LOCAL MAXIMA OF THE SPHERICAL DERIVATIVE

By Shinji Yamashita

Abstract

Let a function f be nonconstant and meromorphic in a domain D in the plane, and let M(f) be the set of points where the spherical derivative $|f'|/(1+|f|^2)$ has local maxima. The components of M(f) are at most countable and each component is (i) an isolated point, (ii) a noncompact simple analytic arc terminating nowhere in D, or, (iii) an analytic Jordan curve. Tangents to a component of type (ii) or (iii) are expressed by the argument of the Schwarzian derivative of f. If Δ is the Jordan domain bounded by a component of type (iii) and if $\Delta \subset D$, then the spherical area of the Riemann surface $f(\Delta)$ can be expressed by the total number of the zeros and poles of f' in Δ . Solutions of a nonlinear partial differential equation will be considered in connection with the spherical derivative.

1. Introduction.

Let f be a nonconstant meromorphic function in a domain D in the complex plane $C = \{|z| < +\infty\}$. The spherical derivative of f at $z \in D$ is defined by

$$f^{*}(z) = \begin{cases} |f'(z)|/(1+|f(z)|^{2}) & \text{if } f(z) \neq \infty; \\ |(1/f)'(z)| & \text{if } f(z) = \infty. \end{cases}$$

We let M(f) be the set of points $z \in D$ where f^* has local maxima, namely, $f^*(z) \ge f^*(w)$ in $\{|w-z| < \delta\} \subset D$ for $\delta > 0$ depending on f and z.

The purpose of the present paper is to investigate M(f) in detail. We begin with a classification.

THEOREM 1. Let f be nonconstant and meromorphic in a domain $D \subset C$ with nonempty M(f). Then, the connected components of M(f) are at most countable and each component is one of the following:

(I) An isolated point.

1980 Mathematics Subject Classification (1985 Revision). Primary 30D30. Secondary 35C99, 35J60, 53A05.

Key words and phrases. Spherical derivative of a meromorphic function, Schwarzian derivative, PDE with nonlinear term.

Received August 6, 1990.

(II) A (noncompact) simple analytic are terminating nowhere in D.

(III) A simple closed analytic curve.

All the cases of (I), (II), and (III) actually happen; see Section 2.

Let $C_1(f)$, $C_2(f)$, and $C_3(f)$ be the set of connected components of M(f) of type (I), (II), and (III), respectively. Our next work is to observe them in detail.

The Schwarzian derivative of f is the meromorphic function

$$\sigma(f) = \lambda(f)' - 2^{-1}\lambda(f)^2,$$

where $\lambda(f) = f''/f'$. Therefore, $f^*(z) \neq 0$ if and only if $\sigma(f)(z) \neq \infty$ if and only if either z is a simple pole of f or $f(z) \neq \infty$ with $f'(z) \neq 0$. The derivative $\sigma(f)$ plays an important role in

THEOREM 2. Let f be nonconstant and meromorphic in a domain $D \subset C$ with nonempty M(f). Then at each $z \in M(f)$,

(1.1)
$$|\sigma(f)(z)| \leq 2f^{*}(z)^{2}$$
.

Furthermore, we have the following.

(IV) We can conclude $\{z\} \in C_1(f)$ if the inequality in (1.1) is strict.

(V) Suppose that $c \in C_2(f) \cup C_s(f)$ exists. Then, at each $z \in c$, the equality in (1.1) holds by (IV). Furthermore, the line $\{z+te^{-i\theta(z)/2}; -\infty < t < +\infty\}$ is tangent to c at z, where $\Theta(z) = \arg \sigma(f)(z)$. Moreover, there exists $\tau > 0$ such that the function

$$f^{*}(z+ite^{-i\Theta(z)/2}), \quad -\tau < t < \tau$$

has the maximum at t=0 and this is convex from below, that is, the second derivative with respect to t is strictly negative.

The last statement in Theorem 2 is concerned with the behavior of f^* along the normal line of c at z.

THEOREM 3. Let f be nonconstant and meromorphic in a domain $D \subset C$. Suppose that $c \in C_{\mathfrak{s}}(f)$ exists and suppose further that the Jordan domain Δ bounded by c is contained in D. Then

(1.2)
$$(2/\pi) \iint_{\Delta} f^{*}(z)^{2} dx dy = Z_{\Delta}(f') + P_{\Delta}(f') - 2n,$$

where $Z_{\Delta}(f')$ is the sum of all orders of all distinct zeros of f' in Δ and $P_{\Delta}(f')$ is that of all distinct n poles of f' in Δ .

The integral in the left-hand side of (1.2) is the spherical area of the Riemannian image of Δ by f, so that it is positive. In view of the right-hand side of (1.2) we can conclude that f^* must vanish at a finite number of points in Δ , or equivalently, $\sigma(f)$ must have a finite number of poles in Δ . If f^*

never vanishes in D, then either $C_{\mathfrak{s}}(f)$ is empty or else each Jordan domain Δ bounded by $c \in C_{\mathfrak{s}}(f)$ is not contained in D.

2. Examples and Proofs of Theorems 1 and 2.

Before the proofs we observe that all the cases (I), (II), (III) can happen. If f is a Möbius transformation (az+b)/(cz+d) $(ad-bc\neq 0)$ considered in C, then M(f) is a one-point set (see the remark in Section 4). If $f(z)=z^n$ $(n\geq 2)$ is considered in C, then M(f) is the circle

$$c_n \equiv \left\{ |z| = \left(\frac{n-1}{n+1}\right)^{1/(2n)} \right\}.$$

Consider the function $f(z)=z^n$, this time, in a domain D such that both D and $C \ D$ have the nonempty intersection with the circle c_n . Then components of M(f) are of type (II) in D.

For the proof of Theorems 1 and 2 we shall make use of the following lemmas.

LEMMA 1. Let g be holomorphic and h be meromorphic in a domain $G \subset C$. Suppose that

$$L(g, h) = \{z \in G; \overline{g(z)} = h(z)\}$$

has an accumulation point $a \in G$ and $g'(a) \neq 0$. Then there exists an open disk U(a) of center a such that $U(a) \cap L(g, h)$ is a simple analytic arc passing through a with both terminal points on the circle $\partial U(a)$.

Proof. The case g(z)=z. The proof is the same as in the proof of [RW, Lemma 1]. In the general case, let V(a) be an open disk with center a where g is univalent. Regarding g(V(a)) as G, g(z) as z, and h as $h \circ g^{-1}$ we can reduce this case into the case specified in the above.

LEMMA 2. Let g be holomorphic in a domain $G \subset C$. Suppose further that g' never vanishes in G. Then,

$$(2.1) M(g) \subset L(g, h),$$

where $h = \lambda(g)/\{2g'-g\lambda(g)\}$. Furthermore, on each component of L(g, h) the function g^* is constant.

Proof. Suppose that $z \in M(g)$. Taking the logarithm of g^* and then partially differentiating it by $w (\partial/\partial w = 2^{-1}(\partial/\partial u - i\partial/\partial v), w = u + iv)$, we have

(2.2)
$$\frac{(g^*)_w(w)}{g^*(w)} = \frac{1}{2}\lambda(g)(w) - \frac{\overline{g(w)}g'(w)}{1+|g(w)|^2}.$$

The value of (2.2) at w=z is zero. By a simple calculation we have h. It

follows from Lemma 1 that each component of L(g, h) is one of the three types described in Theorem 1. Suppose that Λ is a component of L(g, h) which is not a point. Then Λ is a simple analytic curve w=w(t) in the parametric form, a < t < b or $a \le t \le b$. For $w(t) \in L(g, h)$,

$$\frac{d}{dt}g^{*}(w(t)) = 2 \operatorname{Re}[(g^{*})_{w}(w(t))w'(t)] = 0,$$

whence g^* is constant on Λ .

For the proofs of Theorems 1 and 2 we suppose that $z \in M(f)$. Then, there is θ such that $e^{2i\theta}\sigma(f)(z) = |\sigma(f)(z)|$; if $\sigma(f)(z) = 0$, then we set $\theta = 0$. There exists $\delta > 0$ such that

$$g(w) = \frac{f(e^{i\theta}w + z) - f(z)}{1 + f(z)f(e^{i\theta}w + z)}$$

is holomorphic in $|w| < \delta$. If $f(z) = \infty$, then we set $g(w) = 1/f(e^{i\theta}w + z)$. We now have

$$g^{*}(w) = f^{*}(e^{i\theta}w + z), \quad \sigma(g)(w) = e^{2i\theta}\sigma(f)(e^{i\theta}w + z).$$

In particular,

$$g^{*}(0) = f^{*}(z) \equiv \alpha$$
 and $\sigma(g)(0) = |\sigma(f)(z)|$.

We may suppose that g' never vanishes in $|w| < \delta_1 \leq \delta$; actually, $|g'(0)| = \alpha > 0$. We thus have (2.2) for the present g, which we call (2.2P). Further differentiation of (2.2P) by w yields

$$(2.3) \quad \frac{(g^{*})_{ww}(w)}{g^{*}(w)} - \left(\frac{(g^{*})_{w}(w)}{g^{*}(w)}\right)^{2} \\ = \frac{1}{2}\sigma(g)(w) + \frac{1}{4}\lambda(g)(w)^{2} - \frac{\overline{g(w)}g'(w)}{1+|g(w)|^{2}}\lambda(g)(w) + \left(\frac{\overline{g(w)}g'(w)}{1+|g(w)|^{2}}\right)^{2}.$$

Partial differentiation of (2.2P) by $\overline{w} (\partial/\partial \overline{w} = 2^{-1}(\partial/\partial u + i\partial/\partial v))$, on the other hand, yields

(2.4)
$$\frac{(g^{\sharp})_{w\,\overline{w}}(w)}{g^{\sharp}(w)} - \left|\frac{(g^{\sharp})_{w}(w)}{g^{\sharp}(w)}\right|^{2} = -g^{\sharp}(w)^{2}.$$

Since $0 \in M(g)$, it follows that $(g^*)_w(0)=0$, which, together with (2.2P) and g(0)=0, yields that $\lambda(g)(0)=0$. We therefore have $(g^*)_{w\,w}(0)=2^{-1}\alpha |\sigma(f)(z)|$ and $(g^*)_{w\,\overline{w}}(0)=-\alpha^3$, whence

$$A \equiv (g^*)_{uu}(0) = -2\alpha^3 + \alpha |\sigma(f)(z)|,$$

(g^*)_{uv}(0) = 0,
$$C \equiv (g^*)_{vv}(0) = -2\alpha^3 - \alpha |\sigma(f)(z)| < 0,$$

so that

$$AC = \alpha^{2} \{ 4\alpha^{4} - |\sigma(f)(z)|^{2} \}$$

The Taylor expansion of $g^{*}(w) - \alpha$ in u and v in $|w| < \delta_1$ now reads:

(2.5)
$$g^{*}(w) - \alpha = \frac{1}{2} (Au^{2} + Cv^{2}) + \Gamma(u, v),$$

where the remaining term $\Gamma(u, v)$ is a power series of u, v of degree at least three. Since g^* has the local maximum 0 at w=0, and since C<0, it follows that $AC \ge 0$. We therefore have (1.1).

If AC>0, then $g^*(w)-\alpha<0$ for $0<|w|<\delta_2\leq\delta_1$. If 0 is not an isolated point of M(g), then 0 is an accumulation point of M(g, h) in $G \equiv \{|w|<\delta_2\}$, where h is as in Lemma 2. Lemmas 1 and 2 show that there is a point $w_1\in G\smallsetminus\{0\}$ such that $g^*(w_1)=\alpha$. This is a contradiction. Therefore (IV) is proved.

Suppose that AC=0, or A=0, Suppose that 0 is an accumulation point of M(g). Then 0 is an accumulation point of L(g, h) considered in $\{|w| < \delta_1\}$. Lemmas 1 and 2 then show that there exists δ_3 , $0 < \delta_3 \leq \delta_1$, such that

$$\gamma \equiv M(g) \cap \{|w| < \delta_3\} = L(g, h) \cap \{|w| < \delta_3\}$$

is a simple analytic arc ending at points on $\{|w| = \delta_3\}$.

Returning to f we have observed that for each $z \in M(f)$, either (i) z is an isolated point of M(f) or (ii) there exists an open disk U(z) of center z such that $M(f) \cap U(z)$ is a simple analytic arc ending at points on $\partial U(z)$. This completes the proof of Theorem 1.

For the proof of Theorem 2 we further analyze the case where AC=0and 0 is an accumulation point of M(g). Set $\gamma = \{w(t); a < t < b\}$. Then, $\overline{\varphi(w(t))} = h(w(t))$, so that a short calculation shows that

$$\overline{w'(t)}/w'(t) = h'(w(t))/\overline{g'(w(t))},$$
$$h'/\overline{g'} = 2^{-1}\sigma(g)/g^{*2}.$$

Therefore the slope of the tangent at $w \in \gamma$ is $\tan Q(w)$, where

$$e^{-2iQ(w)} = 2^{-1}\sigma(g)(w)/g^{*}(w)^{2}$$
.

In particular, Q(0)=0. Thus, γ has the *u*-axis as the tangent at 0. We thus have the tangent to *c* described in Theorem 2. Furthermore,

$$g^{*}(iv) - \alpha = (C/2)v^{2} + \cdots, C < 0,$$

so that $(d^2/dv^2)F(iv) < 0$ near v=0. This completes the proof of the theorem.

Remark. Let $z \in c \in C_2(f) \cup C_3(f)$. Rectilinear segments containing z with the exception of the normal and the tangent ones to c are expressed by

$$\Lambda(\boldsymbol{\beta}) \equiv \{ \varphi_{\boldsymbol{\beta}}(t) ; -\tau(\boldsymbol{\beta}) \leq t \leq \tau(\boldsymbol{\beta}) \}$$

where $0 < \beta < \pi/2$, and $\varphi_{\beta}(t) = z + (1 + i \tan \beta)t e^{-i\Theta(z)/2}$. It is now easy to prove

that $f^*(\varphi_{\beta}(t))$ is convex, that is, $(d^2/dt^2)f^*(\varphi_{\beta}(t)) < 0$ for $|t| \leq \tau(\beta)$, for suitable $\tau(\beta) > 0$. Actually, we have in (2.5) that

$$g^{*}(t+it\tan\beta)-\alpha=\frac{1}{2}Ct^{2}\tan^{2}\beta+\Gamma(t,t\tan\beta),$$

because A=0. This fact shows that even in case $z \in c$, the function f^* attains its maximum at z "in the strict sense" except along c.

As a further remark we let $M^*(f)$ be the set of points $z \in D$ where f^* attains the (global) maximum in $D: f^*(z) \ge f^*(w)$ for all $w \in D$. Suppose that $a \in D$ is an accumulation point of $M^*(f)$. Then, $a \in M^*(f)$. Suppose that f is nonconstant. Then, there exists $c \in C_2(f) \cup C_3(f)$ such that $a \in c$ because $M^*(f) \subset M(f)$. Since f^* is constant on c it follows that $c \subset M^*(f)$. Therefore we have the analogous classification: $C_k^*(f), k=1, 2, 3$ of components of $M^*(f)$.

Suppose that isolated points of M(f) has an accumulation point $a \in D$. Then $f^*(a)=0$ so that a is not a member of M(f). For the proof we suppose that $f^*(a)\neq 0$. If $f(a)\neq \infty$, then $f'(a)\neq 0$. It then follows from Lemmas 1 and 2 that there exists an open disk U(a) of center a such that

$$L(f, h_f) = \{z \in U(a); \overline{f(z)} = h_f(z)\},$$
$$h_f = \lambda(f) / \{2f' - f\lambda(f)\},$$

where

is a simple, analytic arc on which
$$f^*$$
 is constant. A contradiction comes from $M(f) \cap U(a) \subset L(f, h_f)$. If $f(a) = \infty$, we apply the same argument to $1/f$ with $(1/f)'(a) \neq 0$ to arrive at a contradiction. Since $M^*(f)$ is a closed set in D , it is now easy to observe that the isolated points of $M^*(f)$ cluster nowhere in D for nonconstant f .

3. Proof of Theorem 3.

First of all, f^* never vanishes on $c = \partial \Delta$. Let $\alpha_k, 1 \le k \le p$, be all the simple poles of f on c and let $\gamma_k, 1 \le k \le n$, be all the distinct poles of f of order ν_k in Δ . Thus, $P_{\Delta}(f') = n + \sum_{k=1}^{n} \nu_k$. Let $A = \{\alpha_1, \dots, \alpha_p, \gamma_1, \dots, \gamma_n\}$. Let $\varepsilon > 0$ be sufficiently small, and for each $\alpha \in A$, we set

$$\delta(\alpha) = \{ |z-\alpha| \leq \varepsilon \}, \qquad c(\alpha) = \{ z \in \Delta; |z-\alpha| = \varepsilon \},$$

and further

$$\Delta(\varepsilon) = \Delta \setminus \bigcup_{\alpha \in A} \delta(\alpha);$$

this becomes a domain bounded by a finite number of Jordan curves for sufficiently small $\boldsymbol{\varepsilon}.$

Set $\Phi = \bar{f} f'/(1 + |f|^2)$, and $\Psi = i\Phi$. Then the Green formula

168

$$\iint_{\Delta(\varepsilon)} (\Psi_x - \Phi_y) dx dy = \int_{\partial \Delta(\varepsilon)} (\Phi dx + \Psi dy)$$

can be rewritten as:

(3.1)
$$\frac{2}{\pi} \iint_{\Delta(\varepsilon)} f^{*}(z)^{2} dx dy = \frac{1}{\pi i} \int_{\partial \Delta(\varepsilon)} \Phi(z) dz;$$

the line integral is in the positive sense with respect to $\Delta(\varepsilon)$.

The Laurent expansion of f about $\alpha \in A$ yields

$$f(z) = (z - \alpha)^{-N} g(z)$$
 in $\delta(\alpha) \setminus \{\alpha\}$,

where g is holomorphic and nonvanishing in $\delta(\alpha)$; N=1 if $\alpha = \alpha_k$, while $N = \nu_k$ if $\alpha = \gamma_k$. The differentiation yields that

(3.2)
$$f'(z) = (z - \alpha)^{-N-1} h(z), \quad h(z) = -Ng(z) + (z - \alpha)g'(z).$$

Since

$$\varepsilon e^{it} \Phi(\varepsilon e^{it} + \alpha) = \frac{\overline{g(\varepsilon e^{it} + \alpha)}h(\varepsilon e^{it} + \alpha)}{\varepsilon^{2N} + |g(\varepsilon e^{it} + \alpha)|^2} \longrightarrow -N \quad \text{as} \quad \varepsilon \to 0$$

uniformly for real t, it follows that

$$\int_{\mathfrak{c}(\alpha)} \Phi(z) dz \longrightarrow \begin{cases} \pi i & \text{if } \alpha = \alpha_k; \\ 2\pi \nu_k i & \text{if } \alpha = \gamma_k, \end{cases}$$

as $\varepsilon \rightarrow 0$, where the integral is in the clockwise sense. Letting $\varepsilon \rightarrow 0$ in (3.1), we now have

(3.3)
$$\frac{2}{\pi} \iint_{\Delta} f^{*}(z)^{2} dx dy = \frac{1}{\pi i} \int_{c} \Phi(z) dz + p + 2 \sum_{k=1}^{n} \nu_{k}$$
$$= \frac{1}{2\pi i} \int_{c} \lambda(f)(z) dz + p + 2 \sum_{k=1}^{n} \nu_{k}.$$

On the other hand, for ε small we have

(3.4)
$$\frac{1}{2\pi i} \int_{\partial \Delta_0(\varepsilon)} \lambda(f)(z) dz = Z_{\Delta}(f') - P_{\Delta}(f'),$$

where

$$\Delta_0(\varepsilon) = \Delta \setminus \bigcup_{k=1}^p \delta(\alpha_k).$$

In view of (3.2) we have in $\delta(\alpha) \setminus \{\alpha\}$, $\alpha = \alpha_k$.

$$\lambda(f)(z) = -\frac{2}{(z-\alpha)} + \frac{h'(z)}{h(z)},$$

and further, for small ε , the holomorphic *h* has no zero in $\delta(\alpha)$. Therefore, letting $\varepsilon \rightarrow 0$ in the left-hand side of (3.4) we have the identity:

169

(3.5)
$$\frac{1}{2\pi i} \int_{c} \lambda(f)(z) dz + p = Z_{\Delta}(f') - P_{\Delta}(f').$$

Combining (3.3) and (3.5) we finally have (1.2) in the theorem.

4. A lemma.

LEMMA 3. Let f be nonconstant and meromorphic in D. Suppose that $z \in M(f)$ and suppose further that there exist real constants $\delta > 0$ and θ such that

(4.1) $|\sigma(f)(z+te^{i\theta})| > 2f^*(z+te^{i\theta})^2$

for $0 < t < \delta$. Then, $f^*(z+te^{i\theta})$ is strictly decreasing for $0 < t < \delta$.

An immediate consequence is that if $z \in M(f)$ and if $|\sigma(f)(w)| < 2f^{*}(w)^{2}$ in $|w-z| < \delta$, then there is no point of M(f) in $0 < |w-z| < \delta$; the result already observed in Section 2.

Proof of Lemma 3. It suffices to consider the case z=0 and $\theta=0$. By a technical reason we consider $G=1/f^*$. Calculations like (2.2)-(2.4) this time, yield

$$\frac{G_{ww}(w)}{G(w)} = -\frac{1}{2}\sigma(f)(w), \qquad \frac{G_{w\overline{w}}(w)}{G(w)} = \left|\frac{G_{w}(w)}{G(w)}\right|^{2} + f^{*}(w)^{2},$$

whence

$$\frac{G_{uu}(w)}{G(w)} = 2\left|\frac{G_w(w)}{G(w)}\right|^2 + (2f^*(w)^2 - \operatorname{Re}\sigma(f)(w)).$$

Therefore,

$$\frac{d^2}{dt^2}G(z+t) = G_{uu}(z+t) > 0,$$

together with $G_u(z+t) \equiv (d/dt)G(z+t) \rightarrow 0$ as $t \rightarrow +0$, shows that $G_u(z+t) > 0$ for $0 < t < \delta$. Therefore G is strictly increasing on the line segment.

Remark. If T is a Möbius transformation, then a computation shows that $T^*(w) \rightarrow 0$ as $w \rightarrow \infty$. Furthermore, $\sigma(T) \equiv 0$, so that $|\sigma(T)(w)| < 2T^*(w)^2$ at each point $w \in C$. We can apply Lemma 2 to consider the maximum of T^* of a Möbius transformation without further direct calculation. Apparently, M(T) is nonempty. Suppose that there are $z_k \in M(T)$, k=1, 2, and $z_1 \neq z_2$. Then a contradiction follows from Lemma 3. Therefore there is only one point z such that $T^*(w) < T^*(z)$ for all $w \in C \setminus \{z\}$.

5. A partial differential equation with an exponential nonlinearity.

Let ω be a real-valued solution of the differential equation

$$(5.1) \qquad \qquad (\partial^2/\partial z \partial \bar{z}) \omega + a e^{\omega} = 0$$

in a domain $D \subset C$, where a > 0 is a constant. If f is meromorphic with non-vanishing f^* in D, then

(5.2)
$$\omega = \log(2a^{-1}(f^*)^2)$$

is a solution. Conversely, the celebrated Liouville paper [L] shows that, if D is simply connected, then each solution ω can be expressed as (5.2) for a meromorphic function f with nonvanishing f^* in D. A concise proof of this is given in [W] and a detailed one is given in [B1, pp. 27-28] (see also [S]). Usually one supposes the boundary condition:

(5.3)
$$\lim_{z\to \zeta} \omega(z) = 0, \quad \zeta \in \partial D,$$

to (5.1), where ∂D is the boundary of D in $C \cup \{\infty\}$. Since ω is superharmonic in D, the minimum principle shows that $\omega > 0$ in D. For the existence of the solutions for (5.1) under (5.3), in case D is bounded and simply connected, see [B1, p. 197] for example.

Let $M^*(\omega)$ be the set of points $z \in D$ where ω has the (global) maximum:

$$\omega(z) \ge \omega(w)$$
 for all $w \in D$.

We show that $M^*(\omega)$ is a finite set if D is simply connected and (5.3) holds. First, no point-sequence extracted from $M^*(\omega)$ accumulates at any point of ∂D . Consider M(f) for f in (5.2). Theorem 3 shows that $C_3(f)$ is empty. Suppose that $c \in C_2(f)$ exists. If $c \cap M^*(\omega)$ is nonempty, then $c \subset M^*(\omega)$ because f^* is constant on c. This is a contradiction. Since $M^*(\omega) \subset M(f)$, it follows that each point of $M^*(\omega)$ is an isolated point of $M^*(\omega)$. The isolated points of $M^*(\omega)=M^*(f)$ cannot accumulate at any point of D. Therefore $M^*(\omega)$ is a finite set.

We return to (5.1) for general D. Let $M(\omega)$ be the set of points $z \in D$ where ω attains local maxima: $\omega(z) \geq \omega(w)$ for w in an open disk $U(z) \subset D$ with center z. Restricting (5.2) to U(z) we have again a meromorphic function f in U(z) where (5.2) is valid. By the local observation of $M(\omega)$ one can easily obtain the ω -counterpart of Theorem 1. Namely, the components of $M(\omega)$ are at most countable and are classified into the three types (I), (II), and (III), described in Theorem 1. Apparently $M(\omega) \supset M^*(\omega)$.

As C. Bandle [B2, p. 231] (see also [B1, p. 29]) pointed out, we have

$$\sigma(f)(z) = \frac{\partial^2 \omega(z)}{\partial z^2} - \frac{1}{2} \left(\frac{\partial \omega(z)}{\partial z} \right)^2$$

for (5.2) in D, so that, the inequality

$$|\sigma(f)(z)| \leq 2f^{*}(z)^{2}$$
 at $z \in D$

reads

$$\left|\frac{\partial^2 \omega(z)}{\partial z^2} - \frac{1}{2} \left(\frac{\partial \omega(z)}{\partial z}\right)^2\right| \leq a e^{\omega(z)}.$$

6. The Gauss curvature.

Let u be a nonconstant, real-valued, and harmonic function in a domain $D \subset C$. Then u defines the surface or the graph: $\{(x, y, u(x, y)); (x, y) \in D\}$ in the space. The Gauss curvature K(z) at the point $(x, y, u(x, y)), z = x + iy \in D$, is then $-f^*(z)^2$, where $f = u_x - iu_y$ is holomorphic in D. Our results are therefore applicable to the study of the set of points in D where K attains local minima. See [G, J, K, KP, T, Y] on the cited Gauss curvature.

References

- [B1] C. BANDLE, Isoperimetric Inequalities and Applications. Pitman, Boston-London-Melbourne, 1980.
- [B2] C. BANDLE, Existence theorems, qualitative results and a priori bounds for a class of nonlinear Dirichlet problems. Arch. Rat. Mech. Anal. 58 (1975), 219-238.
- [G] F. GACKSTATTER, Die Gausssche und mittlere Krümmung der Realteilflächen in der Theorie der meromorphen Funktionen. Math. Nachr. 54 (1972), 211-227.
- [J] R. JERRARD, Curvatures of surfaces associated with holomorphic functions. Colloquium Math. 21 (1970), 127-132.
- [K] F. KREYSZIG, Die Realteil- und Imaginärteilflächen analytischer Funktionen. Elemente der Mathematik 24 (1969), 25-31.
- [KP] E. KREYSZIG AND A. PENDL, Über die Gauss-Krümmung der Real- und Imaginärteilflächen analytischer Funktionen. Elemente der Mathematik 28 (1973), 10-13.
- [L] J. LIOUVILLE, Sur l'équation aux dérivées partielles $\partial^2 \log \lambda / \partial u \partial v \pm 2\lambda a^2 = 0$. J. de Math. Pures et Appl. 18 (1853), 71-72.
- [RW] S. RUSCHEWEYH AND K.-J. WIRTHS, On extreme Bloch functions with prescribed critical points. Math. Z. 180 (1982), 91-105.
- [S] T. SUZUKI, Two-dimensional Emden-Fowler equation with the exponential nonlinearity. in "Nonlinear Diffusion Equations and their Equilibrium States; Wales 1989" (N.G. Lloyd, W.G. Ni, L.A. Peletier, J. Serrin, editors), Birkhäuser, Basel-Boston-Berlin, to appear. (Also, Tokyo Metropolitan University Mathematics Preprint Series 1990: No. 9, 21 pp.)
- [T] G. TALENTI, A note on the Gauss curvature of harmonic and minimal surfaces. Pacific J. Math. 101 (1982), 477-492.
- [W] V.H. WESTON, On the asymptotic solution of a partial differential equation with an exponential nonlinearity. SIAM J. Math. Anal. 9 (1978), 1030-1053.
- [Y] S. YAMASHITA, Derivatives and length-preserving maps. Canad. Math. Bull. 30 (1987), 379-384.

Department of Mathematics Tokyo Metropolitan University Minami Osawa, Hachioji, Tokyo 192-03 Japan.