
T. E. CECIL
KODAI MATH. J.
13 (1990), 143-153

ON THE LIE CURVATURE OF DUPIN

HYPERSURFACES

BY THOMAS E. CECIL

0. Introduction.

A hypersurface M in a standard sphere Sn is said to be Dupin if each of
its principal curvatures is constant along its corresponding curvature surfaces.
If the number of distinct principal curvatures is constant, then M is called a
proper Dupin hypersurface. There is a close relationship between the class of
compact proper Dupin hypersurfaces and the class of isoparametric hypersurfaces.
Miinzner [11] showed that the number g of distinct principal curvatures of an
isoparametric hypersurface must be 1, 2, 3, 4 or 6. Thorbergsson [15] then
showed that the same restriction holds for a compact proper Dupin hypersurface
embedded in Sn by reducing that case to a situation where Mίmzner's argument
can be applied. This also implied that the rank of the Z2-cohomology ring in
both cases must be 2g. Later Grove and Halperin [6] found more topological
similarities between these two classes of hypersurfaces. All of this led to the
conjecture [5, p. 184] that every compact proper Dupin hypersurface in Sn is
equivalent by a Lie sphere transformation to an isoparametric hypersurface.

The conjecture was known to be true in the cases g=l (umbilic hypersur-
faces), g=2[4] and g=3[7]. Recently, however, counterexamples to the con-
jecture for g=4 have been discovered by Miyaoka and Ozawa [10] and by
Pinkall and Thorbergsson [14]. Miyaoka and Ozawa also produced countere-
xamples in the case £—6. In all cases, the proof that the counterexamples are
not Lie equivalent to an isoparametric hypersurface uses the so-called Lie cur-
vature ^introduced by Miyaoka [8]. For a proper Dupin hypersurface Mwith
four principal curvatures, Ψ is the cross-ratio of these principal curvatures.
Viewed in the context of Lie sphere geometry, Ψ is the cross-ratio of the four
points on a projective line corresponding to the four curvature spheres of M.
Hence, Ψ is a natural Lie invariant. From Mϋnzner's work, it is easy to
compute that Ψ has a constant value 1/2 on a Dupin hypersurface which is Lie
equivalent to an isoparametric hypersurface. In projective geometric terms, this
means that the four curvature spheres at each point of M form a harmonic set.
For the counterexamples to the conjecture above, Ψ does not have the constant
value 1/2.

Research supported by NSF Grant No. DMS-8907366.
Received September 1, 1989

143



144 THOMAS E. CECIL

The converse problem involves the strength of the assumption that Ψ=l/2
on M. Miyaoka [8] proved that the assumption that Ψ is constant on a compact
proper Dupin hypersurface together with an additional assumption regarding
intersections of leaves of the principal foliations implies that M is Lie equivalent
to an isoparametric hypersurface. In this note, we show that some global hy-
potheses are necessary to reach Miyaoka's conclusion by exhibiting a non-compact
proper Dupin hypersurface in Sn on which Ψ—l/2 which is not Lie equivalent
to an open subset of an isoparametric hypersurface in Sn. We also produce
examples on which Ψ has a constant value c, 0<c<l. These are the only
values possible for Sunder Miyaoka's definition. These examples are all obtained
as follows. Begin with an isoparametric hypersurface V with three principal
curvatures in a sphere Sn~m. Embed Sn~m as a totally geodesic submanifold in
Sn, and take a tube of constant radius over V in Sn. The examples are all
open subsets of such tubes.

1. Dupin and isoparametric hypersurfaces in Lie sphere geometry.

In this section, we begin by briefly outlining the framework for the study
of Dupin hypersurfaces in Lie sphere geometry. The notation is taken from
[2] which provides more details. At the end of this section, we prove an
elementary result, Theorem 1, which is essentially a Lie geometric formulation
of the concept of an isoparametric hypersurface.

Let J??+3 be a real vector space of dimension n+3 endowed with a metric
of signature (w + 1, 2),

(1.1) <X, yy= — Xιyι + X2yzJΓ ••• + *n+23>n+2 —*n+33>n+s

Let e^ ••-, en+3 denote the standard orthonormal basis for this metric with el

and en+3 timelike. Let Pn+2 be the real projective space of lines through the
origin in Rl+z, and Qn+1 the so-called Lie quadric hypersurface in Pn+2 given
by the equation <#, *>=0. Finally, let Sn be the unit sphere in the Euclidean
space Rn+1 spanned by the vectors ez, •••, en+2.

Lie sphere geometry gives a bijective correspondence between the points of
Qn+1 and the set of all oriented hyperspheres and point spheres in SΛ(see [2]).
The hypersphere with center p^Sn and signed radius p corresponds to the
point [(cos p, p, sin p)~] in Qn+1, where the square brackets denote the point in
pn+2 given by t^ homogeneous coordinates within the round brackets. The
point spheres in Sn correspond to those points with p=0. From this relation-
ship, one easily computes that a point [>]eζ)n+1 corresponds to an oriented
hypersphere of signed radius p if and only if

(1.2) <*, sin /OS!—cos pen+s>=0.

The Lie quadric contains projective lines but no linear subspaces of Pn+2 of
higher dimension. The line [*, y~] determined by two points [#] and \_y~] of
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Qn+1 lies on Qn+1 if and only if <#, ;y>— 0. Geometrically, this means that the
two hyperspheres in Sn corresponding to the points [#] and [3;] are in oriented
contact. The points on a line on the quadric correspond to the pencil of oriented
spheres in oriented contact at a point (p, f) in the unit tangent bundle to Sn.
We call (p, ξ) a contact element.

A Lie sphere transformation is a projective transformation of Pn+2 which
takes Qn+1 to itself. Since it takes lines on Qn+1 to lines on Qn+ί, a Lie sphere
transformation preserves oriented contact of spheres. The group of Lie sphere
transformations is isomorphic to 0(n + l, 2)/{±/}, where 0(n + l, 2) is the or-
thogonal group for the metric (1.1).

The manifold Λ27*'1 of lines on Qn+1 has a contact structure, i.e., a globally
defined 1-form ω such that ω/\dωn~l never vanishes on Λ271"1. The condition
ω— 0 defines a codimension one distribution D on A2 7 1"1 which has integral
submanifolds of dimension n — 1, but none of higher dimension. An immersion
λ: Mn~l-^/\Zn~l such that λ*ω=Q is called a Legendre submanifold [2] or Lie
geometric hypersurface [12]. If a is a Lie sphere transformation, then aλ :
M7l~1^Λ27l~1 is also a Legendre submanifold. It is said to be Lie equivalent to
λ. Pinkall [12] shows that giving a Legendre submanifold λ is equivalent to
giving two functions kίt kz from M to R^ such that:
(LI) For all x^M, the vectors k^x) and k z ( x ) are linearly independent

and <&,,

(L2) There is no *eM, X^T XM such that dk,(X) and dkz(X) are both in

Span {kι(x\ k z ( x } } .

(L3) <dkί} &2>=0.

The Legendre submanifold is then defined by λ(x)—\_kl(x\ k2(x)~\. Conditions
(L1)-(L3) are preserved if one reparametrizes by taking kί=ak1+βkz and k^—
Tkί+δkz, where α, β, f, δ are smooth real-valued functions on M with aδ—βγ
never zero.

An immersion / : Mn~1-^Sn with field of unit normals ξ : Mn-1-^Sn naturally
induces a Legendre submanifold defined by the two functions

(1.3) *!=(!, /, 0), fea=(0, f, 1).

For each teM, [^ι(z)] is the point sphere on the line λ(x\ and [^2(^)j is the
great sphere on λ(x\ An immersed submanifold φ : V->Sn of codimension greater
than one also induces a Legendre submanifold whose domain is the bundle Bn~l

of unit normal vectors to φ(V). For a unit normal ξ to φ(V) at a point ^>(f),
we define λ(v, ξ) to be the line on Qn+1 corresponding to the pencil of spheres
in oriented contact at the contact element (ψ(v\ ξ ). In this case, the point
sphere map k^v, ξ)=(l, φ(v\ 0) has constant rank equal to the dimension of V.
For a general Legendre submanifold, the point sphere map is not an immersion,
nor does it have constant rank. It can always be written in the form (1.3),
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and the map / is called the spherical projection of the Legendre submanifold.
Suppose that λ: Mn"1->Λ2n"1 is a Legendre submanifold determined by fex

and & 2 satisfying (L1)-(L3). A sphere K=akl+βk2 is called a curvature sphere
at x^M if there is a non-zero vector X^TXM such that a dk^(X)+β dk2(X) is
in Span { k ^ x ) , k z ( x ) } . The vector X is called a principal vector corresponding
to K. If kι and &2 are given as in (1.3) by an immersed hypersurface in Sn,
then the curvature spheres at x are precisely those hyperspheres in oriented
contact with the hypersurface at f(x) which are centered at the focal points
along the normal geodesic to the hypersurface at /(#). The principal vectors
are just the usual principal vectors for the shape operator of the immersion.
For an arbitrary Legendre submanifold, the principal vectors corresponding to
a given curvature sphere form a subspace of TXM, and TXM is the direct sum
of these principal spaces. Further, if a continuous curvature sphere K has con-
stant multiplicity on M, then its principal distribution is a smooth foliation. If
the multiplicity of K is greater than one, then K is constant along the leaves
of its principal foliation.

A connected submanifold TV of M is called a curvature surface if its tangent
space is everywhere a principal space, e.g., a leaf of a principal foliation. A
Legendre submanifold is called Dupin if along each curvature surface, the cor-
responding curvature sphere is constant. A Dupin submanifold is said to be
proper if the number of distinct curvature spheres is constant. The Legendre
submanifold induced from a Dupin hypersurface in Sn is Dupin in the sense
defined here, but our definition is more general, since it is not necessary for the
spherical projection to be an immersion. Both the Dupin and proper Dupin pro-
perties are easily seen to be Lie invariant.

We now give an elementary Lie geometric characterization of those proper
Dupin submanifolds which are Lie equivalent to the Legendre submanifold in-
duced by an isoparametric hypersurface in Sn. Compactness is not required for
this result, i.e., the theorem characterizes those Dupin submanifolds which are
Lie equivalent to open subsets of compact isoparametric hypersurfaces.

Recall that a line in Pn+2 is called timelike if it contains only timelike
points. This means that an orthonormal basis for the 2-plane in J?2+3 deter-
mined by the projective line consists of two timelike vectors. An example is
the line \_el9 en+i\.

THEOREM 1. Let λ: Mn~1->Λ2 n~1 be a proper Dupin submanifold with g
distinct curvature spheres Klf ••• , Kg at each point. Then λ is Lie equivalent
to the Legendre submanifold induced by an isoparametric hypersurface in Sn if and
only if there exist g points Plf ••• , Pg on a timelike line in Pn+z such that

Proof. If λ is the Legendre submanifold induced by an isoparametric hyper-
surface, then the spheres in each family KI all have the same radius ρt. Thus,
by (1.2) we have </£, Pt>-0, where the Pt,
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(1.4) Pl=sinpiel— cos pten+3 ,

are g points on the timelike line \_elf en+z]. Since a Lie transformation preserves
curvafure spheres, timelike lines and the polarity relationship, the same is true
for any Lie image of λ.

Conversely, suppose that there exist points Plf ••• , Pg on a timelike line /
such that </£», jPt>=0. Let a be a Lie transformation which takes / to the line
\β\y en+s] Then the curvature spheres aKτ of the Dupin submanifold aλ are
respectively orthogonal to the points Qτ=aPτ on the line [elt en+z]. This means
that for each i, the spheres aKτ have constant radius on M. That is, aλ is
induced from an isoparametric hypersurface in Sn.

Remark 1. In the case where λ is Lie equivalent to an isoparametric hyper-
surface, one can say more about the position of the points PI, ••• , Pg along the
line /. Mύnzner [11] showed that radii pt of the curvature spheres of an iso-
parametric hypersurface must be of the form

(1.5) pt=pι+d-l)π/g, l^i^g,

for some p^ in (0, π/g). Hence, after Lie transformation, the /\ must have the
form (1.4) for ρτ as in (1.5).

Remark 2. Theorem 1 could be used to significantly shorten the proof of
the classification of Dupin hypersurfaces with g=3 in S4 given by Chern and
the author [3] (see also Pinkall [13]). In that proof, the three curvature spheres
are given by maps Ylf Y7 and Yi+YΊ from M3 to the Lie quadric Q5. In the
treatment of the case p^O [3, pp. 39-40], we show by equations (5.79)-(5.81)
that the three curvature spheres satisfy

<YI, w,>=o9 <Y7} PF2>=o, <r1+r7, W^W^Q ,
for three points on the timelike line [Wlf Wz~]. At that point in the proof,
Theorem 1 could have been invoked to conclude that M3 is Lie equivalent to an
open subset of an isoparametric hypersurface. Instead, we gave a longer direct
proof that M3 is Lie equivalent to an open subset of a tube over a Veronese
surface in S4, thereby, in effect, reproving Cartan's classification of isoparametric
hypersurfaces with g—3 in S4.

2. Lie curvature of Dupin submani folds.

Let λ: Mn"1-^Λ27l~1 be a proper Dupin submanifold with g distinct curva-
ture spheres Kίf ••• , Kg at each point. Let &ι=(l, /, 0) and ^2=(0, f, 1) be the
point sphere and great sphere maps, respectively, determined by λ. At each
point #<=M, we can represent the points on the line λ(x) in the form μky(x)+
k2(x), i.e., take μ as an inhomogeneous coordinate along the line λ(x). Of
course, kι(x) corresponds to μ = °°. In particular, we write the curvature
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spheres as

(2.1) Kl-=μlk1-^Γk2)

Assume now that g-^4. Miyaoka [8] pointed out that if σ is any permutation
of the numbers 1, ••• , g, then the cross-ratio

of the four curvature spheres Kσ^, •- , KσM is invariant under Lie sphere
transformations. All of these cross-ratios are called Lie curvatures of λ. In the
case g=4, we can order the μt so that μι<μ2<μs<μ4. Then there is one uni-
quely defined Lie curvature function Ψ given by

(2.3) Φ=(μ4—μs)(μι—μ*)/(μt—μ2)(μι—μs)

Suppose that the spherical projection / is an immersion at a point x&M, i.e.,
&i(#) is not a curvature sphere. For X^TXM and μ^R, we have

d(jκfeι+fe2)(*)=(0, μdf(X)+dξ(X\ 0).

The vector on the right is in Span {k±(x\ k z ( x ) } if and only if dξ(X)=—μdf(X),
i. e., μ is a principal curvature of the immersion / at #. Thus, the cross-ratio
Ψ is also the cross-ratio of the principal curvatures. If k ι ( x ) is a curvature
sphere, then by applying a parallel transformation Pt (see [2] and [12]) to λ,
one can obtain a Legendre submanifold PtΛ whose spherical projection ft —
cos ί/+sin if is an immersion at x. Then the cross-ratio (2.2) of four curvature
spheres of λ at x is equal to the cross-ratio of the corresponding four curvature
spheres of Ptλ. This, in turn, is equal to the cross-ratio of the corresponding
four principal curvatures of the immersion ft at x.

A noteworthy special case is when the point sphere map kl is a curvature
sphere of multiplicity m on M. Then the spherical projection of λ factors
though an immersion φ of the (n — 1 — ra)-dimensional space of leaves V of the
corresponding principal foliation. Furthermore, M is diffeomorphic to the bundle
of unit normals to the immersed submanifold φ(V) of codimension m+1 in Sn,
and λ can be considered to be the Legendre submanifold induced by the sub-
manifold φ(V), as discussed in Section 1.

The paper [14] of Pinkall and Thorbergsson suggests the following treat-
ment of the case of a Legendre submanifold λ: Bn~l-^/\2n~l induced from an
immersed submanifold φ(V) of Sn of codimension m+1 >1. Write the points of
the unit normal bundle B71'1 in the form (v, ξ). As before, we consider the
point sphere and great sphere maps,

(2.4) k,(v9 £)=(!, φ(v\ 0) , kt(v, £)=(0, ξ , 1) .

To find the curvature spheres of λ, we use the following local trivialization of
Bn~l in a neighborhood of a given point (v, ξ). Let ζo, ~- , ξm be orthonormal
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normal vector fields to φ(V) on a normal coordinate neighborhood W of v which
are parallel with respect to the normal connection along geodesies through v
in W. Arrange that ξ0(v)=ξ. For any point w^W and unit normal η to φ(V)
at wt we can write

where 0^ | f t | ^ l for all i, and ίH ----- Km^l. The tangent space to Bn~l at
the given point (v, ξ) can be considered to be

First note that dk^Q, F) equals zero for any Fe.βm, since &ι depends only on
v. Hence, k1 is a curvature sphere, as expected. Furthermore, since

dkι(X, 0)=(0, <ty(*), 0)

is never in Span { k ί f k z ] for a non-zero Z in TυF, the multiplicity of the cur-
vature sphere kl is m. If we let Kg=μgk1+k2 be this curvature sphere, then
we must take μg—^ to get klt We find the other curvature spheres at (v, ξ)
by computing

k&X, 0)=(0, /KtyW+dfC*), 0),

where ξ has been extended to a field of unit normals which is parallel with
respect to the normal connection along geodesies through v. Thus, we see that
μki+kz is a curvature sphere with principal vector (X, 0) if and only if μ is a
principal curvature of the shape operator Aζ with principal vector X. We sum-
marize these results in the following lemma.

LEMMA 2. Let λ: Bn~l^ f\*n~l be the Legendre submanifold induced from
an immersed submanifold φ(V) in Sn of codimension ra+l>l. Let kl and k2 be
the point sphere and great sphere maps for λ given by (2.4). Then the curvature
spheres of λ at a point (v, ξ) in Bn~l are

where μlf ••• , μg-ι are the distinct principal curvatures of the shape operator Λξ

and μg

=c°. For l<i^g—l, the multiplicity of Kτ equals the multiplicity of μτ,
while the multiplicity of Kg is m.

Now consider the case where φ(V) is an immersed submanifold of Sn of
codimension m+l and U is a connected open subset of the unit normal bundle
Bn~l on which there are three distinct principal curvatures μι<μz<μz at each
point. By Lemma 2, the induced Legendre submanifold λ: Bn~l-+/\'ίn~i has
four distinct curvature spheres at each point of U, and the Lie curvature Ψ of
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λ on U is given by

(25) ^^(^-^3X^1-^2) =fr-ί** = φ
(^4—^2X^1—^3) μ\— μ*

since μ4=co. The function Φ was called the Moebius curvature of the submani-
fold ψ by Pinkall and Thorbergsson [14]. The calculations of Miyaoka [8]
show that Φ is invariant under Moebius transformations, i.e., Lie sphere trans-
formations which take point spheres to point spheres.

Remark 3. For sufficiently small ί, a tube ψt : B
n~ί->Sn of radius t over ψ

is an immersed hypersurface having φ(V) as one of its focal submanifolds. One
can compute the principal curvatures of φt from those of φ (see [5, pp. 131-132])
and then compute the Lie curvature Ψ of φt. However, since the Legendre
submanifolds induced by φt and φ are Lie equivalent, they have the same Lie
curvatures. It is often easier to compute the Lie curvature of the hypersurface
φt by computing the Lie curvature of the Legendre submanifold induced by its
focal submanifold φ(V) using (2.5).

For example, consider the case of an isoparametric hypersurface M in Sn

with four distinct principal curvatures at each point. M is a tube of constant
radius over each of its focal submanifolds in Sn. If φ(V) is one of these focal
submanifolds, then the results of Mύnzner [11] show that for each unit normal
ξ to φ(V) at each point ψ(v), the shape operator Aξ has three distinct principal
curvatures, μ1 =—l, μ2— 0, μs=l. By Lemma 2 and formula (2.5), the Lie cur-
vature Ψ on M has the constant value 1/2. In terms of projective geometry,
this means that for each ,τeM, the four curvature spheres are a harmonic set
on a projective line on the quadric Qn+1.

Examples with Ψ=l/2.
Let φ: F-»Sn~m be a Dupin hypersurface with field of unit normals ξ such

that φ has three distinct principal curvatures μι<μz<μs at each point of V.
Embed Sn~m as a totally geodesic submanifold in Sn, and let B71'1 be the unit
normal bundle of the submanifold φ(V) of codimension ra+1 in Sn. Let λ: Bn~l

_>/\2n-i ke j.]̂  Legencjre submanifold induced from the submanifold φ(V) in Sn.
Any unit normal η to φ(V) in Sn at a point v^V can be written as

(2.6) 7?=cos θξ(v}+$mθN,

where N is a unit normal to Sn~m in Sn. Then the shape operator

since ^4^=0. Thus, the principal curvatures of Aη are
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We see that if η ζ= cos 0^0, then Aη has three distinct principal curvatures,
whereas if η-ξ=Q, then Aη has only one distinct principal curvature 0. Let U
be the open subset of Bn~l on which cos 0>0, and let λπ denote the restriction
of λ to U. By Lemma 2, the Legendre submanifold λu has four distinct curva-
ture spheres at each point of U. Since φ(V) is Dupin in Sn~m, it is easy to
show that λu is also Dupin (see the tube construction in [1] for more detail).
Furthermore, by equation (2.5), the Lie curvature of λu at a point (v, η) of U
as in (2.6) is given by

(2.7) Ψ(v, ,)=*(«,, ) ='
j

i— α3 cos #//!— cos 0μ3 μι—μ3

Now suppose that ^(V) is a minimal isoparametric hypersurface in Sn~w with
three distinct constant principal curvatures. By Mϋnzner [11], these principal
curvatures must have the values μι=— VT, fa— 0, μ3— VT On the open sub-
set U of 571'1 described above, the Lie curvature of the induced Dupin submani-
fold λu has the constant value 1/2 by (2.7). To construct an immersed proper
Dupin hypersurface in Sn with g= 4 and Ψ—l/2, we simply take the open sub-
set φt(U) of the tube of radius t around ψ(V) in Sn.

These examples are not Lie equivalent to an open subset of an isoparametric
hypersurface with four principal curvatures in Sn because they are reducible in
the sense of Pinkall [12, p. 437] to the lower dimensional Dupin hypersurface
φ(V) in Sn~m, whereas an isoparametric hypersurface with g=4 is not reducible
[1]. This fact is a consequence of the following simple geometric argument.
Note that the curvature sphere kι of λ lies in the linear subspace of codimen-
sion m+1 in Pn+2 orthogonal to the space spanned by en+z and those vectors N
normal to Sn~m in Sn. This implies that there are only two distinct curvature
spheres on the lines λ(v, N) for such TV. On the other hand, if γ: Mn"1->Λ27'~1

is the Legendre submanifold induced by an isoparametric hypersurface with g—^
in Sn, then there are four distinct curvature spheres on each line γ(x) for x^
Mn~l. Thus no curvature sphere of γ lies in the orthogonal complement in
pn+2 Of an (m-fi)_ plane with signature (1, m), and γ cannot be Lie equivalent
to λu. Of course, this change in the number of distinct curvature spheres of λ
at points of the form (υ, N) is precisely why the example λu cannot be com-
pleted to a compact proper Dupin submanifold with g— 4.

With regard to Theorem 1, we see that the example λu comes as close as
possible to satisfying the requirements for being Lie equivalent to an isopara-
metric hypersurface without actually fulfilling them. Specifically, the point
sphere map kl =Kί corresponding to μ4=oo and the great sphere map k2=K2

corresponding to μ2=Q are both curvature spheres of λu. We have <&ι, gn+3>— 0
and <&2, £ι>— 0. If a third curvature sphere, say Klt were to satisfy (Kly PI>
—0 for a point PI on the timelike line \_ely 0ra+3], then the corresponding principal
curvature μl would be constant on U. This and the fact that Φ — l/2 on U
would imply that μB is also constant on U and that λΌ is Lie equivalent to an
open subset of an isoparametric hypersurface.
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Using this same method, it is easy to construct a proper Dupin hypersurface

with £=4 and Ψ=c for any number 0<£<1. Note that formula (2.3) and the

ordering of the principal curvatures imply that 0<Ψ<1 always. If φ(V) is an

isoparametric hypersurface in Sn~m with three distinct principal curvatures, then

by Mύnzner [11], these must have the values

and any value of θ in (0, π/3) can be realized by some hypersurface in a parallel

family of isoparametric hypersurfaces. A direct calculation then shows that the

Moebius curvature

(2.8) *" D I rj ι>uiί \v

μi—μz Δ Δ

on φ(V), and this can assume any real value c in (0, 1) by an appropriate choice

of θ in (0, τr/3). An open subset of a tube over φ(V) in Sn is a proper Dupin

hypersurface with g—^ and Φ — c.

Finally, note that (2.8) shows that two hypersurfaces in a parallel family of

isoparametric hypersurfaces are not Moebius equivalent. Of course, this can

easily be deduced directly from the fact that parallel transformation is not a

Moebius transformation.

REFERENCES

[ 1 ] T. CECIL, Reducible Dupin submanifolds, to appear in Geom. Dedicata.
[ 2 ] T. CECIL, AND S.-S. CHERN, Tautness and Lie sphere geometry, Math. Ann. 278

(1987), 381-399.
[3] T. CECIL, AND S.-S. CHERN, Dupin submanifolds in Lie sphere geometry, Differ-

ential Geometry and Topology, Proceedings Tianjin 1986-87, Lecture Notes in
Math 1369, 1-48, Springer, Berlin, 1989.

[ 4 ] T. CECIL, AND P. RYAN, Focal sets, taut embeddings and the cyclides of Dupin,
Math. Ann. 236 (1978), 177-190.

[ 5 ] T. CECIL AND P. RYAN, Tight and taut immersions of manifolds, Research Notes

in Mathematics 107, Pitman, London, 1985.
[ 6 ] K. GROVE AND S. HALPERIN, Dupin hypersurfaces, group actions and the double

mapping cylinder, J. Differential Geometry 26 (1987), 429-459.
[ 7 ] R. MIYAOKA, Compact Dupin hypersurfaces with three principal curvatures,

Math. Z. 187 (1984), 433-452.
[8] R. MIYAOKA, Dupin hypersurfaces and a Lie invariant, Kodai Math. J. 12(1989),

228-256.
[ 9 ] R. MIYAOKA, Dupin hypersurfaces with six principal curvatures, to appear in

Kodai Math. J.
[10] R. MIYAOKA AND T. OZAWA, Construction of taut embeddings and Cecil-Ryan

conjecture, Geometry of manifolds (edited by K. Shiohama), Acad. Press (1989),
181-189.

[11] H. F. MUNZNER, Isoparametrische Hyperflachen in Spharen I and II, Math. Ann.
251 (1980), 57-71 and 256 (1981), 215-232.



DUPIN HYPERSURFACES 153

[12] U. PINKALL, Dupin hypersurfaces, Math. Ann. 270 (1985), 427-440.
[13] U. PINKALL, Dupinsche Hyperflachen in £4, Manuscripta Math. 51 (1985), 89-119.
[14] U. PINKALL AND G. THORBERGSSON, Deformations of Dupin hypersurfaces, 1988

preprint, Technische Universitat Berlin and University of Notre Dame.
[15] G. THORBERGSSON, Dupin hypersurfaces, Bull. London Math. Soc. 15 (1983), 493-

498.

THOMAS E. CECIL
DEPARTMENT OF MATHEMATICS
COLLEGE OF THE HOLY CROSS
WORCESTER, MA 01610 U. S. A.






