \cdots, z_{n+1} and that $g_{0}=\sum_{v \in \triangle \cap M} c_{v} e\left(v-t v_{1}^{\prime}\right)$ is not a monomial, because the cardinal number of $\left\{v \in \Delta \cap M \mid c_{v} \neq 0\right\}$ is greater than 1 . Hence $\left\{y^{\prime} \in U \cap T_{N} \mid\left(g_{0}+z_{1} g_{1}+\cdots\right)\left(y^{\prime}\right)=0\right\} \neq \varnothing$, because $Y \backslash D_{0}=T_{N}$. Then f must vanish at a point of $U \cap T_{N}$, a contradiction. Therefore, any compact face of $\Gamma_{+}(f)$ is a point. This implies that $\Gamma(f)$ consists of only one point v_{0}^{\prime}. Hence $\Gamma_{+}(f)=v_{0}^{\prime}+\sigma^{*}$. Therefore, $\left\langle v_{0}^{\prime}, u_{\imath}\right\rangle \leqq\left\langle v, u_{i}\right\rangle$ for any element v in $\Gamma_{+}(f) \cap M$ and for $i=1$ through $n+1$. Since the vanishing order of f at D_{2} is r, we have $\left\langle v_{0}^{\prime}, u_{2}\right\rangle=r$. Hence the point $v_{0}=(1 / r) v_{0}^{\prime}$ satisfies the condition of the proposition.
q.e.d.

Remark. If $N=\boldsymbol{Z}^{n+1}$ and $\sigma=\left(\boldsymbol{R}_{z 0}\right)^{n+1}$, then Y is isomorphic to \boldsymbol{C}^{n+1} and the point y corresponds to the origin. Clearly $v_{0}=(1,1, \cdots, 1)$ satisfies the condition of the above proposition, if we identify M with N, by the canonical inner product.

§ 2. Hypersurface sections

Let f be an element of the maximal ideal $\mathfrak{m}_{Y, y}$ of Y at y, let $X=\{f=0\}$ and let $x=y$. Throughout the rest of this paper, we assume that $n=\operatorname{dim} X \geqq 2$, that X is irreducible reduced, that (X, x) is an isolated singularity and that $X \cap \operatorname{Sing}(Y)=\{x\}$. By [1, Chapter I, Proposition 1.6 (ii) and Corollary 4.4], we have:

Proposition 2.1. (X, x) is a Cohen-Macaulay and normal singularity.
Assume that $f=\Sigma_{v \in(\sigma * \mid(0)) \cap M} c_{v} e(v)$ is non-degenerate, i.e.,

$$
\partial f_{\Delta} / \partial w_{1}=\partial f_{\Delta} / \partial w_{2}=\cdots=\partial f_{\Delta} / \partial w_{n+1}=0
$$

has no solutions in $T_{N}=Y \backslash D\left(\cong\left(\boldsymbol{C}^{\times}\right)^{n+1}\right)$, for each face Δ of $\Gamma(f)$, where $f_{\Delta}=$ $\sum_{v \in \triangle \cap M} c_{v} e(v)$ and ($w_{1}, w_{2}, \cdots, w_{n+1}$) is a global coodinate of T_{N}.

Theorem 2.2. Assume that (Y, y) is r-Gorenstein, (that (Y, y) is not r^{\prime} Gorenstein for $1 \leqq r^{\prime}<r$) and let v_{0} be the element satisfying the condition of

Proposition 1.2. Then (X, x) is r-Gorenstein. Moreover, if v_{0} is on $\Gamma(f)$, then

$$
\boldsymbol{\delta}_{m}(X, x)=\left\{\begin{array}{l}
1 \text { for } m \equiv 0 \bmod r \\
0 \text { for } m \not \equiv 0 \bmod r .
\end{array}\right.
$$

Conversely, if $\max \left\{\delta_{m}(X, x) \mid m \in \boldsymbol{Z}, m>0\right\}=1$, then v_{0} is on $\Gamma(f)$. (See [11], for the definttion of $\delta_{m}(X, x)$.)

For the proof, we need some preparations. For $u \in \sigma$, let $d(u)=\min \{\langle v, u\rangle \mid$ $\left.v \in \Gamma_{+}^{\prime}(f)\right\}$ and let $\Delta(u)=\left\{v \in \Gamma_{+}(f) \mid\langle v, u\rangle=d(u)\right\}$. For a face Δ of $\Gamma_{+}(f)$, let $\Delta^{*}=\{u \in \sigma \mid \Delta(u) \supset \Delta\}$. Then $\Gamma^{*}(f):=\left\{\Delta^{*} \mid \Delta\right.$ is a face of $\left.\Gamma_{+}(f)\right\} \cup\{0\}$ is an r.p.p. decomposition of N_{R} with $\left|\Gamma^{*}(f)\right|\left(:=U_{\Delta^{*} \in \Gamma *(f)} \Delta^{*}\right)=\sigma$. Let Σ^{*} be a subdivision of $\Gamma^{*}(f)$ consisting of non-singular cones and let $\tilde{Y}=T_{N} \mathrm{emb}\left(\Sigma^{*}\right)$. Then we have a resolution $\Pi: \tilde{Y} \rightarrow Y$ of Y. Let \tilde{X} be the proper transformation of X under Π and let $E=\tilde{X} \cap \Pi^{-1}(x)$. Then $\pi\left(:=\Pi_{\mid \tilde{X})}: \tilde{X} \rightarrow X\right.$ is a resolution of X whose exceptional set is E. Assume that u is a primitive element in N and that $\boldsymbol{R}_{\geq 0} u$ is a 1 -dimensional cone in Σ^{*} with $\operatorname{dim} \Delta(u) \geqq 1$. Then we denote by $E(u)$ the closure of $\operatorname{orb}\left(\boldsymbol{R}_{\geq 0} u\right) \cap E(\neq \phi)$. Recall that $\theta:=\boldsymbol{e}\left(r v_{0}\right) \nu^{r}$ is a nowhere vanishing r-ple $(n+1)$-form on $Y \backslash \operatorname{Sing}(Y)$. Let $\omega=\operatorname{Res}\left(\theta / f^{r}\right)$, i.e., $\omega=$ $g_{1 X \cap U}\left(d w_{1} \wedge \cdots \wedge d w_{n}\right)^{r}$ on $X \cap U$, if θ is expressed as $g\left(d f \wedge d w_{1} \wedge \cdots \wedge d w_{n}\right)^{r}$ on an open set U of Y.

Lemma 2.3. $\pi^{*} \omega^{l}$ has zeros of order $\operatorname{lr}\left(\left\langle v_{0}, u\right\rangle-1-d(u)\right)$ along $E(u)$.
Proof. The lemma follows from the fact that $\boldsymbol{e}\left(r v_{0}\right), \nu^{r}$ and $\left(\pi^{*} f\right)^{r}$ have zeros of order $r\left\langle v_{0}, u\right\rangle,-r$ and $r d(u)$, respectively, along $\operatorname{orb}\left(\boldsymbol{R}_{\geqq 0} u\right)$. q.e.d.

Proof of Theorem 2.2. Since ω is a nowhere vanishing holomorphic r-ple n-form on $X \backslash\{x\}$, we see that (X, x) is r-Gorenstein. Assume that v_{0} is on $\Gamma(f)$. Then $\left\langle v_{0}, u\right\rangle \geqq d(u)$ for any u in $\operatorname{Int}(\sigma) \cap N$. Hence the nowhere vanishing holomorphic $l r$-ple n-form $\pi^{*} \omega^{l}$ has poles of order at most $l r$ along each irreducible component of the exceptional set E, by Lemma 2.3. On the other hand, $\Gamma_{+}(f)$ has a compact face Δ_{0} containing v_{0} with $\operatorname{dim} \Delta_{0} \geqq 1$. Otherwise, $\Gamma_{+}(f)=v_{0}+\sigma^{*}$ and hence $f=\boldsymbol{e}\left(v_{0}\right) g$ for a holomorphic function g on Y. Then since $\left[e\left(v_{0}\right)\right]=r D$, we get a contradiction to the assumption that X is irreducible. Hence we can take a subdivision Σ^{*} of $\Gamma^{*}(f)$ so that $\Delta\left(u_{0}\right)=\Delta_{0}$ for a 1-dimensional cone $\Delta^{*}=\boldsymbol{R}_{¥ 0} u_{0}$ in Σ^{*}. Then $u_{0} \in \operatorname{Int}(\sigma)$, orb $\left(\Delta^{*}\right) \cap \tilde{X} \neq \varnothing$ and $\left\langle v_{0}, u_{0}\right\rangle=$ $d\left(u_{0}\right)$. Hence $\pi^{*} \omega^{l}$ has poles of order $l r$ along the irreducible component $E\left(u_{0}\right)$ of E. Therefore, $\delta_{l r}(X, x)=1$. Next, assume that $m \not \equiv 0 \bmod r$ and let η be an element in $H^{0}\left(X \backslash\{x\}, \mathcal{O}_{X}\left(m K_{X}\right)\right)$. In the following, we show that η is in $L^{2 / m}(X \backslash\{x\})$. We note that $r v_{0}$ is a primitive element in M. Otherwise, (Y, y) is r^{\prime}-Gorenstein for a positive integer $r^{\prime}<r$. Hence we can take n elements v_{1}, v_{2}, \cdots and v_{n} in M so that $\left\{r v_{0}, v_{1}, \cdots, v_{n}\right\}$ is a basis of M. Let $w_{0}=\boldsymbol{e}\left(r v_{0}\right)$ and let $w_{2}=\boldsymbol{e}\left(v_{i}\right)$ for $i=1$ through n. Then $\left(w_{0}, w_{1}, \cdots, w_{n}\right)$ is a global coordinate of T_{N}. Let $M^{\prime}=M+\boldsymbol{Z} v_{0}$ and let $N^{\prime}=\left\{u \in N \mid\left\langle v^{\prime}, u\right\rangle \in \boldsymbol{Z}\right.$ for any $\left.v^{\prime} \in M^{\prime}\right\}(=\{u$
$\left.\in N \mid\left\langle v_{0}, u\right\rangle \in \boldsymbol{Z}\right\}$). Then the inclusion $N^{\prime} \rightarrow N$ induces a holomorphic map $\varphi: Y^{\prime}$ $\rightarrow Y$, where Y^{\prime} is the complex space associated to $\operatorname{Spec}\left(\boldsymbol{C}\left[M^{\prime} \cap \sigma^{*}\right]\right)$. Since $\left\{v_{0}, v_{1}, \cdots, v_{n}\right\}$ is a basis of $M^{\prime},\left(z_{0}, z_{1}, \cdots, z_{n}\right)$ is a global coordinate of $T_{N^{\prime}}=$ $\operatorname{Spec}\left(\boldsymbol{C}\left[M^{\prime}\right]\right)$, where $z_{2}=\boldsymbol{e}\left(v_{i}\right)$ for $i=0$ through n. Clearly, $\varphi^{*} w_{0}=\left(z_{0}\right)^{r}$ and $\varphi^{*} w_{2}=z_{2}$ for $i=1$ through n. Hence φ is the quotient map under the group $\langle t\rangle$ generated by the element $t=(\xi, 1, \cdots, 1)$ in $T_{N^{\prime}}$, where ξ is a primitive r-th root of 1. Moreover, φ is unramified over $Y \backslash \operatorname{Sing}(Y)$, because $\theta:=w_{0}\left(\left(d w_{0} / w_{0}\right)\right.$ $\left.\wedge\left(d w_{1} / w_{1}\right) \wedge \cdots \wedge\left(d w_{n} / w_{n}\right)\right)^{r}\left(\right.$ resp. $\left.\theta^{\prime}:=z_{0}\left(d z_{0} / z_{0}\right) \wedge\left(d z_{1} / z_{1}\right) \wedge \cdots \wedge\left(d z_{n} / z_{n}\right)\right)$ is a nowhere vanishing holomorphic r-ple ($n+1$)-form on $Y \backslash \operatorname{Sing}(Y)$ (resp. $(n+1)$ form on $Y^{\prime} \backslash \operatorname{Sing}\left(Y^{\prime}\right)$) and $\varphi^{*} \theta=\left(r \theta^{\prime}\right)^{r}$. Hence Sing $\left(X^{\prime}\right)=\left\{x^{\prime}\right\}$, where $X^{\prime}:=$ $\varphi^{-1}(X)$ and $x^{\prime}:=\varphi^{-1}(x)$. Let $\omega^{\prime}=\operatorname{Res}\left(\theta^{\prime} / \varphi^{*} f\right)$. Then ω^{\prime} is a nowhere vanishing holomorphic n-form on $X^{\prime} \backslash\left\{x^{\prime}\right\}$ with $t^{*} \omega^{\prime}=\xi \omega^{\prime}$, because $t^{*} z_{0}=\xi z_{0}$ and $t^{*}\left(d z_{i} / z_{\imath}\right)$ $=d z_{i} / z_{\imath}$ for $i=0$ through n. Hence $\varphi^{*} \eta=g\left(\omega^{\prime}\right)^{m}$ for a holomorphic function g on X^{\prime}. Since $t^{*}\left(\varphi^{*} \eta\right)=\varphi^{*} \eta$ and $t^{*}\left(g\left(\omega^{\prime}\right)^{m}\right)=t^{*} g \xi^{m}\left(\omega^{\prime}\right)^{m}$, we have $t^{*} g=\xi^{-m} g$. Since $\xi^{-m} \neq 1$, we have $g\left(x^{\prime}\right)=0$. Hence $\varphi^{*} \eta=g\left(\omega^{\prime}\right)^{m} \in \mathcal{L}^{2 / m}\left(X^{\prime} \backslash\left\{x^{\prime}\right\}\right)$, because $\left(\pi^{\prime}\right)^{*} \omega^{\prime} \in H^{0}\left(\tilde{X}^{\prime}, \mathcal{O}\left(K_{\tilde{X}}+E^{\prime}\right)\right.$, for any resolution $\pi^{\prime}:\left(\tilde{X}^{\prime}, E^{\prime}\right) \rightarrow\left(X^{\prime}, x^{\prime}\right)$ of $\left(X^{\prime}, x^{\prime}\right)$. Therefore, $\eta \in \mathcal{L}^{2 / m}(X \backslash\{x\})$. Thus we conclude that $\delta_{m}(X, x)=0$. Finally, note that if $v_{0} \oplus \Gamma_{+}(f)\left(\right.$ resp. $\in \operatorname{Int}\left(\Gamma_{+}(f)\right)$), then $\delta_{m}(X, x) \geqq 2$ for certain positive integers m (resp. $=0$ for all positive integers m), by Lemma 2.3 and that if $v_{0} \in$ $\partial \Gamma_{+}(f) \backslash \Gamma(f)$, then (X, x) is not isolated. Thus we obtain the last assertion of the theorem.
q.e.d.

We can obtain a system of defining equations of X from those of Y and f.
Proposition 2.4. If $f \notin \mathfrak{m}_{Y, y}^{2}$ (resp. $f \in \mathfrak{m}_{Y, y}^{2}$), then $\operatorname{dim} \mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2}=$ $\operatorname{dim} \mathfrak{m}_{Y, y} / \mathfrak{m}_{\Gamma, y}^{2}-1$ (resp. $\operatorname{dim} \mathfrak{m}_{Y, y} / \mathfrak{m}_{Y, y}^{2}$).

Proof. We have the following exact sequence.

$$
0 \longrightarrow f \cdot \mathcal{O}_{Y, y} /\left(f \cdot \mathcal{O}_{Y, y} \cap \mathfrak{m}_{Y, y}^{2}\right) \longrightarrow \mathfrak{m}_{Y, y} / \mathfrak{m}_{Y}^{2}, y \longrightarrow \mathfrak{m}_{X, x} / \mathfrak{m}_{X, x}^{2} \longrightarrow 0 .
$$

We easily see that $\operatorname{dim} f \cdot \mathcal{O}_{Y, y} /\left(f \cdot \mathcal{O}_{Y, y} \cap \mathfrak{m}_{Y, y}^{2}\right)=1$ or 0 , according as $f \notin \mathfrak{m}_{Y, y}^{2}$ or $f \in \mathfrak{m}_{Y}^{?}, y$.
q.e.d.

Assume that $\sigma^{*} \cap M$ is generated by m elements $v_{1}, v_{2}, \cdots, v_{m}$ and let $z_{\imath}=$ $\boldsymbol{e}\left(v_{i}\right)$, for $i=1$ through m. Then we have the embedding $i: Y \ni p \mapsto\left(z_{1}(p), z_{2}(p)\right.$, $\left.\cdots, z_{m}(p)\right) \in \boldsymbol{C}^{m}$. Assume that $i(Y)$ is defined by $g_{1}(z)=g_{2}(z)=\cdots=g_{t}(z)=0$, where $z=\left(z_{1}, z_{2}, \cdots, z_{m}\right)$. If $f \in \mathfrak{m}_{Y, y}^{2}$, then $X=\{f=0\}$ is isomorphic to the subvariety in \boldsymbol{C}^{m} defined by $\tilde{f}(z)=g_{1}(z)=\cdots=g_{\imath}(z)=0$, where $\tilde{f}(z)$ is a holomorphic function on \boldsymbol{C}^{m} with $i^{*} \tilde{f}=f$. Next, assume that we can express $\tilde{f}(z)=$ $z_{1}-h\left(z_{2}, \cdots, z_{m}\right)$. Hence $f \notin \mathfrak{m}_{Y, y}^{2}$. Then X is isomorphic to the subvariety in \boldsymbol{C}^{m-1} defined by $g_{1}^{\prime}(w)=g_{2}^{\prime}(w)=\cdots=g_{t}^{\prime}(w)=0$, where $w=\left(z_{2}, \cdots, z_{m}\right)$ and $g_{i}^{\prime}(w)=$ $g_{i}\left(h(w), z_{2}, \cdots, z_{m}\right)$.

Example 1. Let $n=2$, let $\left\{u_{1}, u_{2}, u_{3}\right\}$ be a basis of N and let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the basis of M dual to $\left\{u_{1}, u_{2}, u_{3}\right\}$. Let $\sigma=\boldsymbol{R}_{¥ 0}\left(u_{1}+u_{3}\right)+\boldsymbol{R}_{z 0}\left(u_{1}+u_{2}+u_{3}\right)+$

Figure 1.
$\boldsymbol{R}_{\geq 0}\left(u_{2}+u_{3}\right)+\boldsymbol{R}_{\geq 0}\left(-u_{1}+u_{3}\right)+\boldsymbol{R}_{\geq 0}\left(-u_{1}-u_{2}+u_{3}\right)+\boldsymbol{R}_{\geq 0}\left(-u_{2}+u_{3}\right)$. Then (Y, y) is Gorenstein and $v_{0}=v_{3}$ satisfies the condition of Proposition 1.2. We see that $\sigma^{*} \cap M$ is generated by $l_{0}=v_{3}, l_{1}=v_{1}+v_{3}, l_{2}=v_{2}+v_{3}, l_{3}=-v_{1}+v_{2}+v_{3}, l_{4}=-v_{1}+v_{3}$, $l_{5}=-v_{2}+v_{3}$ and $l_{6}=v_{1}-v_{2}+v_{3}$. (See Figure 1.) Hence Y is isomorphic to the subvariety in \boldsymbol{C}^{7} defined by the equations (1) $z_{0} z_{1}-z_{6} z_{2}=z_{0} z_{2}-z_{1} z_{3}=z_{0} z_{3}-z_{2} z_{4}=$ $z_{0} z_{4}-z_{3} z_{5}=z_{0} z_{5}-z_{4} z_{6}=z_{0} z_{6}-z_{5} z_{1}=z_{0}^{2}-z_{1} z_{4}=z_{0}^{2}-z_{2} z_{5}=z_{0}^{2}-z_{3} z_{6}=0$, where $z_{2}=\boldsymbol{e}\left(l_{2}\right)$, for $i=0$ throuh 6 . Let $f=z_{0}-z_{1}^{2}-z_{2}^{2}-\cdots-z_{6}^{2}$. Then (X, x) is a cusp singularity with a resolution $\pi:(\tilde{X}, E) \rightarrow(X, x)$ such that the exceptional set E is a cycle of six rational curves whose self-intersection numbers are all - 3 . Since $f \notin$ $\mathfrak{m}_{Y, y}^{2}$, we see that X is isomorphic to the subvariety in \boldsymbol{C}^{6} defined by the equations obtained from the above equations (1), replacing z_{0} by $z_{1}^{2}+z_{2}^{2}+\cdots+z_{6}^{2}$.

Example 2. Let $n,\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\left\{v_{1}, v_{2}, v_{3}\right\}$ be the same as in Example 1. Let $\sigma=\boldsymbol{R}_{\geq 0}\left(u_{1}+2 u_{3}\right)+\boldsymbol{R}_{\geq 0}\left(u_{2}+2 u_{3}\right)+\boldsymbol{R}_{\geq 0}\left(u_{1}+2 u_{2}+2 u_{3}\right)+\boldsymbol{R}_{\geqq 0}\left(2 u_{1}+u_{2}+2 u_{3}\right)$. Then (Y, y) is 2-Gorenstein and $v_{0}=(1 / 2) v_{3}$ satisfies the condition of Proposition 1.2. We see that $\sigma^{*} \cap M$ is generated by $l_{1}=-2 v_{1}-2 v_{2}+3 v_{3}, l_{2}=-v_{1}+v_{3}, l_{3}=-2 v_{1}+$ $2 v_{2}+v_{3}, \quad l_{4}=v_{2}, \quad l_{5}=2 v_{1}+2 v_{2}-v_{3}, \quad l_{6}=v_{1}, \quad l_{7}=2 v_{1}-2 v_{2}+v_{3}$ and $l_{8}=-v_{2}+v_{3} . \quad$ (See Figure 2.) Let $z_{2}=\boldsymbol{e}\left(l_{2}\right)$ for $i=1$ through 8 and let $f=z_{2}-z_{4}+z_{6}+z_{8}$. Then f is non-degenerate, (X, x) is an isolated singularity and $X \cap \operatorname{Sing}(Y)=\{x\}$. Moreover, (X, x) is a quotient of a simple elliptic singularity.

Example 3. Let $n=3$, let $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ be a basis of N and let $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ be the basis of M dual to $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$. Let $\sigma=\boldsymbol{R}_{\geq 0}\left(u_{1}+u_{2}+2 u_{4}\right)+\boldsymbol{R}_{z 0}\left(u_{1}+u_{3}\right.$ $\left.+2 u_{4}\right)+\boldsymbol{R}_{\geq 0}\left(u_{2}+u_{3}+2 u_{4}\right)+\boldsymbol{R}_{\geq 0}\left(u_{1}+u_{2}+2 u_{3}+2 u_{4}\right)+\boldsymbol{R}_{\geq 0}\left(u_{1}+2 u_{2}+u_{3}+2 u_{4}\right)+\boldsymbol{R}_{\geq 0}\left(2 u_{1}\right.$ $\left.+u_{2}+u_{3}+2 u_{4}\right)$. Then (Y, y) is 2 -Gorenstein and $v_{0}=(1 / 2) v_{4}$ satisfies the condition of Proposition 1.2. We see that $\sigma^{*} \cap M$ is generated by $l_{1}=v_{1}-v_{2}-v_{3}+v_{4}$, $l_{2}=v_{1}-v_{2}+v_{3}, l_{3}=v_{1}+v_{2}+v_{3}-v_{4}, l_{4}=v_{1}+v_{2}-v_{3}, \quad l_{5}=-v_{1}-v_{2}-v_{3}+2 v_{4}, \quad l_{6}=-v_{1}-v_{2}$ $+v_{3}+v_{4}, l_{7}=-v_{1}+v_{2}+v_{3}, l_{8}=-v_{1}+v_{2}-v_{3}+v_{4}, l_{9}=v_{1}, l_{10}=-v_{2}+v_{4}, l_{11}=v_{3}, l_{12}=v_{2}$, $l_{13}=-v_{3}+v_{4}$ and $l_{14}=-v_{1}+v_{4}$. (See Figure 3.) Let $z_{\imath}=\boldsymbol{e}\left(l_{2}\right)$, for $\imath=1$ through 14 and let $f=\sum_{1 \leqq \imath \leqq 14} z_{\imath}$. Then f is non-degenerate, (X, x) is an isolated singularity

Figure 2.

Figure 3.
and $X \cap \operatorname{Sing}(Y)=\{x\}$. Let $\Sigma=\left\{\right.$ faces of $\boldsymbol{R}_{\text {zo }}\left(u_{1}+u_{2}+u_{3}+2 u_{4}\right)+\tau \mid \tau$ are 3-dimensional faces of $\sigma\}$ and let $\tilde{Y}=T_{N} \mathrm{emb}(\Sigma)$. Then $\Sigma=\Gamma^{*}(f)$ and \tilde{Y} is the blowing up of Y along $y=\operatorname{orb}(\sigma)$. Although \tilde{Y} has singularities, $\tilde{X} \cap \operatorname{Sing}(\tilde{Y})=\phi$, where \tilde{X} is the proper transformation of X under the blowing up $\Pi: \tilde{Y} \rightarrow Y$. Moreover, $\Pi^{-1}(y) \cap \tilde{X}=E\left(u_{1}+u_{2}+u_{3}+2 u_{4}\right)$ is an Enriques surface. Each of small deformations $X_{\varepsilon}=\{f=\varepsilon\}$ of X has eight isolated quotient singularities.

§ 3. Hyperplane sections of Gorenstein toric singularities

We keep the notations of the previous section and throughout this section, we assume that (Y, y) is an isolated (, i.e., each n-dimensional face of σ is non-singular), non-terminal and Gorenstein singularity. Hence (Y, y) is a canonical singularity of index 1 and the set $\mathcal{L}:=\left\{u \in \operatorname{Int}(\sigma) \cap N \mid\left\langle v_{0}, u\right\rangle=1\right\}$ is non-
empty. Moreover, we assume that $X=\{f=0\}$ is a generic hyperplane section, i.e., $f=\sum c_{v} e(v)$ with $c_{v} \neq 0$, for the generators v of $\sigma^{*} \frown M$.

Proposition 3.1. Under the above assumptions, (X, x) is a purely elliptic singularity, i.e., $\delta_{m}(X, x)=1$ for each positive integer m.

Proof. Let u_{0} be an element in \mathcal{L}. Then $\left\langle v_{0}, u_{0}\right\rangle=1$ and $\left\{v \in \sigma^{*} \mid\left\langle v, u_{0}\right\rangle\right.$ $\geqq 1\} \supset$ the convex hull of $\left(\sigma^{*} \backslash\{0\}\right) \cap M=\Gamma_{+}(f) \ni v_{0}$. Hence the set $\left\{v \in \sigma^{*} \mid\left\langle v, u_{0}\right\rangle\right.$ $=1\} \cap \Gamma_{+}(f)$ is a compact face of $\Gamma_{+}(f)$ and contains v_{0}. Therefore, $\delta_{m}=1$ for each positive integer m, by Theorem 2.2.
q.e.d.

Remark. (1) If (Y, y) is non-terminal and canonical of index $r>1$, then (Y, y) is r-Gorenstein and $v_{0} \in \sigma^{*} \backslash \operatorname{Int}\left(\Gamma_{+}(f)\right)$. There are examples with $v_{0} \notin$ $\Gamma_{+}(f)$, as well as examples with $v_{0} \in \Gamma(f)$. Hence ($\left.X, x\right)$ may not be a periodically elliptic singularity in contrast with the above proposition.
(2) In the case that (Y, y) is not isolated, if $\mathcal{L}=\phi$, then ($X, x)$ may be an isolated canonical singularity, even though (Y, y) is a non-terminal Gorenstein singularity. For instance, let σ be the cone generated by $(\pm 1,0,0,1),(0, \pm 1,0,1)$ and ($1,1,2,1$) in Z^{4}.

Ishii [3] and Koyama independently showed that a 2 -dimensional purely elliptic singularity is a simple elliptic singularity or a cusp singularity.

Proposition 3.2. When $n=2,(X, x)$ is a simple elliptic singularity (resp. a cusp singularity), if the cardinal number of \mathcal{L} is equal to (resp. greater than) 1.

Proof. First, we consider the case that \mathcal{L} consists of one element u_{0}. For each 2-dimensional face $\tau=\boldsymbol{R}_{\geq 0} u^{\prime}+\boldsymbol{R}_{\geq 0} u^{\prime \prime}\left(\left\{u^{\prime}, u^{\prime \prime}\right\} \subset\left\{u_{1}, u_{2}, \cdots, u_{s}\right\}\right)$ of σ, $\left\{u_{0}, u^{\prime}, u^{\prime \prime}\right\}$ is a basis of N, because $\left\langle v_{0}, u_{0}\right\rangle=\left\langle v_{0}, u^{\prime}\right\rangle=\left\langle v_{0}, u^{\prime \prime}\right\rangle=1$ and the triangle spanned by u_{0}, u^{\prime} and $u^{\prime \prime}$ contains no elements in N except u_{0}, u^{\prime} and $u^{\prime \prime}$. Let $\left\{v_{\tau}, v^{\prime}, v^{\prime \prime}\right\}$ be the basis of M dual to $\left\{u_{0}, u^{\prime}, u^{\prime \prime}\right\}$. Then $\left\langle v_{\tau}, u_{0}\right\rangle=1$ and $\left\langle v_{\tau}, u^{\prime}\right\rangle=\left\langle v_{\tau}, u^{\prime \prime}\right\rangle=0$. Hence σ^{*} is generated by v_{τ} and $\Gamma(f)$ consists of one face which is the polygon spanned by v_{τ}, for all 2-dimensional faces τ of σ. Therefore, $\Gamma^{*}(f)=\left\{\right.$ faces of $\boldsymbol{R}_{z 0} u_{0}+\tau \mid \tau$ are 2-dimensional faces of $\left.\sigma\right\}$ and the exceptional set $E=E\left(u_{0}\right)$ of the resolution of (X, x) obtained from $\Gamma^{*}(f)$ is a non-singular curve. It should be elliptic, because $\delta_{m}(X, x)=1$.

When the cardinal number of \mathcal{L} is greater than 1 , we easily see that there exist at least two 2-dimensional compact faces of $\Gamma_{+}(f)$ containing v_{0}, which we denote by Δ_{1} and Δ_{2}. Then $\Delta_{1}^{*}=\boldsymbol{R}_{\geq 0} u_{1}^{\prime}$ and $\Delta_{2}^{*}=\boldsymbol{R}_{\geq 0} u_{2}^{\prime}$ for primitive elements u_{1}^{\prime} and $u_{2}^{\prime} \operatorname{in} \operatorname{Int}(\sigma) \cap N$ such that $\left\langle v_{0}, u_{1}^{\prime}\right\rangle=d\left(u_{1}^{\prime}\right)$ and that $\left\langle v_{0}, u_{2}^{\prime}\right\rangle=d\left(u_{2}^{\prime}\right)$. Hence the exceptional set E of the resolution $\pi:(\tilde{X}, E) \rightarrow(X, x)$ of (X, x) obtained from any subdivision of $\Gamma^{*}(f)$ contains two irreducible components $E\left(u_{1}^{\prime}\right)$ and $E\left(u_{2}^{\prime}\right)$ along which $\pi^{*} \omega$ has poles of order 1 , by Lemma 2.3 , where $\omega=\operatorname{Res}\left(\boldsymbol{e}\left(v_{0}\right)\left(\left(d w_{1} / w_{1}\right)\right.\right.$ $\left.\left.\wedge \cdots \wedge\left(d w_{n+1} / w_{n+1}\right)\right) / f\right)$. Therefore, (X, x) is not a simple elliptic singularity.
q.e.d.

Since (Y, y) is an isolated singularity, (X, x) is smoothable. On the other hand, Wahl $[9,10]$ showed that if a simple elliptic singularity (resp. a cusp singularity) (X, x) is smoothable, then $m(X) \leqq 9$, (resp. $m(X)-l(X) \leqq 9$), where $l(X)$ is the number of the irreducible components of the exceptional set E of the minimal resolution of (X, x) and $m(X)$ is the multiplicity of (X, x), which is equal to $-E^{2}$, if $-E^{2} \geqq 3$.

Proposition 3.3. Assume that the cardinal number of \mathcal{L} is equal to 1 . If σ is an s-gonal cone, $-E^{2}=12-s$. (Therefore, $-E^{2} \leqq 9$.)

Proof. Let $\mathcal{L}=\left\{u_{0}\right\}$. Then $\Gamma^{*}(f)=\left\{\right.$ faces of $\boldsymbol{R}_{\geq 0} u_{0}+\tau \mid \tau$ are 2-dimensional faces of $\sigma\}$ consists of non-singular cones, by the proof of Proposition 3.2. Hence we obtain resolutions $\Pi:(\tilde{Y}, F) \rightarrow(Y, y)$ and $\pi=\Pi_{i \tilde{X}}:(\tilde{X}, E) \rightarrow(X, x)$, where $\tilde{Y}=T_{N} \operatorname{emb}\left(\Gamma^{*}(f)\right), F$ is the closure of $\operatorname{orb}\left(\boldsymbol{R}_{\geq 0} u_{0}\right), \tilde{X}$ is the proper transformation of X under Π and $E=\tilde{X} \cdot F$. Let \tilde{D}_{2} be the proper transformation of D_{i} under Π and let $E_{2}=F \cdot \tilde{D}_{2}$. Since $F+\tilde{X}=[\Pi * f]$ and $F+\tilde{D}_{1}+\tilde{D}_{2}+\cdots+\tilde{D}_{s}$ $=\left[\Pi^{*} \boldsymbol{e}\left(v_{0}\right)\right]$ are principal divisors, we have $-E_{i \tilde{X}}^{2}=-F^{2} \cdot \tilde{X}=F \cdot \tilde{X}^{2}=\Sigma_{1 \Sigma \imath s s} F \cdot \tilde{D}_{\imath}^{2}$ $+2 \sum_{0 \leq i<j s s} F \cdot \tilde{D}_{i} \cdot \tilde{D}_{j}=\left(\sum_{1 \leq i s s} E_{i 1 F}^{2}\right)+2 s=3(4-s)+2 s=12-s$, because F is a nonsingular toric variety whose 1-dimensional orbits are E_{1}, E_{2}, \cdots and E_{s}.
q.e.d.

Proposition 3.4. Assume that the convex hull of \mathcal{L} is a polygon. If σ is an s-gonal cone, then, $-E^{2}-l(X)=12-s$. (Therefore, $-E^{2}-l(X) \leqq 9$.)

Proof. Let P (resp. Q) be the convex hull of \mathcal{L} (resp. $\left\{u \in \sigma \cap N \mid\left\langle v_{0}, u\right\rangle=\right.$ 1\}). Then $Q=\left\{u \in \sigma \mid\left\langle v_{0}, u\right\rangle=1\right\}$ and $\operatorname{Int}(Q) \supset P$. Take a triangulation Δ (resp. $\left.\Delta^{\prime}\right)$ of $P($ resp. $Q \backslash \operatorname{Int}(P))$ so that the set of the vertices of Δ (resp. Δ^{\prime}) agrees with $P \cap N=\mathcal{L}$ (resp. $(Q \backslash \operatorname{Int}(P)) \cap N)$. Let e_{0}, e_{1} and e_{2} (resp. $e_{0}^{\prime}, e_{1}^{\prime}$ and e_{2}^{\prime}) be the numbers of the vertices, edges and faces, respectively, of Δ (resp. Δ^{\prime}). Then $e_{0}-e_{1}+e_{2}=1$ and $e_{0}^{\prime}-e_{1}^{\prime}+e_{2}^{\prime}=0$, because P and Q are polygons. Let l be the number of the vertices on the boundary ∂P of P. Then $e_{0}^{\prime}=l+s$ and $3 e_{2}^{\prime}=$ $2 e_{1}^{\prime}-(l+s)$, because the number of the vertices (resp. edges) on the boundary of $Q \backslash \operatorname{Int}(P)$ is equal to $l+s$. Hence by an easy calculation, we have $e_{1}^{\prime}=2(l+s)$. Since $\square:=\Delta \cup \Delta^{\prime}$ is a triangulation of Q, we see that $\Sigma^{*}:=\left\{\boldsymbol{R}_{\geq 0} \tau \mid \tau\right.$ are simplexes of $\square\} \cup\{0\}$ is a subdivision of $\Gamma^{*}(f)$ and consists of non-singular cones. Hence we have a resolution $\Pi:(\tilde{Y}, F) \rightarrow(Y, y)$, where $\tilde{Y}=T_{N} \mathrm{emb}\left(\Sigma^{*}\right)$. Let \tilde{D}_{\imath} be the proper transformation of D_{\imath} under Π and let $\tilde{D}=\tilde{D}_{1}+\widetilde{D}_{2}+\cdots+\tilde{D}_{s}$. Then Δ and \square are the dual graphs of $F=F_{1}+F_{2}+\cdots+F_{e_{0}}$ and $F+\tilde{D}$, respectively. Since $\tilde{X}+F=\left[\Pi^{*} f\right]$ and $\tilde{D}+F=\left[\Pi^{*} e\left(v_{0}\right)\right]$ are principal divisors, we have $0=F_{i} \cdot F_{\text {, }}$ $\cdot(\tilde{D}+F)=F_{i}^{2} \cdot F_{j}+F_{i} \cdot F_{j}^{2}+2$, if $F_{i} \cap F_{j} \neq \phi$ and $-E_{1}^{2} \tilde{x}=-F^{2} \cdot \tilde{X}=F \cdot \tilde{D}^{2}=\Sigma_{1 \leq i \leq e_{0}}$ $\left(\sum_{1 \leq j \leq s} F_{i} \cdot \tilde{D}_{j}^{2}+2 \sum_{1 \leq j<k \leq s} F_{i} \cdot \tilde{D}_{j} \cdot \tilde{D}_{k}\right)=\sum_{1 \leq i \leq e_{0}, 1 \leq j \leq s} F_{i} \cdot \tilde{D}_{j}^{2}+2 s$, where \tilde{X} is the proper transformation of X under Π and $E=\tilde{X} \cdot F$. On the other hand, since each irreducible component F_{2} of F is a non-singular toric variety with $F_{i} \cdot\left(F+\widetilde{D}-F_{2}\right)$ as the union of 1-dimensional orbits, we have $\Sigma_{\imath \neq 1} F_{i} \cdot F_{j}^{2}+\Sigma_{1 \leqslant k \leqslant s} F_{i} \cdot \widetilde{D}_{k}^{2}=3\left(4-d_{\imath}\right)$, where d_{\imath} is the number of the double curves on F_{\imath}. Hence by taking the sum
of the self-intersection numbers of the double curves $F_{i} \cdot F_{j}$ and $F_{i} \cdot \tilde{D}_{k}$ on all the irreducible components F_{\imath} of F, we have $-2 e_{1}+\sum_{1 \leq \imath \leq e_{0}, 1 \leq \jmath \leq s} F_{i} \cdot \widetilde{D}_{j}^{2}=\sum_{1 \leq \imath \leq e_{0}} 3(4-$ $\left.d_{2}\right)=12 e_{0}-3\left(2 e_{1}+l+s\right)=12 e_{0}-6 e_{1}-3 l-3 s$. Therefore, $-E_{1}^{2} \tilde{X}=12 e_{0}-6 e_{1}-3 l-3 s+$ $2 e_{1}+2 s=12 e_{0}-4 e_{1}-3 l-s=12 e_{0}-12 e_{1}+12 e_{2}+l-s=12+l-s$, because $3 e_{2}=2 e_{1}-l$. Thus we obtain $-E^{2}-l=12-s$. Here we note that l is equal to the number of the irreducible components of E, because $\tilde{X} \cap F_{2} \neq \phi$, if and only if $\tilde{D} \cap F_{2} \neq \phi$ (, i.e., the vertex of \square corresponding to F_{2} is on ∂P) and then $\tilde{X} \cap F_{2}$ is irreducible. Moreover, $E_{i} \cdot E_{j}=\tilde{X} \cdot F_{i} \cdot F_{j}=\tilde{D} \cdot F_{i} \cdot F_{j} \leqq 1$ and the equality holds, if and only if the vertices of \square corresponding to F_{2} and $F_{\text {, }}$ are joined by an edge on ∂P. Hence E forms a cycle. Therefore, although (\tilde{X}, E) is not a minimal resolution, the contraction of a rational curve E_{\imath} with $E_{\imath}^{2}=-1$ does not change the number $-E^{2}-l$. Thus we complete the proof.

Examples. In the following table, $E=E_{1}+E_{2}+\cdots+E_{\imath}$ is the exceptional set of the minimal resolution of (X, x) such that $E_{i} \cdot E_{\imath+1}=1$ for each $i \in \boldsymbol{Z} / l \boldsymbol{Z}$.

generators of σ	l	$-E_{1}^{2},-E_{2}^{2}, \cdots,-E_{l}^{2}$
$(0,0,1),(5,2,1),(3,5,1)$	6	$5,4,5,4,5,4$
$(0,0,1),(4,1,1),(3,4,1)$	6	$7,2,7,2,7,2$
$(0,0,1),(8,3,1),(5,8,1)$	9	$5,4,3,5,4,3,5,4,3$
$(0,0,1),(7,2,1),(5,7,1)$	9	$5,5,2,5,5,2,5,5,2$
$(0,0,1),(7,3,1),(4,7,1)$	9	$6,4,2,6,4,2,6,4,2$

§ 4. Deformations

We assume that $n=\operatorname{dim} X \geqq 3$, throughout this section. Let $U=X \backslash\{x\}$ and let $W=Y \backslash\{y\}$. Then we have the isomorphism $T_{\bar{x}} \cong H^{1}\left(U, \Theta_{U}\right)$, by Proposition 2.1 and [7, Theorem 2], where $T_{X}^{1}=H^{0}\left(X, \Theta_{X}\right)$ is the tangent space to the formal moduli space of X and Θ_{U} is the tangent sheaf of U. Consider the long exact sequence arising from the short exact sequence of sheaves:

$$
0 \longrightarrow \Theta_{U} \longrightarrow i^{*} \Theta_{W} \longrightarrow n \longrightarrow 0
$$

where $i: U \hookrightarrow W$ is the inclusion map. Here we note that the normal sheaf $\Omega \cong$ $\mathcal{O}_{U}(U)$ is isomorphic to the structure sheaf \mathcal{O}_{U}, because X is a principal divisor on Y. Let $\left\{\theta_{1}, \theta_{2}, \cdots, \theta_{l}\right\}$ be a basis of the image of the map $\delta: H^{\circ}(U, \mathscr{R}) \rightarrow$ $H^{1}\left(U, \Theta_{U}\right)$ and let g_{\imath} be an element of $H^{\circ}\left(Y, \mathcal{O}_{Y}\right)$ whose image is θ_{\imath} under the composite of the surjective maps $H^{0}\left(Y, \mathcal{O}_{Y}\right)=H^{0}\left(W, \mathcal{O}_{W}\right) \rightarrow H^{0}\left(U, \mathcal{O}_{U}\right) \cong H^{0}(U, \Re)$ sending h to $h_{\mid U} \cdot \partial / \partial f$ and $H^{0}(U, \mathscr{M}) \rightarrow \operatorname{Im}(\delta)$. Let $\mathscr{X}=\left\{(z, t) \in Y \times \Delta \mid f(z)+t_{1} g_{1}(z)\right.$ $\left.+t_{2} g_{2}(z)+\cdots+t_{l} g_{l}(z)=0\right\}$ and let π be the restriction to \mathscr{X} of the projection
$Y \times \Delta \rightarrow \Delta$, where $\Delta=\left\{\left(t_{1}, t_{2}, \cdots, t_{l}\right) \in \boldsymbol{C}^{l}| | t_{j} \mid<\varepsilon\right\}$. Then π is flat, by [1, Chapter V, Corollary 1.5]. Let \mathcal{U} be the open set of \mathscr{X} on which π is smooth. Then we obtain a family $\pi_{\mid q}: U \rightarrow \Delta$ of deformations of the complex manifold U. Moreover, by an easy calculation, we have $\rho\left(\partial / \partial t_{j}\right)=\theta$, for $j=1$ through l, where $\rho: T_{0}(\Delta) \rightarrow H^{1}\left(U, \Theta_{U}\right)$ is the infinitesimal deformation map. Hence ρ is injective and if $H^{1}\left(U, i^{*} \Theta_{W}\right)=0$, then ρ is surjective.

Theorem 4.1. If $H^{1}\left(U, i^{*} \Theta_{W}\right)=0$, then $\pi: \mathfrak{X} \rightarrow \Delta$ is a locally semiuniversal family of X.

Proof. Recall that $T_{x}^{\frac{1}{x}}$ is defined by the exact sequence

$$
0 \longrightarrow \operatorname{Hom}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \longrightarrow \operatorname{Hom}\left(j^{*} \Omega_{\boldsymbol{c}^{N}}^{1}, \mathcal{O}_{X}\right) \longrightarrow \operatorname{Hom}\left(I / I^{2}, \mathcal{O}_{X}\right) \longrightarrow T_{X}^{\frac{1}{X}} \longrightarrow 0
$$

obtained by the exact sequence of sheaves: $I / I^{2} \xrightarrow{d} j^{*} \Omega_{c^{N}} \rightarrow \Omega_{X}^{1} \rightarrow 0$, for an inclusion $j: X \hookrightarrow C^{N}$ with the ideal sheaf I. On the other hand, we have the exact sequence

$$
\begin{aligned}
0 & \longrightarrow \operatorname{Hom}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \longrightarrow \operatorname{Hom}\left(j^{*} \Omega_{c^{N}}^{1}, \mathcal{O}_{X}\right) \longrightarrow \operatorname{Hom}\left(\operatorname{Im}(d), \mathcal{O}_{X}\right) \\
& \longrightarrow \operatorname{Ext}_{\mathcal{O}_{X}}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right) \longrightarrow 0
\end{aligned}
$$

by the short exact sequence of sheaves: $0 \rightarrow \operatorname{Im}(d) \rightarrow j^{*} \Omega_{c^{N}}^{1} \rightarrow \Omega_{X}^{1} \rightarrow 0$. Since the support of $\operatorname{ker}(d)$ is $\{x\}$, we have $\operatorname{Hom}\left(\operatorname{Im}(d), \mathcal{O}_{X}\right)=\operatorname{Hom}\left(I / I^{2}, \mathcal{O}_{X}\right)$. Thus we have the canonical isomorphism $\operatorname{Ext}_{O_{X}}^{1}\left(\Omega_{X}^{\frac{1}{X}}, \mathcal{O}_{X}\right) \cong T_{X}^{1}$. Hence the infinitesimal deformation map $T_{0}(\Delta) \rightarrow \operatorname{Ext}_{\mathcal{O}_{X}}^{1}\left(\Omega_{X}^{1}, \mathcal{O}_{X}\right)$ for the family $\pi: \mathfrak{X} \rightarrow \Delta$ is bijective. Then by [8, Theorem 6.1], $\pi: \mathscr{X} \rightarrow \Delta$ is locally semiuniversal. q.e.d.

Corollary 4.2. If $H^{1}\left(U, i^{*} \Theta_{W}\right)=0$, then any small deformation of X is also a hypersurface section of Y.

Proposition 4.3. If σ is a simplicial cone (hence Y is a quotient space of $\left.\boldsymbol{C}^{n+1}\right)$, then $H^{1}\left(U, i^{*} \Theta_{W}\right)=0$.

Proof. Let l_{1}, l_{2}, \cdots and l_{n+1} be the generators of σ and let $N^{\prime}=\boldsymbol{Z} l_{1}+\boldsymbol{Z} l_{2}$ $+\cdots+\boldsymbol{Z} l_{n+1}$. Here we may assume that l_{1}, l_{2}, \cdots and l_{n+1} are primitive elements in N. Then the inclusion $N^{\prime} \subseteq N$ induces a holomorphic map $\varphi: Y^{\prime} \rightarrow Y$, where $Y^{\prime}=T_{N^{\prime}}$ emb $(\{$ faces of $\sigma\}) \cong \boldsymbol{C}^{n+1}$. Let $U^{\prime}=\varphi^{-1}(U)$. Then $\varphi_{U^{\prime}}: U^{\prime} \rightarrow U$ is unramified, by the assumption $X \cap \operatorname{Sing}(Y)=\{x\}$. Hence $H^{1}\left(U, i^{*} \Theta_{W}\right)=H^{1}\left(U^{\prime}, h^{*} \Theta_{Y^{\prime}}\right)^{G}$ $=0$, where $h: U^{\prime} \subseteq Y^{\prime}$ is the inclusion map and G is the covering transformation group of φ.
q.e.d.

Example. Let X^{\prime} be the hypersurface of C^{4} defined by $z_{1}^{2}+z_{2}^{6}+z_{3}^{6}+z_{4}^{6}=0$ and let $X=X^{\prime} / G$ be the quotient space of X^{\prime} under the group G generated by $(1, \xi, \xi, \xi)$, where ξ is a primitive cube root of 1 . Then X is a hypersurface section of $Y=C^{4} / G$, which is a toric singularity, and whose singular locus
$\operatorname{Sing}(Y)$ is 1-dimensional. We easily see that X has an isolated singularity obtained by contracting a K3 surface. By Corollary 4.2 and Proposition 4.3, any small deformation of X is also a hypersurface section $X_{t}=\pi^{-1}(t)$ of Y. Since X_{t} intersect $\operatorname{Sing}(Y)$ at finitely many points, X_{t} has singularities, i.e., X is not smoothable.

References

[1] C. Bănica and O. Stănășilă, Algebraic methods in the global theory of complex spaces, Editula Academiei, Bucureşti and John Wiley \& Sons, London New York, Sydney and Tronto, 1976.
[2] S. Ishir, Isolated \boldsymbol{Q}-Gorenstein singularities of dimension three, Complex analytic singularities (T. Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 165-198.
[3] S. Ishir, Two dimensional singularities with bounded plurigenera δ_{m} are \boldsymbol{Q}. Gorenstein singularities, to appear in Proc. Iowa city singularities conference, Contemporary Mathematics series of AMS.
[4] T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge•Band 15, Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, 1987.
[5] M. Oka, On the resolution of the hypersurface singularities, Complex analytic singularities (T. Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 405-436.
[6] M. Reid, Canonical 3-folds, in Journées de Géomérie Algébrique d’Angers, 1979 (A. Beauville, ed.). Sijthoff \& Noordhoff, Alphen aan den Rijn, The Netherlands and Rockville, Md USA, 1980, 273-310.
[7] M. Schlessinger, Rigidity of quotient singularities, Inventiones Math. 14 (1971), 17-26.
[8] G.N. Tjurina, Locally semiuniversal flat deformations of isolated singularities of complex spaces. Izv. Akad. Nauk SSSR, ser. Mat. Tom 33, No. 5 (1970) (In Russian).
[9] J. Wahl, Elliptic deformations of minimally elliptic singularities, Math. Ann. 253 (1980), 241-262.
[10] J. WAHL, Smoothings of normal surface singularities, Topology 20 (1981), 219246.
[11] K. Watanabe, On plurigenera of normal isolated singularities II, Complex analytic singularities (T. Suwa and P. Wagreigh, eds.), Advanced Studies in Pure Math. 8, Kinokuniya, Tokyo and North-Holland, Amsterdam, New York, Oxford, 1986, 671-685.

```
Faculty of Liberal Arts
Tôhoku Gakuin University
Sendai, 981-31
JAPAN
```


[^0]: Received August 21, 1989 ; revised November 14, 1990.

