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NONLINEAR SCHRODINGER EQUATION WITH

THE CRITICAL POWER NONLINEARITY
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§ 0. Introduction and main results.

This paper is a sequel to the previous one [20]. We continue the study of
the blow-up problem for the nonlinear Schrδdinger equation :

(Cp)

where i=V—1, uQ^H1=H\RN)y Δ is the Laplace operator on RN and F is a
complex valued function satisfying, at least, the following assumptions :

(F.I) F(0)=0,

(F.2) FeC(C C),

(F.3) \F(z)-F(w)\^M(l+\z\*ιN+\w\A'N)\z-w\, z} WEΞC,

for some positive constant M.

Typical examples of F are

(NF) F(u)=\u\p~1u+X\u\<l~1u> IEΞR, l^?<£:gl+4/iV.

Here, we list several basic notations which will be used throughout this
paper.

μ: Lebesgue measure on RN,

(NLS) 2i^+Au+F(u)=0, (f,

I (IV) w(0, * ) =

N \ f(x)>e} or the characteristic function of this set,

dt—d/dt, V=(3i, d2, ••• , dN), dj=d/dxJf

La—La(RN) denotes the space of α-summable functions on RN with the
norm ||.||«,

I I - I I = 1 1 - I I . ,
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334 HAYATO NAWA

W*'a=W'a(RN) represents the standard Sobolev space of order s and ex-
ponent a on RN,

Σ^ivtΞH1 \\v\\2+\\lv\\2+\\xv\\2< + c»},

< , >=ZΛinner product,

S—S(RN): the Schwartz space of rapidly decreasing C°°-functions,

S'=S'(RN): the dual of S,

σ=2+A/N,

2*=2N/(N-2) if A/^3, 2*=co if N=l and N=2,

E(v)=\\VvW~\\v\\ϊ.

We regard (NLS) as an abstract evolution equation in H~1=H1', and we say
that M is a solution to (Cp) on [0, T) if and only if u satisfies the integral
equation

(0.1) u(t)=U(t)uo+^-S(t;F(u)) in L2

for any ίe[0, T), where U(t), S(t; •) are linear operators given by

(0.2) ί/(0=exp(~fΔ) (free propagator),

(0.3) S(t)v)^U(t-τ)v(τ)dτt

Jo

respectively. For the precise definitions and properties of these operators, see
Kato [10] and Yajima [30]. The integral in (0.3) is understood to be the
Bochner integral in H~\

In the particular case of F(z)=\z\p~ίz with 1 < £ < 2 * - 1 (where 2*=
2N/(N-2) if Λ/>2, otherwise 2*= + oo), it is well known that for p^l+4/N
there are singular solutions of (Cp) for certain initial data (see Glassy [9] and
M. Tsutsumi [25]). That is, there are some solutions u(t) of (Cp) such that

κ(.)€ΞC([0, Ό H1) and limt_.Γ||7tt(f)|| = + «>.

However, the formation of singularities in blow-up solutions for the critical case
p—l+i/N seems to be quite different from that of blow-up solutions for the
supercritical case l+4/iV</><2*—1. In the critical case there are blow-up
solutions which lose their ZΛcontinuity because of the so-called "mass con-
centration" phenomenon (Weinstein [28], Nawa and M. Tsutsumi [21] and Merle
and Y. Tsutsumi [17]), while Merle [15] suggests that in the supercritical case
every blow-up solution has a strong limit in L2 at the blow-up time.

In the case of F(u)~\u\4jNu as |M|->+OO, Merle and Y. Tsutsumi [17]
show that no blow-up solution to (Cp) has a strong limit in L2 as t-±T (T is
the blow-up time), and that ZΛconcentration occurs at the origin for all the
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radially symmetric blow-up solutions to (Cp), when N^2. In [20] we also in-
vestigate the "mass concentration" phenomenon, and proved the following
theorems.

THEOREM A. Assume that F satisfies (F.1)-(F.3). Then for any u
there exist a positive number T {maximal existence time, i. e, blow-up time) and a
unique Hι-solution u(t) to (Cp) such that

u, VweC([0, T ) ; L2)nL2

o

+

c

4/"(0, T L2+*>N)

and u(t) satisfies (0.1). Assume further that T < + °°, so that lim^rllVwCOINf00

(Blow-up). Then u(t) does not have a strong limit in L2 as t->T.

THEOREM B. Let F be (NF) with p=σ—l=l+i/N. Suppose that the solu-
tion u(t) to (Cp) blows up at ί=TG(0, «>], i.e., lΊm^Γ||7M(ί)ll=lΊm^Γ||M(0IU = oo.
Set

(B.I) λ(t)=l/\\u(t)\\r.

(B.2) Sλu(f, x)=λNι2u(t,λx).

(B.3) ,4ΞΞsupliminf I sup [ \SλaMt, x)\2dx\.
i2>0 ttT \y(=RNJB(y;R) )

(1) // ||WoII2=A, then for any ε>0, there are a constant K>0 and a function
y(t)<EίC([0, T);RN) such that

(B.4) limmfj ISjicoMtf, x+y(t))\2dx>(l-ε)A.j I
If we impose the condition uo^=Σf T<oo and Z^O, then we have

(B.5) sup \y(t)λ(t)\ < + oo,

(B.6) liminfί | u(t, x)\2dx>(l-ε)A,
t t Γ j B ί

where Bt=B(y(t)λ(t); Kλ(t)).
(2) If Wo is radially symmetric and Λ/^2, we have (B.4) and (B.6) with y(t)

=0 and ^4=||Q||2, where Q is a ground state (non trivial minimal L2 norm solu-
tion of

(B.7) AQ-Q+\Q\4/NQ=0, Q^H1.

(For the equation (B.7), see e.g. [1], [3], [22] and [27].)
(3) // ||ttoll = IIQII, we have the results of (1) with A=\\Q\\2 in (B.4) and (B.6).

Here we note that:
(1) Λ(f)-»O as t->T.
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(2) We do not assume the radial symmetricity of solutions to (Cp).

Recently, Y. Tsutsumi [26] has investigated the rate of ZΛconcentration
for radially symmetric blow-up solutions to (Cp) with N^>2 and F(u)~\u\A'Nu
as |w|—>+°°, and showed that for any ε>0, there exists a K>0 such that

(0.4) liminft.rllM(O; L 2 ( |x | <#(Γ-0 1 / 2 ) l |^( l-β)IIQII,

where Q is a ground state (minimal L2 norm) solution of (B.7).
In this paper we have the following theorem, which is an improvement of

Theorem B and (0.4).

THEOREM C. Let F be (NF) with ρ=σ-l=l+4/N. Suppose that the solu-
tion u(t) to (Cp) blows up at ί=TG(0, oo], i.e., lim^Γ | |7M(0ll=lim^Γ | |iί(0|| f f =
+ °°. Let (tn)n be any sequence such that tn-+T as n-+oo. Set

(C.I)

(C.2) SMt, x)=λN*2u(t, ix).

Then there exists a subsequence of (tn)n (we still denote it by (tn)n) which satisfies
the following properties: one can find a sequence (yn)n in RN such that, for any
ε>0, there is a positive constant K;

(C.3) liminff \Sλnu(tn, x+yn)\2dx^(l-ε)\\Q\\2.

If we impose the condition uoeiΣ, X<0 and T<oo, then we have

(C.4) sup l ^

(C.5) liminff \u(tn, x)\2dx^(l-ε)\\Q^\\

where Bn=B(ynλn; Kλn).

Our proof of Theorem C depends heartily on the following

PROPOSITION D. Let F be (NF) with ρ=σ—l=l+4/N. Suppose that the
solution u(t) to (Cp) blows up at ί = T e ( 0 , oo], i.e., lim^Γ||Vw(OII=lim^Γ||w(OIU
= -f oo. Let (tn)n be any sequence such that tn->T as n->°°. Set

(D.I) λn=λ(tn)=l/\\u(tn)\\V\

(D.2) un(t, x)=Sχnu(f, x)=λξ'2u(t,λnx).

Then there exists a subsequence of (tn)n (we still denote it by (tn)n) which
satisfies the following properties- one can find LΪΞN\J{OO} and sequences (yJ

n)n

in RN for l£j<L such that
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(D.3) l im»^. |>4-yί |=oo (jΦk),

(D.4) fl = un(tn, x+yk) — * / ' weakly in H',

(D.5) /^(ji-i-p-iyt^.+yt)—*/! (ŷ 2) weakly in W

(D.6) l\mn

(D.7) liπ

(D.8) limlimjsupί |(/4-/>X*)l V%}=0 » / ! = + » ,

(D.8)' limfsupf |(/S-/i)(x)Γdx}=0 i/

where R is any positive constant.

In view of this proposition, we can understand the assertion of Theorem
B (2) and (3).

COROLLARY E. (1) // w0 is radially symmetric and N^2, we have L=l with
3 ^ = 0 in Proposition D, so that we have Theorem B (2).

(2) // [|tto[| = IIQII> we have L—\ in Proposition D, so that we have Theorem
B(3).

Remarks. 1. Roughly speaking, Proposition D suggests that u behaves like

(0.5) \u(t, x)\2-^ Σ \\fψδ(x-a,)+r{x) in S'

as t-+T, where a3=Yιmn^ooλnyί} δ{x — a) is a Dirac mass at a^RN and r(x) is
a remainder term (it may be a function). We note that L may be infinite. It
could happen that a3—ak (jφk). However we see from this theorem that
"mass concentration" occurs at some points.

In [21], the author and M. Tsutsumi characterized the initial datum (in Σ)
leading to the solution which develops the singularity like Dirac mass δ:

(0.6) lim^rHU —α)tt(f)||=0 for some a^RN ,

so that

(0.7) \u(t, x)\2—> ||κo||23(*-α) in S'

as t-+T ([21 Theorem 1]). Thus we know there are many blow-up solutions
satisfying

(0.8) lim t.Γ | |(x-α)κ(OII>0
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for each a^RN ([21; Corollary 1.1]). So L ^ 2 or rφO occurs in (0.5), which
also explains how the blow-up solution u performs (0.8).

Recently Merle [16] has constructed blow-up solutions which concentrates
their "L 2 mass" at exactly m points {alf a2y * αm} such that

(0.9) lim^Γ | |iί(ί, x); Llc(RN\{au a2, - , α m }) | |=0.

This example corresponds to (0.5) with L—m and r = 0 .
On the other hand, some numerical computations suggest that there are

blow-up solutions which behave like (0.5) with L—\ and r being some function
(see e.g. [24] and [27]).

2. The spatial dilation operator Sχ was introduced by Weinstein for the
first time in [28]. We note that our scaling function λ is different from the
one in [28]. Our choice of scaling function λ simplifies our calculations in §3,
and we can treat more general nonlinearities than those in [28].

3. The proof of Theorem C is inspired by the method of concentration-
compactness due to Lions [12, 13] and the argument performed in Weinstein
[28]. We, however, repeatedly use the same compactness device as in Lieb
[11] and Brezis and Lieb [3] to decompose (un)n iteratively into several parts
(possibly infinite parts) with the help of Brezis and Lieb's lemma [4]. It is
worth while to note that the case L—\ in Theorem C (1) does not always cor-
respond to the terminology "tightness" in the method of concentration-compact-
ness for the concentration function of | w j 2 : If L = l , it could happen that

(0.10) limn_oo||MΛ(ίΛ, '-\-yi)—.

although it holds that

(0.11) lim^collttntfn, +3>A)-/ΊU=0.

Thus L—\ is not equivalent to (0.7).
4. Weinstein [32] proved the similar result to Theorem C. However he

treated only the single power case and in his paper there is only a proof for
the radially symmetric case.

§ 1. Preliminaries.

In this section we collect several well-known facts about solutions to (Cp)
and those to (0.5), and recall the week compactness result due to Lieb [11], a
related lemma from [6] (see also [3]) and Bezis and Lieb's lemma [4], which
will be crucial for the proof of Theorem C.

We use the notation σ=2+4/N.

LEMMA 1.1. Let

(1.1) I=mf{\\Ίv\\2\\v\\^N/\\v\\σ

σ; v^H1 and vΦO}.
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The infimum I is attained at a function Q with the following properties :
(1) Q is positive and radially symmetric.
(2) QEίH\RN)Γ\C\RN) and satisfies

(1.2) E(Q)=\\X!Q\\>-(2/σ)\\Q\\°σ=0.

(3) Q is a solution to (0.5) of minimal L2 norm (the ground state). In addi-
tion,

(1.3) i=2\\Q\\—/σ.

(4) Q is a solution to the following variational problem.

(1.4) minimize |M| E(v)£Q and v<=Hl/{0}}.

(5) Let S' be the best constant for the interpolation estimate:

(1.5) IMI?^S'l|Vz;||2|Mr-2, Λfe l .

Then S'=l/L

For Lemma 1.1, see Weinstein [28], Beretycki and Lions [1] and Strauss
[22] (see also [19] for part (4)).

LEMMA 1.2. (1) Assume that F satisfies (F.1)-(F.3). For any u^H\ there
exist a positive number T and a unique solution

(1.6) «( )eC([0, T) ; innLfoctO, T ; L*)

to (Cp) satisfying (0.1) with the alternatives; either T = + oo or T < + oo and

(1.7) l im^Γ | |7u(ί) | |=lim t_Γ | |M(0L=+ ~ .

(2) In addition to (F.1)-(F.3), assume that F satisfies

(F.4) ImF(z)*=0, ZΪΞC ,

(F.5) there exists GeC%C; R) such that F=γr.

Then the above solution u satisfies:

(1.8) I | H ( O I I = I |WO| | ,

(1.9) H(u(t))=\\u(t)f-<G(u(t)), 1>

for <e[0, T). If uoeΣ, then M<ΞC([0, T);Σ) and satisfies-
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(1.10) \\xu(tW=\\xuo\\2+2tlm<x-Vuo, uo>+t2H(uo)

-N\\t-τKF(u),u>(τ)dτ
Jo

+(N+2)\\t-τ)<G(u), iXτ)dτ.
Jo

(3) // UQ^H1 and | | M O | | < | | Q | | , then the solution u exists globally in time.

We can find the proof of part (1) and (2) in Kato [10] and Ginibre and
Velo [7]. See also the proof of Lemma 2.4 in the previous paper [20]. For
the identity (1.10), see e.g., Glassy [9] and M. Tsutsumi [25]. One can find
the proof of part (3) in Weinstein [27].

LEMMA 1.3 (Frδlich, Lieb and Loss [6]). Let Ka<β<γ and let g be a
measurable function on RN such that, for some positive constants Ca, Cβ, Cγy

( i ) Wg

(ii) \\g\\β^Cβ>0,

(iii) | |s | | r^C r.

Then μ([]g\>η\)>C for some η, C>0 depending on a, β, γ, Ca, Cβ, Cr, but
not on g.

LEMMA 1.4 (Lieb [11]). (1) Let l ^ α < o o and let v be a function such that
?oc, lv^La, \\lv\\a<A and μ{{.\v\>η])^C for some positive constants A,

η, C. Then, there exists a shift Tyv(x)=v(x+y) such that, for some constant
δ=δ(A, C, η), μ(Brλl\Tyv\>7]/21)>δ, where B=B(1).

(2) Let l < α < c o and let (/»)» be a uniformly bounded sequence of func-
tions in W1'a{RN) with the property that μ ( [ | / J >)?])^C for some η, C>0.
Then there exists a seauence (yn)n in RN, ψn(x)=fn(x+yn), such that, for some
subsequence {nj}, ψnj->ψ weakly in Wlt0C(RN) and ψφQ.

We note that part (2) is a direct consequence of the Banach-Alaoglu theorem
and part (1).

LEMMA 1.5 (Brezis aud Lieb [4]). Let 0<α<oo and let (fn)n be a uniformly
bounded sequence in ZΛ Suppose that fn->f a. e. in RN. (By Fatou's Lemma
fζΞLa.) Then,

(1.11) \\m\RN\\fn(x)\a-\fn(x)-f(x)\a-\f(x)\«\dx=0.

Our proof of Theorem C depends heartily on the above two lemmas, which
enable us to derive Proposition D.
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§2. Proofs of main results.

The main purpose of this section is to prove Theorem C. For simplicity,
we suppose N^3 (in the case of N<2, we need a slight modification in (2.7)
below).

Let the nonlinearity F be (NF), which satisfies (F.1)-(F.5). Suppose that
the solution u(f) to (Cp) blows up at time ί=TG(0, oo], i.e., limi_rl|Vtt(0ll = o°.
From Lemma 1.2, u(t) satisfies the mass conservation law (1.8) and the energy
conservation law (1.9) for £CΞ[0, T). We note that, in this case,

97 9

(2.1) G(M)=^qpi|κ|«+1 + - | κ r .

Proof of Theorem C.

We recall that

(2.2) λ=λ(t)=l/\\u(t)\\V2,

(2.3) uλ = Sλu(t, x)=λN<2u(f, λx).

One can see that

(2.4)

(2.5)

Moreover we have that

(2.6) E(uλ)=λ2E(u(t))

^ } ^ 0 (ί-Γ).

since, by Holder's inequality, it holds that

where a=(N/4)(q-l)σ<σ (because g-ί<4/N). From (2.5), (2.6) and Sobolev's
inequality one has

(2.7) IIUill^SIIVMiU^S

for sufficiently small λ, where S is the Sobolev best constant.
By (2.4), (2.5) and (2.7) we have, for some constants η, C>0,

(2.8) μ&\ui(t)\>η])>C

with the help of Lemma 1.3.
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For any sequence (tn)n such that tn-+T (H->OO), we use the notations:

(2.9) λn=λ(tn),

(2.10) Un(tn, X) = λξ>2u{tn,λnx).

We shall prove Proposition D.

Proof of Proposition D. By (2.8) and Lemma 1.4 (2), we can shift each un

so that

(2.11) fk = un(fn9 x+yk) —> Γ*0 weakly in Hι.

This is valid only for a subsequence. We shall however often extract sub-
sequence without explicitly mentioning this fact.

From (2.1), one has

(2.12) /A—**/1 inLfoc

so that

(2.13) fi—> f1 a.e. in RN .

Hence we have, by Lemma 1.5,

(2.14) limnUII/illί-ll/1»-/ΊIJ)=ll/Ίlί,

and by the weak convergence of 7 / ^ and the uniqueness of the limit,

(2.15) limΛ.o

Combining (2.14) and (2.15), we get

(2.16) limn^o{£(/i)-

We deduce from (2.5), (2.10) and (2.14) that following two limit exist and
equalities hold;

(2.17) l im n _| |/ i-/ 1 | | ;=l~l l/Ίl ί ,

(2.18) l im n ^-£(/ i-/ 1 )=-£(/ 1 ) .

Suppose limn-,oo||/A—/MU^O. Then one can verify that fl—f1 satisfies
the assumptions in Lemma 1.3 with a=2, β — σ and f=2*. So at this stage,
we consider fl—f1, and repeat the above argument. There exists a sequence
(yl)n in RN such that

(2.19) / j=(/ i_/ iχ ί B , . + y j ) —> f*φQ weakly in H1,

(2.20) \ιmn
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We note that limn^\yi-yl\=oo, since fk-f'-^O weakly in H\ By (2.17)-
(2.20), one can also verify that

(2.21) limn.ool|/2-/ i||;=l-||/ i|IS-H/ΊI?,

(2.22) Yιmn

since we have that

by the translation invariance of the norm || ||tf and the functional E( ).
Repeating this procedure, we obtain sequences (yi)n in RN for 1< /̂ such

that

linin-ool yί—yk

n\ —°° ϋ'Φk)

and corresponding functions

fi=(f>nι-f'-ιXtn9 -+yί) —> f> weakly in H1,

where fί satisfies

(2.23) limn

(2.24) linv

so that we have

(2.25) limn.

We also obtain by induction that

(2.26) l i m n _ | | / ί - / ' | | ; = l - Σχ \\fk\K,

3

(2.27) Y\mn^E(fί-fj)=- Σ E(fk),

(D.8) and (D.8)' immediately follow from (D.7) and (D.7)'. (D.7)' is obvious
by the construction of fj's. Therefore it remains to prove (D.7). Suppose the
contrary that there exists a constant C0>0 and /eiV such that

(2.28) limn^o-||/ί—/^

for any j^J. Thus there is a constant Ci>0 such that

(2.29) II/^ΊIJX?!

for any j"^J, since the size of H/ 74"1!!, essentially depends on the lower bound
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of \\fl—fj\\σ by Lemma 1.3, Lemma 1.4 and the construction of fJ. We choose
and &<ΞJV(seρecified later). Using the formula (2.26) for /GΞ {/, / + 1 , ••• J+k},
we have by (2.28) and (2.29) that

= Σ \\fJ+s\\
.7 = 1

Thus we reach a contradiction, if we take k as kC^l—Co.

Remark 2.1. Proposition D asserts that un behaves like a superposition of
several parts u\> u\, u\, •••, w£ (L may be infinite) as n->oo. The above
argument is somewhat related to those used in Lions [14], Brezis and Coron [2]
and Struwe [23].

We now distinguish two cases:

Case I L=oo and E(fj)>0 for any /

Case II L<oo or £ ( / * ) ^ 0 for some

We shall establish that Case I cannot occur.

Suppose that we are in Case I. We recall (2.27) and define the sequence
by

(2.30) j n ^ { ( f i n } h

Hence the sequence (Ej)j is positive and increasing, since E(fk)>0 for any
On the other hand we have by the definition of E that

(2.31)

Thus (Ej)j has a subsequence decreasing to 0 by (D.7) in Proposition D. There-
fore we reach a contradiction and Case I is excluded.

Hence the only case which occurs is Case II. Since L<oo implies that

we have E(fk)<LQ for some k<=Nin this case. Thus we get, by Lemma 1.1(4),

(2.32) I
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We also have (2.11) and (2.13) for all / e { l , 2, •••, L}, so it follows from
Lemma 1.5 that

(2.33) limί \\fi(x)\*-\fl(x)-f'(x)\*-\f'(x)\*\dx=O.

Hence, for any sequence (yn)n in RN, it holds (2.33) with f3

n and / ; replaced
by fiftn, x+yn) and fJ(tn, x+yn), respectively. So we have that, for any
domain ΩdRN,

(2.34) limf n\\fί(x)\2-\fi(x)-f\x)\2-\fi(x)\2\dx=0.
n-*oo Jχeyn+Ω

Therefore, for /* and any K>0, we have by (2.34) with /e{ l , 2, — , k) and
Ω=B(K) that

(2.35) f \fk\2dx<[ \φn\*dx-lί[ \φ>\2dx+o(l),

where o(l) is a quantity converging to 0 as n-*oo and

(2.36) φn =

(2.37) ψ>=fJ(x+ 23 yϊ).

The main conclusion of Theorem C thus follows from (2.35), since one can see
that, for any ε>0,

(2.38) l | β | | 2 - ε ^ ( \fk\2dx
JB(K )

for sufficiently large K>0. In the case of M O S Σ , %^0 and T < + °° (1.10),
implies the boundedness of ||JCM(OI|. Therefore we obtain (C.4) and (C.5), since
we have by Chebychev's inequality;

(2.39) f \u(t,x)\*dx£ ^\\xu{t)\\*-

Therefore we conclude the proof of Theorem C.

Proof of Corollary E.

We recall (2.11). In view of (D.7)' and (D.8)' in Proposition D, it is enough
to prove that we have

(2.40) fϊ^Undn, x+yi) —> PΦO (n-*oo).

strongly in L° or L2 for some

Proof of (1). We will show that (2.40) with yk=O holds true in the strong
topology of Lσ. If the initial datum w0 is radially symmetric, so is the solution
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to (Cp) in C([0, T); Hι). Thus each un is also radially symmetric. Since (un)n

is a bounded sequence in Hι by (2.4), (2.7) and (2.10), we have (2.40) with
y 4=0 in the strong topology of L for a subsequence (we still denote it by the
same letter) by a radial compactness lemma due to Strauss [22] (see also [1]).
We note that fιψ0 by (2.5) and (2.10).

Proof of (2). We will show that (2.40) holds true in the strong topology
in ZΛ Now we suppose H/I^IQH where Q is the ground state solution to
(0.5). Then one has £(/)>0 by (1.4) in Lemma 1.1. This together with (2.18)
implies that

(2.41) l i m ^ U / W Ί I ^ I I Q I I

by (1.4) again. We note that the limit in the left hand side of (2.41) exists,
since the weak convergence of /£->/ in L2 together with the fact ||/A|| = ||tto||

implies that

(2.42) limn_||/i-/1 | |«

Here we reach a contradiction, since (2.41) and (2.42) yield ||QI|<||Q||. There-
fore we have H/^IHIQL so that we obtain

(2.43) lim^ooll/
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Note added in proof. After completing this work, we found that we could
improve the proof of Theorem C to refine Theorem B (1) with the result that
we have Aϊ>||ζ)||2 for any blow-up solution. This will appear elsewhere.
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