A CLASSIFICATION OF 3-DIMENSIONAL CONTACT METRIC MANIFOLDS WITH $Q \varphi=\varphi Q$

By David E. Blair, Themis Koufogiorgos* and Ramesh Sharma

1. Introduction

The assumption that ($M^{2 m+1}, \varphi, \xi, \eta, g$) is a contact metric manifold is very weak, since the set of metrics associated to the contact form η is huge. Even if the structure is η-Einstein we do not have a complete classification. Also for $m=1$, we know very little about the geometry of these manifolds [8]. On the other hand if the structure is Sasakian, the Ricci operator Q commutes with φ ([1], p. 76), but in general $Q \varphi \neq \varphi Q$ and the problem of the characterization of contact metric manifolds with $Q \varphi=\varphi Q$ is open. In [13] Tanno defined a special family of contact metric manifolds by the requirement that ξ belong to the k-nullity distribution of g. We also know very little about these manifolds (see [13] and [9]). In §3 of this paper we first prove that on a 3-dimensional contact metric manifold the conditions, i) the structure is η-Einstein, ii) $Q \varphi=\varphi Q$ and iii) ξ belongs to the k-nullity distribution of g are equivalent. We then show that a 3-dimensional contact metric manifold on which $Q \varphi=\varphi Q$ is either Sasakian, flat or of constant ξ-sectional curvature k and constant φ-sectional curvature $-k$. Finally we give some auxiliary results on locally φ-symmetric contact metric 3 -manifolds and on contact metric 3 -manifolds immersed in a 4 dimensional manifold of contant curvature +1 .

2. Preliminaries

$A C^{\infty}$ manifold $M^{2 m+1}$ is said to be a contact manıfold, if it carries a global 1 -form η such that $\eta \wedge(d \eta)^{m} \neq 0$ everywhere. We assume throughout that all manifolds are connected. Given a contact form η, it is well known that there exists a unique vector field ξ, called the characteristic vector field of η, satisfying $\eta(\xi)=1$ and $d \eta(\xi, X)=0$ for all vector fields X. A Riemannian metric g is said to be an associated metric if there exists a tensor field φ of type $(1,1)$ such that

$$
\begin{equation*}
d \eta(X, Y)=g(X, \varphi Y), \eta(X)=g(X, \xi), \varphi^{2}=-I+\eta \otimes \xi \tag{2.1}
\end{equation*}
$$

[^0]From these conditions one can easily obtain

$$
\begin{equation*}
\varphi \xi=0, \quad \eta \circ \varphi=0, \quad g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{2.2}
\end{equation*}
$$

The structure (φ, ξ, η, g) is called a contact metric structure, and a manifold $M^{2 m+1}$ with a contact metric structure (φ, ξ, η, g) is said to be a contact metric manifold.

Denoting by \mathcal{L} and R Lie differentiation and the curvature tensor respectively, we define the operators l and h by

$$
\begin{equation*}
l X=R(X, \xi) \xi, \quad h=\frac{1}{2} \mathcal{L}_{\xi} \varphi . \tag{2.3}
\end{equation*}
$$

The (1, 1)-type tensors h and l are symmetric and satisfy

$$
\begin{equation*}
h \xi=0, \quad l \xi=0, \quad \operatorname{Tr} h=0, \quad \operatorname{Tr} h \varphi=0 \quad \text { and } \quad h \varphi=-\varphi h . \tag{2.4}
\end{equation*}
$$

We also have the following formulas for a contact metric manifold:

$$
\begin{gather*}
\nabla_{x} \xi=-\varphi X-\varphi h X \quad\left(\text { and hence } \nabla_{\xi} \xi=0\right) \tag{2.5}\\
\nabla_{\xi} \varphi=0 \tag{2.6}\\
\operatorname{Tr} l=g(Q \xi, \xi)=2 m-\operatorname{Tr} h^{2} \tag{2.7}\\
\varphi l \varphi-l=2\left(\varphi^{2}+h^{2}\right) \tag{2.8}\\
\nabla_{\xi} h=\varphi-\varphi l-\varphi h^{2} \tag{2.9}
\end{gather*}
$$

where Q is the Ricci operator and ∇ the Riemannian connection of g. Formulas (2.5)-(2.8) occur in [1] and (2.9) in [3].

A contact metric manifold for which ξ is Killing is called a K-contact manifold. A contact structure on $M^{2 m+1}$ naturally gives rise to an almost complex structure on the product $M^{2 m+1} \times \boldsymbol{R}$. If this almost complex structure is integrable, the given contact metric manifold is said to be Sasakian. Equivalently, (see [1, p. 75] or [3, pp. 534-535]) a contact metric manifold is Sasakian if and only if

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) X-\eta(X) Y \tag{2.10}
\end{equation*}
$$

for all vector fields X and Y.
It is easy to see that a 3-dimensional contact metric manifold is Sasakian if and only if $h=0$. For details we refer the reader to [1].

A contact metric structure is said to be η-Einstein if

$$
\begin{equation*}
Q=a I+b \eta \otimes \xi \tag{2.11}
\end{equation*}
$$

where a, b are smooth functions on $M^{2 m+1}$. We also recall that the k-nullity distribution (see Tanno [13]) of a Riemannian manifold (M, g), for a real number k, is a distribution

$$
\begin{array}{r}
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p} M: R(X, Y) Z=k(g(Y, Z) X-g(X, Z) Y)\right. \\
\text { for any } \left.X, Y \in T_{p} M\right\} .
\end{array}
$$

Finally the sectional curvature $K(\xi, X)$ of a plane section spanned by ξ and a vector X orthogonal to ξ is called a ξ-sectional curvature and the sectional curvature $K(X, \varphi X)$ of a plane section spanned by vectors X and φX with X orthogonal to ξ is called a φ-sectional curvature.

We close this paragraph with two examples of 3-dimensional η-Einstein contact metric manifolds:

1) $\boldsymbol{R}^{3}\left(x^{1}, x^{2}, x^{3}\right)$ with the contact form $\eta=1 / 2\left(d x^{3}-x^{2} d x^{1}\right)$ and associated metric $g=1 / 4\left(\eta \otimes \eta+\left(d x^{1}\right)^{2}+\left(d x^{2}\right)^{2}\right)$, is an η-Einstein Sasakian manifold (see [1] or [6] for more details).
2) \boldsymbol{R}^{3} or T^{3} (torus) with $\eta=1 / 2\left(\cos x^{3} d x^{1}+\sin x^{3} d x^{2}\right)$ and $g_{\imath \jmath}=(1 / 4) \boldsymbol{\delta}_{i \jmath}$, is an η-Einstein (non-Sasakian) contact metric manifold.

3. Main results

Before we state our first result we need the following lemma which was proved in [4], but we include its proof here for completeness and because we will use many of the formulas which will appear in the proof.

Lemma 3.1. Let M^{3} be a contact metric manifold with a contact metric structure (φ, ξ, η, g) such that $\varphi Q=Q \varphi$. Then the function Trl is constant everywhere on M^{3}.

Before we give the proof of the Lemma we recall that the curvature tensor of a 3-dimensional Riemannian manifold is given by

$$
\begin{align*}
R(X, Y) Z= & g(Y, Z) Q X-g(X, Z) Q Y+g(Q Y, Z) X \tag{3.1}\\
& -g(Q X, Z) Y-\frac{S}{2}(g(Y, Z) X-g(X, Z) Y)
\end{align*}
$$

where S is the scalar curvature of the manifold.
Proof of the Lemma 3.1. Using $\varphi Q=Q \varphi$, (2.7) and $\varphi \xi=0$ we have that

$$
\begin{equation*}
Q \xi=(\operatorname{Tr} l) \xi \tag{3.2}
\end{equation*}
$$

From (3.1), using (2.3) and (3.2) we have for any X,

$$
\begin{equation*}
l X=Q X+\left(\operatorname{Tr} l-\frac{S}{2}\right) X+\eta(X)\left(\frac{S}{2}-2 \operatorname{Tr} l\right) \xi \tag{3.3}
\end{equation*}
$$

and hence $Q \varphi=\varphi Q$ and $\varphi \xi=0$ give

$$
\begin{equation*}
\varphi l=l \varphi . \tag{3.4}
\end{equation*}
$$

By virtue of (3.4), (2.8) and (2.9) we obtain

$$
\begin{equation*}
-l=\varphi^{2}+h^{2} \tag{3.5}
\end{equation*}
$$

and $\nabla_{\xi} h=0$. Differentiating (3.5) along ξ and using (2.6) and $\nabla_{\xi} h=0$ we find that $\nabla_{\xi} l=0$ and therefore $\xi \operatorname{Tr} l=0$. If at a point $P \in M^{3}$ there exists $X \in T_{p} M^{3}$, $X \neq \xi$ such that $l X=0$, then $l=0$ at P. In fact if Y is the projection of X on the contact subbundle, $\eta=0$, we have $l Y=0$, since $l \xi=0$. Using (3.4) we have $l \varphi Y=0$. So $l=0$ at P (and thus $\operatorname{Tr} l=0$ at P). We now suppose that $l \neq 0$ on a neighborhood U of a point P. Using (3.4) and that φ is antisymmetric we get $g(\varphi X, l X)=0$. So $l X$ is parallel to X for any X orthogonal to ξ. It is not hard to see that $l X=1 / 2(\operatorname{Tr} l) X$ for any X orthogonal to ξ. Thus for any X, we have

$$
\begin{equation*}
l X=-\frac{1}{2}(\operatorname{Tr} l) \varphi^{2} X \tag{3.6}
\end{equation*}
$$

Substituting (3.6) in (3.3) we get

$$
\begin{equation*}
Q X=a X+b \eta(X) \xi \tag{3.7}
\end{equation*}
$$

where $a=\frac{1}{2}(S-\operatorname{Tr} l)$ and $b=\frac{1}{2}(3 \operatorname{Tr} l-S)$. Differentiating (3.7) with respect to Y and using (3.7) and $\nabla_{\xi} \xi=0$ we find

$$
\begin{equation*}
\left(\nabla_{Y} Q\right) X=(Y a) X+\left((Y b) \eta(X)+b g\left(X, \nabla_{Y} \xi\right)\right) \xi+b \eta(X) \nabla_{Y} \xi \tag{3.8}
\end{equation*}
$$

So using $\xi \operatorname{Tr} l=0$ and $\nabla_{\xi} \xi=0$ we have from (3.8) with $X=Y=\xi,\left(\nabla_{\xi} Q\right) \xi=0$. Also using $h \varphi=-\varphi h$, (2.5) and (2.2) we get from (3.8) with $Y=X$ orthogonal to ξ

$$
g\left(\left(\nabla_{X} Q\right) X+\left(\nabla_{\varphi} X\right) \varphi X, \xi\right)=0 .
$$

But it is well known that

$$
\left(\nabla_{X} Q\right) X+\left(\nabla_{\varphi X} Q\right) \varphi X+\left(\nabla_{\xi} Q\right) \xi=\frac{1}{2} \operatorname{grad} S
$$

for any unit X orthogonal to ξ. Hence we easily get from the last two equations that $\xi S=0$, and thus $\nabla_{\xi} Q=0$, since $S=\operatorname{Tr} Q$. Therefore differentiating (3.1) with respect to ξ and using $\nabla_{\xi} Q=0$ we have $\nabla_{\xi} R=0$. So from the second identity of Bianchi we get

$$
\begin{equation*}
\left(\nabla_{X} R\right)(Y, \xi, Z)==\left(\nabla_{Y} R\right)(X, \xi, Z) \tag{3.9}
\end{equation*}
$$

Now, substituting (3.7) in (3.1) we obtain

$$
\begin{align*}
R(X, Y) Z= & \{\gamma g(Y, Z)+b \eta(Y) \eta(Z)\} X \tag{3.10}\\
& -\{\gamma g(X, Z)+b \eta(X) \eta(Z)\} Y \\
& +b\{\eta(X) g(Y, Z)-\eta(Y) g(X, Z)\} \xi
\end{align*}
$$

where $\gamma=S / 2-$ Trl. For $Z=\xi$, (3.10) gives

$$
\begin{equation*}
R(X, Y) \xi=\frac{T r l}{2}(\eta(Y) X-\eta(X) Y) \tag{3.11}
\end{equation*}
$$

Using (3.11) we obtain $\left(\nabla_{X} R\right)(Y, \xi, \xi)=\frac{1}{2}(X T r l) Y$, for X, Y orthogonal to ξ.
From this and (3.9) for $Z=\xi$ we get $(X \operatorname{Tr} l) Y=(Y \operatorname{Tr} l) X$. Therefore $X T r l=0$ for X orthogonal to ξ, but $\xi \operatorname{Tr} l=0$, so the function $\operatorname{Tr} l$ is constant and this completes the proof of the Lemma.

Remark 3.1. When $l=0$ everywhere, then using (3.1), (3.2) and (3.3) we get $R(X, Y) \xi=0$. So by Theorem B of [2], M^{3} is flat.

Proposition 3.2. Let M^{3} be a contact metric manifold with contact metric structure (φ, ξ, η, g). Then the following conditions are equivalent:
i) M^{3} is η-Einstein
ii) $Q \varphi=\varphi Q$
iii) ξ belongs to the k-nullity distribution

Proof. i \rightarrow ii. This follows immediately from (2.11) and $\varphi \xi=0$.
$\mathrm{ii} \rightarrow \mathrm{iii}$. This follows from (3.11) and Trl=const.
$\mathrm{iii} \rightarrow \mathrm{i}$. By the assumption we have

$$
\begin{equation*}
R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y) \tag{3.12}
\end{equation*}
$$

where k is a constant $\leqq 1$ [13]. From (3.12) we have $Q \xi=2 k \xi$ and so from (3.1) we find

$$
\begin{equation*}
R(X, Y) \xi=\eta(Y) Q Y-\eta(X) Q X+\left(2 k-\frac{S}{2}\right)(\eta(Y) X-\eta(X) Y) \tag{3.13}
\end{equation*}
$$

Comparing (3.12) and (3.13) we get

$$
\eta(Y)\left\{Q X+\left(k-\frac{S}{2}\right) X\right\}-\eta(X)\left\{Q Y+\left(k-\frac{S}{2}\right) Y\right\}=0 .
$$

Taking Y orthogonal to ξ and $X=\xi$ we have $Q Y=((S / 2)-k) Y$ and so for any Z

$$
Q Z=\left(\frac{S}{2}-k\right) Z+\left(3 k-\frac{S}{2}\right) \eta(Z) \xi
$$

This completes the proof.
Remark 3.2. Because $a+b=T r l$ (see formula (3.7)), using Lemma 3.1 and Proposition 3.2 we have the following. On any η-Einstein ($Q=a I+b \eta \otimes \xi$) contact metric manifold $M^{3}, a+b=$ const. ($=$ Trl). It is known that for any η Einstein K-contact manifold $M^{2 m+1}(m>1)$ we have $a=$ const., $b=$ const.

THEOREM 3.3. Let M^{3} be a contact metric manifold on which $Q \varphi=\varphi Q$.

Then M^{3} is either Sasakian, flat or of constant ξ-sectional curvature $k<1$ and constant φ-sectional curvature $-k$.

Proof. We can easily see from the proof of Lemma 3.1 and Remark 3.1 that if $\operatorname{Tr} l=0, l=0$ and in turn that M^{3} is flat. If $\operatorname{Tr} l=2$, (2.7) gives $\operatorname{Tr} h^{2}=0$ and hence, since h is symmetric, $h=0$; thus M^{3} is Sasakian.

If $\operatorname{Tr} l \neq 0$ and 2 then from Proposition 3.2 and (3.12) we have

$$
\begin{equation*}
R(X, Y) \xi=k(\eta(Y) X-\eta(X) Y) \tag{3.14}
\end{equation*}
$$

where $k=\operatorname{Tr} l / 2$ is now <1. This implies that

$$
\begin{equation*}
\left(\nabla_{X} \varphi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{3.15}
\end{equation*}
$$

as was pointed out by Tanno ([13] pp. 446-447, cf. Olszak [7] p. 251); in fact this is true for any 3 -dimensional contact metric manifold (Tanno [14] p. 353.). Computing $R(X, Y) \xi$ from (2.5) we have

$$
\begin{aligned}
R(X, Y) \xi= & -\left(\nabla_{X} \varphi\right) Y+\left(\nabla_{Y} \varphi\right) X-\left(\nabla_{X} \varphi h\right) Y+\left(\nabla_{Y} \varphi h\right) X \\
= & -\left(\nabla_{X} \varphi\right) Y+\left(\nabla_{X} \varphi\right) X-\left(\nabla_{X} \varphi\right) h Y-\varphi\left(\nabla_{X} h\right) Y \\
& +\left(\nabla_{Y} \varphi\right) h X+\varphi\left(\nabla_{Y} h\right) X
\end{aligned}
$$

Then using (3.14) and (3.15) we have

$$
\begin{aligned}
k(\eta(Y) X-\eta(X) Y)= & -\eta(X)(Y+h Y)+\eta(Y)(X+h X) \\
& -\varphi\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right)
\end{aligned}
$$

or

$$
\begin{gather*}
\eta(Y) h X-\eta(X) h Y-\varphi\left(\left(\nabla_{X} h\right) Y-\left(\nabla_{Y} h\right) X\right) \tag{3.16}\\
=(k-1)(\eta Y) X-\eta(X) Y)
\end{gather*}
$$

Now let X be a unit eigenvector of h, say $h X=\lambda X, X \perp \xi$. Since $\operatorname{Tr}^{2}=2(1-k)$, $\lambda= \pm \sqrt{1-k}$ and hence is a constant. Setting $Y=\varphi X$, (3.16) yields

$$
\varphi\left(\left(\nabla_{X} h\right) \varphi X-\left(\nabla_{\varphi x} h\right) X\right)=0
$$

from which

$$
\begin{equation*}
\varphi\left(-\lambda \nabla_{x} \varphi X-h \nabla_{x} \varphi X-\lambda \nabla_{\varphi X} X+h \nabla_{\varphi X} X\right)=0 \tag{3.17}
\end{equation*}
$$

Taking the inner product of (3.17) with X and recalling that $\varphi h+h \varphi=0$, we have

$$
\lambda g\left(\nabla_{\varphi X} X, \varphi X\right)=0
$$

Since $\lambda \neq 0(k \neq 1)$ and X is unit, $\nabla_{\varphi X} X$ is orthogonal to both X and φX and hence collinear with ξ. Now

$$
\eta\left(\nabla_{\varphi X} X\right)=g\left(\nabla_{\varphi X} X, \xi\right)=-g\left(\nabla_{\varphi X} \xi, X\right)=g(-X+h X, X)=\lambda-1 .
$$

Therefore

$$
\nabla_{\varphi X} X=(\lambda-1) \xi .
$$

Similarly taking the inner product of (3.17) with φX yields

$$
\nabla_{x} \varphi X=(\lambda+1) \xi
$$

and in turn $\nabla_{X} X=0$ and

$$
[X, \varphi X]=2 \xi .
$$

Now from the form of the curvature tensor (3.10), we have

$$
R(X, \varphi X) X=-\left(\frac{S}{2}-T r l\right) \varphi X
$$

and by direct computation using $\nabla_{x} \xi=-(1+\lambda) \varphi X$,

$$
\begin{aligned}
R(X, \varphi X) X & =\nabla_{X} \nabla_{\varphi X} X-\nabla_{\varphi X} \nabla_{X} X-\nabla_{[X, \varphi X]} X \\
& =(\lambda-1) \nabla_{X} \xi-2 \nabla_{\xi} X \\
& =\left(1-\lambda^{2}\right) \varphi X-2 \nabla_{\xi} X .
\end{aligned}
$$

Thus

$$
\nabla_{\xi} X=\left(\frac{S}{4}+\frac{\lambda^{2}-1}{2}\right) \varphi X
$$

and hence

$$
[\xi, X]=\left(\frac{S}{4}+\frac{(\lambda+1)^{2}}{2}\right) \varphi X
$$

Now computing $R(\xi, X) \xi$ by (3.14) and by direct computation we have

$$
\begin{aligned}
\left(\lambda^{2}-1\right) X & =\nabla_{\xi}(-\varphi X-\varphi h X)-\nabla_{(S / 4+(\lambda+1) 2 / 2) \varphi} X \xi \\
& =-(1+\lambda) \varphi \nabla_{\xi} X-\left(\frac{S}{4}+\frac{(\lambda+1)^{2}}{2}\right)(X-h X) \\
& =\left[(1+\lambda)\left(\frac{S}{4}+\frac{\lambda^{2}-1}{2}\right)-(1-\lambda)\left(\frac{S}{4}+\frac{(\lambda+1)^{2}}{2}\right)\right] X
\end{aligned}
$$

from which

$$
S=2\left(1-\lambda^{2}\right)=2 k .
$$

From (3.14) and (3.10) we see that

$$
K(X, \xi)=k \quad \text { and } \quad K(X, \varphi X)=-k
$$

as desired.
Remark 3.3. We also note for $k \neq 0$ and 1 that from (3.7) the Ricci operator
is given by $Q X=2 k \eta(X) \xi$ and that the scalar curvature is constant, viz., $2 k$.
Definition. A contact metric stracture (φ, ξ, η, g) is said to be locally φ symmetric if $\varphi^{2}\left(\nabla_{W} R\right)(X, Y, Z)=0$, for all vector fields W, X, Y, Z orthogonal to ξ.

This notion was introduced for Sasakian manifolds by Takahashi [11]. The next theorem generalizes Theorem 4.1 of Watanabe [15].

Theorem 3.4. Let M^{3} be a contact metric manifold with $Q \varphi=\varphi Q$. Then M^{3} is locally φ-symmetric if and only if the scalar curvature S of M^{3} is constant.

Proof. From the proof of Lemma 3.1 we see that either $l=0$ everywhere (and hence by Remark 3.1, that M^{3} is flat) or $\operatorname{Tr} l=$ const. $\neq 0$ and in this case all the formulas in Lemma 3.1 are valid. Differentiating (3.10) with respect to W and using Lemma 3.1 we obtain

$$
\begin{align*}
2\left(\nabla_{W} R\right)(X, Y, Z) & =g(Y, Z)\left\{-(W S) \eta(X) \xi+2 b\left(g\left(X, \nabla_{W} \xi\right) \xi+\eta(X) \nabla_{W} \xi\right)\right\} \tag{3.18}\\
& -g(X, Z)\left\{-(W S) \eta(Y) \xi+2 b\left(g\left(Y, \nabla_{W} \xi\right) \xi+\eta(Y) \nabla_{W} \xi\right)\right\} \\
& -\left\{(W S) g\left(\varphi^{2} Y, Z\right)-2 b g\left(g\left(Y, \nabla_{W} \xi\right) \xi+\eta(Y) \nabla_{W} \xi, Z\right)\right\} X \\
& +\left\{(W S) g\left(\varphi^{2} X, Z\right)-2 b g\left(g\left(X, \nabla_{W} \xi\right) \xi+\eta(X) \nabla_{W} \xi, Z\right)\right\} Y .
\end{align*}
$$

Taking W, X, Y, Z orthogonal to ξ and using (2.1) and $\varphi \xi=0$ we get from (3.18)

$$
2 \varphi^{2}\left(\nabla_{W} R\right)(X, Y, Z)=(W S)(g(X, Z) Y-g(Y, Z) X)
$$

The rest of the proof follows immediately from this and $\xi S=0$ (again see the proof of Lemma 3.1).

Remark 3.4. Using (3.8) with $\operatorname{Tr}=$ const., (2.5), (3.5) and (3.6) we obtain the following formula

$$
\begin{equation*}
2|\nabla Q|^{2}=|\operatorname{grad} S|^{2}+(3 \operatorname{Tr} l-S)^{2}(4-\operatorname{Tr} l) \tag{3.19}
\end{equation*}
$$

which is valid on any contact metric manifold M^{3} with $Q \varphi=\varphi Q$.
Furthermore Blair and Sharma [5] recently proved that a locally symmetric contact metric manifold M^{3} has constant curvature 0 or 1 . Thus using (3.19), $\operatorname{Tr} l \leqq 2$ and the result of [5] we easily obtain the following. A locally φ-symmetric contact metric manifold M^{3} with $Q \varphi=\varphi Q$ is a space form (with curvature 0 or 1) if and only if $S=3 \mathrm{Tr}$.

Before we state our next Theorem we need the following Lemma.
Lemma 3.5. Let M^{3} be a contact metric manifold with $Q \varphi=\varphi Q$, isometrically immersed in a Riemannian manifold M^{4} of constant curvature 1 . If ξ is not an eigenvector of the Weingarten map A at a point p of M^{3}, then $\operatorname{Trl}=2$.

The proof of Lemma 3.5 is similar to the proof of Lemma 2.1 of Takahashi and Tanno [10].

THEOREM 3.6. Let M^{3} be a contact metric manifold with $Q \varphi=\varphi Q$. If M^{3} is isometrically immersed in a Riemannian manifold M^{4} of constant sectional curvature 1, then M^{3} is Sakakian.

Proof. Because M^{3} is isometrically immersed in a space of constant sectional curvaturel 1 the following equations of Gauss and Codazzi are valid, for any vector fields X, Y, Z on M^{3} :

$$
\begin{gather*}
R(X, Y) Z=g(Y, Z) X-g(X, Z) Y+g(A Y, Z) A X-g(A X, Z) A Y \tag{3.20}\\
\left(\nabla_{X} A\right) Y=\left(\nabla_{Y} A\right) X \tag{3.21}
\end{gather*}
$$

Combining (3.11) and (3.20) for $Z=\xi$ we get

$$
\begin{equation*}
\left(1-\frac{T r l}{2}\right)(\eta(Y) X-\eta(X) Y)+g(A \xi, Y) A X-g(A \xi, X) A Y=0 \tag{3.22}
\end{equation*}
$$

For M^{3} to be Sasakian it is sufficient to prove, by (2.10) and (3.11), that $\operatorname{Tr} l=2$. Suppose $\operatorname{Tr} l \neq 2$ and hence $\operatorname{Tr} l<2$. According to the Lemma 3.5, ξ must be an eigenvector of A everywhere on M^{3}. Let

$$
\begin{equation*}
A \xi=\nu \xi \tag{3.23}
\end{equation*}
$$

where ν is a smooth function on M^{3}. From (3.22) with $Y=\xi$ and (3.23) we have

$$
\left(1-\frac{T r l}{2}\right) X+\nu A X=0
$$

with $\nu \neq 0$ for any X orthogonal to ξ. So

$$
\begin{equation*}
A X=\rho X, \quad \rho=\nu^{-1}\left(\frac{T r l}{2}-1\right) \tag{3.24}
\end{equation*}
$$

Using (3.21) with $Y=\xi$ and X orthogonal to ξ the equation (3.24) and the fact that $\nabla_{\xi} X$ and $\nabla_{X} \xi$ are also orthogonal to ξ, we find

$$
\nabla_{X} A \xi-A \nabla_{X} \xi=\nabla_{\xi} A X-A \nabla_{\xi} X
$$

or

$$
(X \nu) \xi+(\nu-\rho) \nabla_{X} \xi=(\xi \rho) X
$$

or using (2.5)

$$
(X \nu) \xi+(\nu-\rho)(-\varphi X-\varphi h X)=(\xi \rho) X
$$

From this we get $X \nu=0$ and so

$$
\begin{equation*}
(\nu-\rho)(-\varphi X-\varphi h X)=(\xi \rho) X \tag{3.25}
\end{equation*}
$$

Applying φ to (3.25) and using (2.1) and $\varphi \xi=h \xi=0$ we obtain $(\nu-\rho)(X+h X)=$ $(\xi \rho) \varphi X$. Now replacing X by φX in (3.25) and using $\varphi h=-h \varphi$ we have $(\nu-\rho)(X-h X)=(\xi \rho) \varphi X$. Adding the last two equations we get $\nu=\rho$, i.e. $(\operatorname{Tr} l / 2)-1=\nu^{2} \geqq 0$, which is a contradiction. This completes the proof.

Our last Theorem generalizes the Theorems (3.6) and (3.8) of Tanno [12] for 3 -dimensional manifolds.

Theorem 3.7. Let M^{3} be a contact metric manifold with $Q \varphi=\varphi Q$. If M^{3} is isometrically immersed in a Riemannian manifold M^{4} of constant curvature 1 , then M^{3} is of constant curvature 1 if and only if the scalar curvature of M^{3} is equal to 6.

Proof. By the assumption and Theorem 3.6 we have $\operatorname{Tr} l=2$. Supposing M^{3} is of constant curvature 1 and using (3.10) with $Z=Y$ orthogonal to $X,|X|$ $=|Y|=1$ and X, Y orthogonal to ξ, we have $1=g(R(X, Y) Y, X)=\gamma=(S / 2)-2$, i. e. $S=6$. Now if $S=6$ then $b=(1 / 2)(3 \operatorname{Tr} l-S)=0$ and $\gamma=(S / 2)-T r l=1$ and hence from (3.10) we get $R(X, Y) Z=g(Y, Z) X-g(X, Z) Y$ completing the proof of the theorem.

References

[1] D.E. Blair, Contact manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, Springer-Verlag, Berlin, 1976.
[2] D.E. Blair, Two remarks on contact metric structures, Tôhoku Math. J., 29 (1977), 319-324.
[3] D.E. Blair and J.n. Patnaik, Contact manifolds with characteristic vector field annihilated by the curvature, Bull. Inst. Math. Acad. Sinica, 9 (1981), 533545.
[4] D.E. Blair and T. Koufogiorgos, Conformally flat contact metric manifolds, submitted.
[5] D.E. Blair and R. Sharma, Three dimensional locally symmetric contact metric manifolds, to appear in Boll. Un. Mat. Ital.
[6] M. Okumura, On infinitesimal conformal and projective transformations of normal contact spaces, Tôhoku Math. J., 14 (1962), 398-412.
[7] Z. Olszak, On contact metric manifolds, Tôhoku Math. J., 31 (1979), 247-253.
[8] D. Perrone, Torsion and critical metrics on contact three manifolds, Kōdai Math. J. 13 (1990), 88-100.
[9] R. Sharma and T. Koufogiorgos, Locally symmetric and Ricci-symmetric contact metric manifolds, submitted.
[10] T. Takahashi and S. Tanno, K-contact Riemannian manifolds isometrically immersed in a space of constant curvature, Tôhoku Math. J., 23 (1971), 535-539.
[11] T. Takahashi, Sasakian φ-symmetric spaces, Tôhoku Math. J., 29 (1977), 91113.
[12] S. Tanno, Isometric immersions of Sasakian manifolds in spheres, Kōdai Math. Sem. Rep., 21 (1969), 448-458.
[13] S. Tanno, Ricci curvatures of contact Riemannian manifolds, Tôhoku Math. J., 40 (1988), 441-448.
[14] S. Tanno, Variational problems on contact Riemannian manifolds, Trans. A. M.S. 314 (1989), 349-379.
[15] Y. Watanabe, Geodesic symmetries in Sasakian locally φ-symmetric spaces Kōdai Math. J., 3 (1980), 48-55.

Department of Mathematics	Department of Mathematics
Michigan State University	University of Ioannina
East Lansing, Michigan 48824	Ioannina, 45110
U.S. A.	GREECE
and	
Department of Mathematics	
University of New Haven	
West Haven, CT 06516	
U.S.a.	

[^0]: * This work was done while the second author was a visiting scholar at Michigan State University.

 Received May 2, 1990.

