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HYPERSURFACE SECTIONS OF TORIC SINGULARITIES

By HIROYASU TSUCHIHASHI

Introduction

As is well-known, we can obtain much information about hypersurface
singularities {/=0} in Cn+1 by the Newton polyhedra Γ+(f)dRn+1 of the defin-
ing equations /. (For instance, see [5] and [11].) In this paper, we define the
Newton polyhedra also for hypersurface sections (X, x) of any toric singularity
(Y, y} and show that a part of the results in [11] are valid. On the other hand,
as we see in the last of §2 and in §3, we obtain as (X, x} many singularities,
a part of which are not complete intersections. For instance, 2-dimensional cusp
singularities with multiplicities greater than 4 and a 3-dimensional singularity
with a resolution whose exceptional set is an Enriques surface. Moreover, in
the case that the ambient space Y has only an isolated singularity, these singu-
larities (X9 x) are obviously smoothable. Hence we can obtain examples of
smoothable cusp singularities (see §3). In this paper, we are mainly concerned
about singularities (X, x) with the plurigenera δm(X, x) which are not greater
than 1 and at least one of which is equal to 1. (For the definition of plurigenera,
see [11].) We call such singularities, periodically elliptic singularities, following
Ishii [2].

In Section 1, we recall some facts about toric singularities, necessary in this
paper.

In Section 2, we show a sufficient condition on the Newton polyhedra of
defining equations / of X, under which (X, x) are periodically elliptic singu-
larities and give some examples.

In Section 3, we show a sufficient condition on a 3-dimensional non-terminal
Gorenstein toric singularity (Y, y\ under which hyperplane sections (X, x) of
(Y, y) are simple elliptic singularities or cusp singularities. We can determine
the multiplicities of these singularities.

In Section 4, we show that if H\X\{x}, i*θγ)=Q and dim X^3, then we
can concretely construct a locally semiuniversal family of deformations of (X, x)
and that any small deformation of (Xf x) is also a hypersurface section of Y,
where i: Xc^Y [is [the inclusion map and Θγ is the tangent sheaf of Y. The
above condition is satisfied, if Y is a quotient of Cn+1, by torus actions.

We use the notation and the terminology in [4] freely.
I would like to thank Professor M. Tomari who pointed out me the facts
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that hypersurface sections (X, x) of toric singularities (Γ, 3;) are Cohen-Macaulay
and that (X, x) are smoothable, if (Y, y) is an isolated singularity.

§ 1. Toric singularities

Let N be a free Z-module of rank n+1 and let NR=N®ZR. Let M—
HomCΛΓ, Z) be the Z-module dual to N with the canonical pairing < , > : MxN-*Z.
Let σ=RzQUι+RzQuz+ ••• +R^us be an (n-f-l)-dimensional strongly convex ra-
tional polyhedral cone in NR. Here we may assume that R^uz are 1 -dimensional
faces of σ, for i—\ through s. Let Y be the complex space associated to
Spec(C[Mπ<7*]) and let e(v): F-»Cbe the natural extension to Y of the charac-
ter v®lc«: TN->C* for each v in Mr\σ*, where σ*:={v^MR\<υ, w>^0 for all
weσ\{0}} is the dual cone of σ and 7V=Spec(C[M]) (s(Cx)re+1). Then any
holomorphic function / on a neighborhood U of y=orb(σ) is expressed as the
series :

Hence we can define the Newton polyhedron Γ+(f) and the Newton boundary
Γ(f) of / in the same way as in the case of Y—Cn+1. More precisely, Γ+(f)
is the convex hull of \JCv**v+a* and Γ ( f ) is the union of the compact faces of
Γ+(/). Let D=Dί+D2-{ ----- \-Ds, where DI is the closure of orb(R^ul). Here
we note that Y\D=TN and that Y is a Cohen-Macaulay space by [4, Corollary
3.9]. Let {viy v2, " , vn+1} be a basis of M and let wi—e(vi) for z— 1 through
ft-fl. Then (wj, wz, ••• , wn+ί) is a global coordinate of T^. Let u=(dwί/wί)/\
(dw2/Wz)/\ - /\(dwn+ι/wn+ι). Then v is a nowhere vanishing holomorphic (n+1)-
form on TN whose natural extension to Y has poles of order 1 along D.

DEFINITION 1.1. (Y, y) is said to be r-Gorenstein, if there exists a nowhere
vanishing holomorphic r-ple (n+l)-form on £/\Sing(ί7) for an open neighborhood
U of y, where Sing(ί7) is the singular locus of U.

Since (Y, y) is a Cohen-Macaulay singularity, (Y, y) is Gorenstein, if it is
1-Gorenstein.

PROPOSITION 1.2. ([6, the footnote of p294]) (Y, y) is r-Gorenstein, if and
only if there exists an element VQ in MQ such that rv^M and that <v0, w t>— 1
for /=1 through s, where we assume that uίt u2, ~ and us are primitive elements
in N. (Here we note that the above vύ is uniquely determined by σ, // it exists.}

Proof. Let vQ be an element in MQ satisfying the above condition. Then
0 :=0(π70)vr is a nowhere vanishing holomorphic r-ple (n+l)-form on F\Sing(F),
because e(rvQ) has zeros of order <π;0, u ̂ —r only along D. Conversely, assume
that (Y , y) is r-Gorenstein, i.e., there exists a nowhere vanishing holomorphic
r-ple (n+l)-form θ on £7\Sing(£7) for an open neighborhood U of y. Then
f : — Q / } j r is a holomorphic function on f/\Sing(ί7) which does not vanisn on
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TNΓ\U and whose vanishing order at Dt is equal to r. Since the codimension
of Sing(F) is greater than 1, / is extended to U, by [1, Chapter II, Corollary
3.12]. Hence / ie expressed as the series 2*=c**\io»njrcXv). Suppose that Γ+(/)
has a compact face Δ with dim Δ 2^1. Then there exist a primitive element UQ

in Int(σ)πΛf and a positive integer t such that <v, uQy=t (resp. >£) for any
element v in Δ (resp. Γr+(/)\Δ). Let Γ0 be the complex space associated to
Sρec(C[(Λ20Mo)*ΠM]) (^Cx(Cx)n) and let J90=orb(Λ2ίoMo). Then we have a
holomorphic map π: F0->F such that π\τN=id and that π'^ y^Z),), because
/2>0w0c:Int(σ). Take a basis {vί, vj, — , v'n+1} of M so that <vj, w0>—1 and that
<vj, M0>=0 for i—T. through n+1. Let 2rt=e(v<) for /—I through n+1. Then
£)0={Zl=0} and/=z55ro+2:ί+1gι+-+2ί+t^i+- on f/ΛΪV, where £l=Σ*6Ll

cXv—(f+/)ι;ί) and Ll=={t;e/"1

+(/)Γ\Λ/Ί<ι;, w0>=ί+z}. Here we note that gl are
polynomials with variables zz, •••, zn+ι and that go—ΣυeΔπjf ^X^—^ί) is not a
monomial, because the cardinal number of {t>eΔπM|cυ^O} is greater than 1.
Hence {y'^Ur\TN\(g^+Zιgι + .. )(y)=0}=£0, because Y\DQ=Tlf. Then / must
vanish at a point of Ur\TN, a contradiction. Therefore, any compact face of
Γ+(f) is a point. This implies that Γ(f) consists of only one point v'0. Hence
Γ+(f)=v'0+σ*. Therefore, <vί, wt>^<v, w*> for any element v in Γ+(f)Γ\M and
for /=! through n+1. Since the vanishing order of / at D% is r, we have
<X, uϊy=r. Hence the point ι;0=(l/r)vί satisfies the condition of the proposition.

q.e.d.

Remark. If N=Zn+1 and σ=(R^)n+\ then F is isomorphic to Cn+1 and the
point y corresponds to the origin. Clearly v0=(l, 1, ••• , 1) satisfies the condi-
tion of the above proposition, if we identify M with N, by the canonical inner
product.

§2. Hypersurface sections

Let / be an element of the maximal ideal mγ,y of Y at y, let X— {/— 0}
and let x=y. Throughout the rest of this paper, we assume that n=dimX^>2,
that X is irreducible reduced, that (X, x} is an isolated singularity and that
Zr\Sing(F)={^;}. By [1, Chapter I, Proposition 1.6 (ii) and Corollary 4.4], we
have:

PROPOSITION 2.1. (X, x) is a Cohen-Macaulay and normal singularity.

Assume that /— Σw=cσ*\(oj>njf Ct,β(v) is non-degenerate, i.e.,

has no solutions in TN=Y\D(^(Cx)n+1), for each face Δ of Γ(/), where /Δ=
ΣWΞΔΠM cve(v) and (wί9 w2y ••• , wn+ι) is a global coodinate of TN.

THEOREM 2.2. Assume that (Y, y) is r-Gorenstein, (that (Y, y) is not r'-
Gorenstein for l<ίr'<r) and let VQ be the element satisfying the condition of
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Proposition 1.2. Then (X, x) is r-Gorenstein. Moreover, if v0 is on Γ(f), then

1 for ra^O modr
(X, *H

0 for w^O mod r .

Conversely, if max{δm(X, x)\m^.Z, ra>0}— 1, then VQ is on Γ(f). (See [11], for
the definition of δm(X, *)•)

For the proof, we need some preparations. For u^σ, let d(u)—mm{<^v) M>|
veΓ+(/)} and let Δ(M)={veΓ+(/)|<ι;, u>=d(u)}. F o r a face Δ of Γ+(/), let
Δ*={ttEΞ0 |Δ(w):z>Δ}. Then Γ*(/):={Δ*|Δ is a face of Γ+(/)}u{0} is an r. p. p.
decomposition of NR with \Γ*(f)\ (:— £/Δ*er*c/)Δ*)— a. Let J£* be a subdivision
of Γ*(f) consisting of non-singular cones and let Ϋ— 7\emb(J£*). Then we
have a resolution 77 : F-»Γ of Y. Let J? be the proper transformation of X
under 77 and let E=XΓ\Π"\x\ Then π(:^77,ι): Z->Z is a resolution of X
whose exceptional set is E. Assume that u is a primitive element in N and
that R^u is a 1-dimensional cone in Σ* with dimΔ(w)^l. Then we denote by
E(u) the closure of orb(R^Qu)ΓΛE(Φφ). Recall that θ :— e(rv0)ι>r is a nowhere
vanishing r-ple (n-fl)-form on F\Sing(F). Let ω— Res(0//r), i.e., ω=
g\xrv(dw!/\ ••• f\dwnγ on Xr\U, if ^ is expressed as g(df./\dWί/\ ••• ,\dwnγ on
an open set 17 of Y".

LEMMA 2.3. π*^ /ιαs zeros 0/ orJβr /r«v0, w> — 1 — uf(w)) α/on.g

Proof. The lemma follows from the fact that e(rvQ}, ι>r and (π*/)r have
zeros of order r<z;0, M>, — r and rd(u), respectively, along orb(7?sow). q. e. d.

of Theorem 2.2. Since ω is a nowhere vanishing holomorphic r-ple
n -form on X\{x}, we see that (X, x) is r-Gorenstein. Assume that vQ is on
Γ(f). Then <ι;0, uy^d(u) for any w in Int(σ)Π-/V. Hence the nowhere vanish-
ing holomorphic /r-ple n-form π*ωl has poles of order at most Ir along each
irreducible component of the exceptional set E, by Lemma 2.3. On the other
hand, Γ+(f) has a compact face Δ0 containing v0 with dim Δ0 2^1. Otherwise,
Γ+(f)=v0+σ* and hence f=e(v0)g for a holomorphic function g on Γ. Then
since [e(v0)]=rA we get a contradiction to the assumption that Z is irreducible.
Hence we can take a subdivision Σ* of 7~τ*(/) so that Δ(w0)— Δ0 for a 1-dimen-
sional cone Δ*=J?sow0 in Σ*. Then w0elnt(», orb (Δ*)n^^ 0 and (VQ) w0> —
ύί(wo). Hence π*ωl has poles of order Ir along the irreducible component E(u0)
of J5. Therefore, ^Zr(Z, ;t)=l. Next, assume that m^O mod r and let 07 be an
element in H°(X\{x\, Ox(mKχ}}. In the following, we show that η is in
L2/m(X\{x}). We note that rv0 is a primitive element in M. Otherwise, (F, 3;)
is r'-Gorenstein for a positive integer r'<r. Hence we can take n elements
Vi, v2, "- and vn in M so that {rvQ, vlf ••• , vn] is a basis of M. Let w0—e(rvo)
and let wl—e(vi) for s'=l through n. Then (w;0, z^i, ••• , wn) is a global coordinate
of TN. Let M^M+Zvβ and let N'={u^N\<yr, uy^Z for any v'<=M'} (={u
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Then the inclusion N'—>N induces a holomorphic map φ: Y'
->Y, where Y f is the complex space associated to Spec(C[M'n<τ*]). Since
{VQ, vlf ••• , vn} is a basis of M', (z0, Zi, ••• , 2Λ) is a global coordinate of TV —
Sρec(C[M']), where z t— e(Vi) for f=0 through n. Clearly, <P*WQ— (zQY and
φ*wl— zτ for /—I through n. Hence φ is the quotient map under the group <ί>
generated by the element £=(£, 1, ••• , 1) in TV, where ξ is a primitive r-th
root of 1. Moreover, φ is unramified over F\Sing(F), because θ :—wQ((d WQ/WQ)
/\(dw!/Wι)/\ ••• f\(dwn/WnW (resp. 0' :=z0(dz0/zQ)A(dzί/z1)/\ ••• f\(dzn/zn}} is a
nowhere vanishing holomorphic r-ple (n+l)-form on Γ\Sing(T) (resp. (n+1)-
form on F '\Sing (F')) and φ*θ=(rθ'Y. Hence Sing(Z')={*'K where X' :=
φ~l(X) and Λ;' :=^>"I(Λ;). Let ω'= Res(θ'/φ*f). Then ω' is a nowhere vanishing
holomorphic n-form on X'\{x'} with ί*ω'— fω', because ί*^0— ί 0̂ and t*(dzi/zt)
—dzί/zl for /=0 through n. Hence φ*η~g(ω')m for a holomorphic function #
on ,Y7. Since t*(φ*η)=φ*η and ί*(^(ω/)m)=ί*^5m(ω')m, we have t*g=ξ~mg.
Since |"m^l, we have g(x')=Q. Hence y>*37=^(o>/)OT^-^2/m(-X'/\{^/}), because
(π')*ω'ζ=H°(X', 0(K* +E')), for any resolution π' : (X'f E')-*(Xf , ocf) of (Xr , xf).
Therefore, η(Ξj:2>m(X\{x}). Thus we conclude that δm(X, *)=0. Finally, note
that if v0^Γ+(f) (resp.(Ξlnt(Γ+(/))), then δm(,Y, ^)^2 for certain positive in-
tegers m (resρ.=0 for all positive integers m), by Lemma 2.3 and that if VQ<^
dΓ+(f)\Γ(f), then (X, x) is not isolated. Thus we obtain the last assertion of
the theorem. q. e. d.

We can obtain a system of defining equations of X from those of Y and /.

PROPOSITION 2.4. // /^mf. y (resp. /emf i V ) , ί/z^n dim
dim ttiγ,y/Wγ,y-— 1 (r^s/). dim mr. y /tπf,y)

Proof. We have the following exact sequence.

0 — > /-(?r,y/(/ C>r,vΠmf y) — > m r . y /mf .y — > mjr. Λ /ntl .χ — > 0.

Wre easily see that dim f Oγ,y/(f Oγ,yΓ\rtiγιy)=l or 0, according as f&rtiγty or
. q.e.d.

Assume that cτ*πM is generated by m elements v ί f v2, ••• , vm and let zτ~
e(Vi\ for 2 = 1 through m. Then we have the embedding i: Y^p^z^p), z2(p),
'•- , zm(p})^Cm. Assume that i(Y) is defined by gί(z)=gz(z)= — =gt(z)=Qf

where z=(zίf z2, ••• , zm). If /emf .y, then A"={/= 0} is isomorphic to the
subvariety in Cm defined by f(z)=gί(z)= ••• =gt(^)=0, where /(-ε) is a holomor-
phic function on Cm with *'*/=/. Next, assume that we can express /(2r)=
Zί-~h(zz, -" , zm). Hence /^mj > 2 / . Then X is isomorphic to the subvariety in
C771"1 defined by g{(w)=gί(w)= - =g't(w)=Q, where w=(z2, — , 2rm) and ^{(w)=
gi(h(w), zz, ••• , zm).

Example 1. Let 72 =2, let {MI, w2, M 3} be a basis of N and let {t>ι, vz, v3\ be
the basis of M dual to {MI, w 2, w 3}. Let cτ=
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Figure 1.

Then (Y, y) is
Gorenstein and v0=vs satisfies the condition of Proposition 1.2. We see that
σ*Γ\M is generated by /0—v3, li=V!+v3, I2=v2+v3, lz——vl

Jrv2-\-vz, k=—v1-{-v3f

l5=—v2+vz and lQ=v1—v2+v3. (See Figure 1.) Hence Y is isomorphic to the
subvariety in C7 defined by the equations (1) z0zί—z6z2=zQz2—z1z3=ZQZ3—z2z4=

2 2 2 Λ TiirVίOir oi fi( J >\z§z4 z§z§—z§z§ z±z§—ZQ£Q z§z\—zQ z\z^—/& Q z2z§—ZQ z§z§—u, λvrιere zi—C\L ι)}

for i=Q throuh 6. Let f=z0—zl—z2— ••• —z\. Then (X, x) is a cusp singularity
with a resolution π: (X, E)-*(X, x) such that the exceptional set E is a cycle
of six rational curves whose self-intersection numbers are all —3. Since fφ
Wγ,y, we see that X is isomorphic to the subvariety in C6 defined by the equa-
tions obtained from the above equations (1), replacing zϋ by z*+z2+ ••• +z\.

Example 2. Let n, \u1} u2, u3} and [vίf v2, v3\ be the same as in Example 1.
Let (7=Jf2>o(wiH-2w3)+jRgo(w2+2M3)4-/2So(wiH-2w2+2w3)+/2^o(2wiH-W2+2w3). Then
(Y, y) is 2-Gorenstein and VQ—(l/2)v3 satisfies the condition of Proposition 1.2.
We see that σ*πM is generated by I1=—2vί—2v2+3v3, l2——Vι~\-vz, lB=—2vιJr

Figure 2.) Let zl=e(ll) for i—1 through 8 and let f=z2—z±+zG+z8. Then / is
non-degenerate, (X, x) is an isolated singularity and A"nSingOO={*}. Moreover,
(X, x} is a quotient of a simple elliptic singularity.

Example 3. Let n=3, let {uίf u2, u3, u±\ be a basis of N ana let { v ί r v2, v3, v±]
be the basis of M dual to { u ί f u2, u3, u4}. Let σ=R^Q(u1+u2-}-2u4)+Rzo(u1-}-u3

u3+2u4)+RzQ(u1+u2+2u3+2u4)+Rzo(uι+2u2+u3+2u4)+Rz0(2u1

Then (Y, y) is 2-Gorenstein and vQ=(l/2)v4, satisfies the condi-
tion of Proposition 1.2. We see that <7*πM is generated by Iι=vι—v2—v3+v4,

ίG=—vl—v2

3=~t;3+2;4 and /i4— — ̂ ι+f4. (See Figure 3.) Let zl—e(ll), for 2=1 through 14
and let /^ Then / is non-degenerate, (Jf, *) is an isolated singularity
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/7 /8

/4

Figure 2.

Figure 3.

and ZnSing(Γ)— { x } . Let Σ— {faces of R^(Ui+u2+uz+2u^-i-τ\τ are 3-dimen-
sional faces of a] and let Ϋ=TNemb(Σ). Then Σ=Γ*(f) and Y is the ^blow-
ing up of Y along ;y=orb((r). Although Ϋ has singularities, XΓ\Sing(Ϋ)=φ,
where X is the proper transformation of X under the blowing up Π: Ϋ-+Y.
Moreover, Π~1(y)Γ\X=E(uί+u2-\-uB+2u4) is an Enriques surface. Each of small
deformations Xε={f—ε\ of X has eight isolated quotient singularities.

§3. Hyperplane sections of Gorenstein toric singularities

We keep the notations of the previous section and throughout this section,
we assume that (Y, y) is an isolated (, i.e., each n-dimensional face of σ is
non-singular), non-terminal and Gorenstein singularity. Hence (Y, y) is a canon-
ical singularity of index 1 and the set X :={weInt(σ)πΛ/Ί<f0, w>—1} is non-
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empty. Moreover, we assume that X={f= 0} is a generic hyperplane section,
i.e., f—Σcve(v) with cυ^Q, for the generators v of σ*Γ\M.

PROPOSITION 3.1. Under the above assumptions, (X, x) is a purely elliptic
singularity, i.e., dm(X, x}—\ for each positive integer m.

Proof. Let UQ be an element in X. Then <f0, u0y=l and
convex hull of (σ^\{Q})ΓΛM=Γ+(f)^vQ. Hence the set {ve=σ*|<v, w0>

=l}nΓ+(/) is a compact face of Γ+(/) and contains VQ. Therefore, dm— 1 for
each positive integer m, by Theorem 2.2. q.e. d.

Remark. (1) If (F, y) is non-terminal and canonical of index r>l, then
(F, y) is r-Gorenstein and v0eo *\Int (/%(/)). There are examples with vϋφ
Γ+(/), as well as examples with v0&Γ(f). Hence (X, x) may not be a periodic-
ally elliptic singularity in contrast with the above proposition.

(2) In the case that (Y ', y) is not isolated, if X—φ, then (X, x) may be an
isolated canonical singularity, even though (K, y) is a non-terminal Gorenstein
singularity. For instance, let σ be the cone generated by (±1, 0, 0, 1), (0, ±1, 0, 1)
and (1, 1, 2, 1) in Z\

Ishii [3] and Koyama independently showed that a 2-dimensional purely
elliptic singularity is a simple elliptic singularity or a cusp singularity.

PROPOSITION 3.2. When n—2, (X, x) is a simple elliptic singularity (resp. a
cusp singularity}, if the cardinal number of X is equal to (resp. greater than) 1.

Proof. First, we consider the case that X consists of one element MO

For each 2-dimensional face τ—R^u'+R^u" ({uf ', uff}d{uι, u2, ••• , us}) of σ,
{UQ, ur , u"} is a basis of N, because <v0, Wo>=<>o, M'>=<VO, wx />=l and the
triangle spanned by w0, w' and u" contains no elements in N except u0, u' and
u". Let {vτ, v f , v"\ be the basis of M dual to {u,, u f , u"}. Then <vτ, w0>=l
and <ι>Γ, w'>— <fτ, w//(>=0. Hence </* is generated by vr and Γ(f) consists of one
face which is the polygon spanned by vτ, for all 2-dimensional faces τ of <τ.
Therefore, /7*(/)= {faces of /2^0w04-r|r are 2-dimensional faces of σ} and the
exceptional set E=E(u0) of the resolution of (X, x) obtained from Γ*(f) is a
non-singular curve. It should be elliptic, because δm(X, x)=l.

λVhen the cardinal number of X is greater than 1, we easily see that there
exist at least two 2-dimensional compact faces of Γ+(/) containing v0, which
we denote by ΔI and Δ2. Then Δ^=R^Qu{ and Δf —R^u^ for primitive elements
uί and u'2 in Int(σ)πΛ/" such that <ι;0, wί>=<i(wί) and that <ι;0, uίy=d(uί). Hence
the exceptional set E of the resolution π : (X, E)-*(X, x) of (X, x) obtained from
any subdivision of 7^*(/) contains two irreducible components E(u(} and E(uί)
along which ^*ω has poles of order 1, by Lemma 2.3, where ω=Res(e(vQ)((dw1/wί)
Λ ••• Λ(dwn+1/wn+ιy)/f). Therefore, (X, x) is not a simple elliptic singularity.

q.e.d.
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Since (Y, y) is an isolated singularity, (X, x) is smoothable. On the other
hand, Wahl [9, 10] showed that if a simple elliptic singularity (resp. a cusp
singularity) (X, x) is smoothable, then m(X)^9, (resp. m(Z)— /(Z)<;9), where
l(X) is the number of the irreducible components of the exceptional set E of
the minimal resolution of (X, x) and m(X) is the multiplicity of (X, x), which
is equal to -E\ if -£2^3.

PROPOSITION 3.3. Assume that the cardinal number of X is equal to I. If
σ is an s-gonal cone, —Ez=l2—s. (Therefore, — F2^9.)

Proof. Let .£={MO}. Then Γ*(/)={faces of R^u*+τ\τ are 2-dimensional
faces of a] consists of non-singular cones, by the proof of Proposition 3.2.
Hence we obtain resolutions Π : (Ϋ , F)-*(F, y) and π=/7,ι: (X, E)-*(X, x),
where Ϋ=TNemb(Γ*(f)), F is the closure of Qrb(R^u0), X is the proper trans-
formation of X under 77 and E=X F. Let Dt be the proper transformation of
Dt under Π and let Eτ=F &l. Since F+ !=[#*/] and F+&+&+ ••• +D$

=[77*e(^o)] are principal divisors, we have -£2*=-F2 X=F X2=Σis^^ βϊ
+2Σosi<^.^ ί̂ ^=(Σιs««£fiF)+2s=3(4-s)+2s=12-s, because F is a non-
singular toric variety whose 1-dimensional orbits are El9 E2, ••• and Es.

q.e. d.

PROPOSITION 3.4. Assume that the convex hull of X is a polygon. If σ is
an s-gonal cone, then, -E2-l(X)=l2-s. (Therefore, -£2-/(Z)^9.)

Proof. Let P (resp. Q) be the convex hull of X (resp. {u<^σΓλN\(vQ, w>—
1}). Then Q={u(=σ\<.vQ, u^—l} and lnt(Q)^)P. Take a triangulation Δ (resp.
Δ') of P (resp. ζNInt(P)) so that the set of the vertices of Δ (resp. Δ') agrees
with PίΛN^X (resp. (#\Int(P))rW). Let ββ, el and 02 (resp. *ί, e[ and β£) be
the numbers of the vertices, edges and faces, respectively, of Δ (resp. Δ'). Then
e0— 0ι+02=-l and eΌ—e(+eί—Q, because P and C? are polygons. Let / be the
number of the vertices on the boundary dP of P. Then e^—l-^s and 3^2—
2e{—(l+s), because the number of the vertices (resp. edges) on the boundary of
ζKInt(P) is equal to l+s. Hence by an easy calculation, we have β[=2(l+s).
Since D r^ΔWΔ' is a triangulation of Q, we see that Σ*:— {R^τ\τ are simplexes
of D}W{0} is a subdivision of Γ*(f) and consists of non-singular cones. Hence
we have a resolution Π: (Ϋ, F)-*(Y, y), where Ϋ=TNemb(Σ*). Let DI be the
proper transformation of Ώ% under Π and let D— ΰl+ϋ2+ ••• +DS. Then Δ and
Π are the dual graphs of F=Fι-fF2+ ••• +Feo and F+ΰ, respectively. Since
X-\-F= [77*/] an<i J5+F=[/7*e(v0)] are principal divisors, we have O^FfF,

, if F,πF^^ and -F^^-F^^-F.^-Σi^^

i ^r^*)=ΣιstSβ0.^w^ ^K25' where ^ is the Pr°-
per transformation of X under Π and E=X F. On the other hand, since each
irreducible component Ft of F is a non-singular toric variety with Fi>(F+D—Fί)
as the union of 1-dimensional orbits, we have Σt*jΉ ^?+Σιs*sιίί βf=3(4— </»),
where d t is the number of the double curves on Ft. Hence by taking the sum
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of the self-intersection numbers of the double curves Ft Fj and Fi Dk on all the
irreducible components Fτ of F, we have — 2eι+2ιs»se0.ιsj*«Ή βj=Σι*t*β03(4—
dl)=l2eQ-3(2e1+l+s)=12eQ-6el-3l-3s. Therefore, -Efι=12έ?0-6έ?1-3/-3s +
2e1+2s=12^o-4^1-3/-s=:12^o-12^i+12e2+/-s=:12+/-s, because 302=2e1-/.
Thus we obtain — £2—/=12—s. Here we note that / is equal to the number of
the irreducible components of E, because Xr\FtΦφ, if and only if Dr\FτΦφ
(, i.e., the vertex of Π corresponding to Fl is on dP) and then XΓΛFl is ir-
reducible. Moreover, Ei E^X Fi F^ΰ Fi F^l and the equality holds, if
and only if the vertices of Π corresponding to Fτ and F} are joined by an edge
on dP. Hence E forms a cycle. Therefore, although (X, E) is not a minimal
resolution, the contraction of a rational curve Eτ with El— —I does not change
the number —E2—l. Thus we complete the proof.

Examples. In the following table, E=Eι+E2+ ••• +Et is the exceptional
set of the minimal resolution of (X, x) such that Ei Et+1=l for each

generators of σ

(0, 0, 1), (5, 2, 1), (3, 5, 1)

(0, 0, 1), (4, 1, 1), (3, 4, 1)

(0, 0, 1), (8, 3, 1), (5, 8, 1)

(0, 0, 1), (7, 2, 1), (5, 7, 1)

(0, 0, 1), (7, 3, 1), (4, 7, 1)

/

6

6

9

9

9

_ Z?2 p2 ...
EΊ> J-^2)

5, 4, 5, 4, 5, 4

7, 2, 7, 2, 7, 2

5, 4, 3, 5, 4, 3,

5, 5, J, 5, 5, /,

6, 4, 2, 6, 4, 2,

, -El

5,4,3

5,5,2

6,4,2

§ 4. Deformations

We assume that n=dimZ^3, throughout this section. Let U=X\{x} and
let W=Y\{y}. Then we have the isomorphism T^=H\U, θu\ by Proposition
2.1 and [7, Theorem 2], where T±=H\X, <9i) is the tangent space to the
formal moduli space of X and θ^ is the tangent sheaf of U. Consider the long
exact sequence arising from the short exact sequence of sheaves:

0 o,

where i: Uc*W is the inclusion map. Here we note that the normal sheaf 32 =
Ou(U} is isomorphic to the structure sheaf OUf because X is a principal divisor
on >Y. Let [ θ l f Θ2, ••• , θ t ] be a basis of the image of the map δ: H°(U, 32)-»
H\U, θu) and let gl be an element of H°(Y, Oγ) whose image is θt under the
composite of the surjective maps H\Y, OY)=H°(W, OW)-*H\U, Ou)^H°(U, 3ί)
sending Λ to h^d/df and ίί0(t7, 32)-»Im(<5). Let 3Γ={(z, OeFxΔI/W+ί^U)

• +tιgι(z)—b} and let ?r be the restriction to 3£ of the projection
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FxΔ-*Δ, where Δ={(*ι, *2, ••• , tι)eCl\\tj\<ε}. Then π is flat, by [1, Chapter
V, Corollary 1.5]. Let <U be the open set of 3C on which π is smooth. Then
we obtain a family π\v : °U->A of deformations of the complex manifold U.
Moreover, by an easy calculation, we have p(d/dtj)= Θ3 for /=! through /, where
p : To(Δ)-»/f Xt/, θu) is the infinitesimal deformation map. Hence p is injective
and if Hl(U , i*θw)=Q, then p is surjective.

THEOREM 4.1. If Hl(U, i*θw)=Q, then π: T-*Δ is a locally semiuniversal
family of X.

Proof. Recall that T£ is defined by the exact sequence

0 _ > Hom(£i, Oχ} — > Hom(/*β^, Ox} — > Hom(///2,

obtained by the exact sequence of sheaves: I/P-*j*Ωl

cN-*Ω$ε:-
j>Q, for an inclu-c

Nsion j : Xc+CN with the ideal sheaf /. On the other hand, we have the exact
sequence

0 — > Hom(£j:, Oχ) — > H o m ( / * β , OΣ) — > Hom(Im(d), Ox)

by the short exact sequence of sheaves: Q-+Im(d)-+j*Ω*N-+Ωb-+Q. Since the

support of ker(d) is {*}, we have Hom(Im(ί/), Oχ)=Hom(I/P, Oχ\ Thus we
have the canonical isomorphism Ext^CΌi, Ojr) = Ti. Hence the infinitesimal
deformation map T0(Δ)-->Ext0 x(Ωχ, Oχ) for the family π : 3f— »Δ is bijective.
Then by [8, Theorem 6.1], π : 2C-+A is locally semiuniversal. q.e.d..

COROLLARY 4.2. // Hl(U, i*θw)=Q, then any small deformation of X is also
a hypersurface section of Y.

PROPOSITION 4.3. // a is a simplicial cone (hence Y is a quotient space of
Cn+1\ then Hl(U, i*θw)=Q.

Proof. Let Il9 lz, ••• and ln+ι be the generators of σ and let N'=Zl!+Zl2

+ ••• +Zln+ι Here we may assume that Λ, /2, ••• and ln+1 are primitive elements
in N. Then the inclusion N'c+N induces a holomorphic map φ : Y'-+Y, where
Y'=TN, emb ({faces of σ})=Cn+1. Let U'=φ~l(U\ Then φ}U, : U'-*U is unrami-
fied, by the assumption Xn$mg(Y)={x}. Hence H\U , i*θw)=H\U', h*θγ,)

G

=0, where h: U'c+Y' is the inclusion map and G is the covering transforma-
tion group of φ. q.e.d.

Example. Let X' be the hypersurface of C4 defined by z\+z\+z\+z\=Q and
let X=X'/G be the quotient space of X' under the group G generated by
(1> ί, £, 5), where f is a primitive cube root of 1. Then X is a hypersurface
section of Y=C4/G, which is a toric singularity, and whose singular locus
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Sing(F) is 1-dimensional. We easily see that X has an isolated singularity
obtained by contracting a K3 surface. By Corollary 4.2 and Proposition 4.3, any
small deformation of X is also a hypersurface section Xt—π~l(t) of Y. Since
Xt intersect Sing(F) at finitely many points, Xt has singularities, i.e., X is not
smoothable.
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