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ON THE ZERO-ONE-POLE SET OF A

MEROMORPH1C FUNCTION, II

BY HIDEHARU UEDA

0. Let {an}> {bn} and {/>„} be three disjoint sequences with no finite limit
points. If it is possible to construct a meromorphic function / in the plane C
whose zeros, d-points and poles are exactly {an}, {bn} and {pn\ respectively,
where their multiplicities are taken into consideration, then the given triad
( { a n } , {bn}, {pn}} is called a zero-d-pole set. Here of course d is a nonzero
complex number. Further if there exists only one meromorphic function /
whose zero-d-pole set is just the given triad, then the triad is called unique. It
is well known that unicity in this sense does not hold in general.

In Sections 1 and 2, the letter E will denote sets of finite linear measure
which will not necessarily be the same at each occurrence.

1. Let / and g be meromorphic functions in the plane C. If / and g
assume the value αeCU{°°} at the same points with the same multiplicities,
we denote this by f=a<=>g=a. With this notation, our first result of this note
is stated as follows.

THEOREM 1. Let f and g be nonconstant meromorphic functions satisfying
/— 0<=>g:=0, f=l&g=l and f—^^g—<^. If

(1.1) /f(/)=limsup{J7(r, 0, f}+N(r, oo
r-*oo

then f=g or fg=l.

From this we immediately deduce the following

COROLLARY 1. Let f be a nonconstant meromorphic function satisfying
n(r, 0, /)+n(r, oo, /)^Q and K(f)<l/2. Then the zero-one-pole set of f is uni-
que.

The estimate (1.1) is sharp. For example, let us consider f=ea(l— ea) and
g— e~a(l — e~a) with a nonconstant entire function a. Then we easily see that
f=Q^g= o, f=l<=$g=l and f—oo^g—<^t Also, f^g and fg^l are evident.
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To determine the value #(/), we may note that T(r, /)~T(r, /— 1/4)=
2ro(r,_*α-l/2)~2m(r, ea} (r-»oo), N(r, 0, /)=JV(r, 1, £*)^m(r, O+0(l) (r->oo),
and JV(r, 1, eα)~m(r, eα) (rφ.E, r->oo). The combination of these estimates gives
/£"(/) =1/2, and thus (1.1) is actually sharp. Also we remark that Theorem 1 is
an improvement of [4, Theorem 2].

Before proceeding to the proof of Theorem 1, we state two lemmas.

LEMMA 1. If a is a nonconstant entire function, then

(1.2) m(r, α')=0{m(r, ea}} (rφE, r->oo),

and /0r any nonzero constant c

(1.3) JV(r, c, ea)^N(r, c, ea}<^m(r, ea) (rφE, r-»oo).

(1.2) is immediately deduced from the fact that a'—(eay/ea and [1, Theorem
2.3.]. (1.3) is easily obtained from the first and the second fundamental theo-
rems.

LEMMA 2. // / is meromorphic and not constant in the plane C, then we
have

(1.4) N{r, oo, 2(/'//)2-/"//}^2JV(r, 0, /)+JV(r, oo, /)+^(r, oo, /) .

This estimate is easily verified from the computation which was done in
[4, p. 28].

Proof of Theorem 1. We make use of notations and argument in the proof
of [4, Theorem 2]. Our assumptions of this theorem imply

(1.5) f=e*g, /-1-^te-l)

with two entire functions a and β. If eβ or eβ~a is identically equal to one,
we deduce f=g from (1.5) at once. We divide our argument into the following
three cases.

Case 1. eβ is a constant c(φQ, 1),
Case 2. eβ~a is a constant c(ΦQ, 1),
Case 3. neither eβ nor eβ~a are constants.

In Cases 1, 2, and 3 with JΞ() and C=£θ, the argument in [4, pp. 29-30] and
(1.3) are combined to show that #(/)=!. This is inconsistent with (1.1). In
Case 3 with JΞΞ() and C=0, the argument in [4, p. 30] gives fg=L Consider
Case 3 with J^O. The argument in [4, p. 30] yields

(1.6) m(r, /)^0{logT(r, f)+\ogr} + N(r, oo, J) (rφE, r—>oo),

and
m(r, ^α) 1
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Since /=(l-V)/(l-^-α), we readily obtain from (1.2) and (1.7)

(1.8) N^r, oo, /)^M(r, oo, f)£N(r, 0, βf-a')£m(r, β'-a'

rgO{logT(r, /)+logr} (r£E, r->oo) .

By the definition of Δ and (1.4)

(1.9) N(r, oo, J)^2/7(r, 0, /)+J7(r, oo, /)+M(r, oo, /) .

Combining (1.6), (1.8) and (1.9), we have

(1.10) T(r, /)=ro(r, /)+tf(r, oo, /)+M(r, oo, /)

r, 0, /)4-JV(r, oo, /)} + 0{logT(r, /)+logr}

The nonconstancy of β and (1.7) imply that / is transcendental, and thus (1.10)
gives K(f)^l/2. This is also inconsistent with (1.1). This completes the proof
of Theorem 1.

2. Suppose that / is a nonconstant meromorphic function in the plane C.
We denote the zero-one-pole set of / by ({an}> {bn}> {pn}} Let {cn}, {dn} and
{qn} be subsequences of {α n }> {bn} and {pn} respectively such that {cn}\J{dn}
W{#n}=£0 Then for shortening we write {an}^J{pn} = {sn} and {cn}\J{qn} =
{tn}. Further we define a subsequence {un} of {sn\ as follows: un^{un} if
and only if un occurs in {sn} only once but never in {tn}.

In this section we prove

THEOREM 2. Let f, ({an}, {bn}> {/>»}), {cn}, {dn}> {qn}, {sn}, {tn} and {un}
be given as above. If {sn}^0 and

,« n ,. , . n , n , (tn})-N(r, {un}) ^0(2. 1) lim sup - -=- — - - < 2,
r-*oo 1 (Γ, f)

then ({an}\{cn}, {bn}\{dn}, {Pn}\{qn}) ^s not a zero-one-pole set of any noncon-
stant meromorphic function.

In view of Corollary 1 the zero-one-pole set of / in Theorem 2 is unique.
Also, the estimate (2.1) is sharp. In fact, let P and Q be canonical products
with no common zeros, let L be a transcendental entire function, and consider
g=(P/Q)eL and f=gz. Then simple computations show that the left hand side
of (2.1) =2. Further we notice that Theorem 2 improves [5, Theorem 4] in some
sense.

The proof of Theorem 2 needs the following estimate of Weierstrass pro-
ducts.

LEMMA 3. ([3, Lemma 4]) Let {avμ} be n sequences (l<^μ<^n) of complex
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numbers satisfying \ alμ\ rg I o,2μ\ ^ •••, lim \avμ\—-\-^o for each μ. Then we can

construct the Weierstrass products Pμ of { a » μ } (l<*μ^n) with the property that

Σ log m(r, Pμ}

Σ3 N(r, 0, Pμ)
•0

holds as r-»oo inside a certain set Ω of infinite linear measure.

Proof of Theorem 2. We shall seek a contradiction from the assumption
that ({an}\{cn}> {bn}^{dn}, {pn}^{qn}) is the zero-one-pole set of a nonconstant
meromorphic function g. First, we construct entire functions P, R and Q whose
zeros are {cn}, {dn} and {qn} respectively as follows:

(i) If {cn}~0, then P=l. It is the same with R and Q.
(ii) If l^#{Cn}< + °°, then P is the polynomial Π(^—cn). It is the same

with R and Q.

(iii)
logm(r, P)+logm(r, , Q)

, 0, P)+N(r, 0, , 0, (?)
•0

holds as r—>oo inside a suitable set Ω of infinite linear measure.
The condition (iii) is possible by means of (ii) and Lemma 3. From the

first fundamental theorem it follows that N(r, 0, P)+7V(r, 0, R)+N(r, 0, Q)^
N(r, 0, f)+N(r, 1, f)+N(r, oo, /)^3T(r, /)+0(l), and hence by (iii)

(2.2)
logm(r,

•0

Now, under our assumptions there are two entire functions a and β such
that

(2.3)

Eliminating

(2.4)

from (2.3), we have

f-fSer+Te-?=l, or l/f-Te^/f+Ser=l ,

where S=R/P, T—R/Q and γ =a—β. For simplicity's sake, we write φ^—f,
<f>z=-fSer, φ,=Te-P, φ^l/f, ψ2=-Te-P/f and ̂ 8=S^. With these 0, (/=!,
2, 3) define Δ and Jr by

1 1 1

φ'ί/φι

Φ'l/Φi Φϊ/Φ* ΦΊIΦ*

and further with φ} replaced by φ3 we define Δl and Δ( similarly.
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(A) First we consider the case Δ=§. By (2.4)

(2.5)

(2.6)

with two constants C and D. Eliminating / from (2.5) and (2.6), we get

(2.7)

(A,} If {dn}^0, then (2.7) implies C+D=Q and (C+ΐ)Qeβ+r-Rer=CP.
It is easily verified that C^O, —1. Hence from (2.5) and (2.6) we deduce that
{cn} — {an}ί {dn} — {bn} and {qn} — {pn} This is contradictory to the assump-
tion that g is nonconstant.

(Az) Now, we proceed to the case {dn} = 0, i.e. R = l. If D—^, (2.5) im-
plies P=l, so that Q has at least one_zero. Hence by (2.6) CΦ- 1 and /—
(1-1/Q^)/(C+1), from which we have ΛΓ(/)^1. (Here we remark that (2.1)
implies /ί(/)<l/2. This is an immediate consequence of the fact that {un} is
a subsequence of {sn}.) If D=l, (2.7) implies P=l and C^O. Hence in view
of (2.5) f=—(C + er)~1, from which we have #(/)=!. It remains to consider
the case DΦQ, 1. If C = -l, (2.6) implies ^(l-P)-1. From this and (2.5) it
follows that f=DP/{P+(D-l)ea}, so that K(f)^l. If CΦ-l, (2.6) gives /=
(1-L>-1/Q^)/(C+1), which also yields tf(/)^l.

(B) The case ^=0 can be handled in all the same way as the case JΞU,
and after all Jj=0 leads us to incompatible results with our assumptions.

(C) Next we suppose that neither Δ nor Δl are identically zero. From
(2.4) it follows that f—Δf/Δ. Using the same reasoning as in Case 3 in the
proof of Theorem 1, we obtain the following estimates:

(2.8) m(r, f)^m(r, Δ'}+m(r, Δ}+N(r, oo,

(2.9) m(r, Δ'}+m(r, J)=O{logT(r, /)+logr+logm(r, P)

+ logm(r, /?)+logm(r, <?)} (r^j5, r->oo) ,

(2.10) Mr, oo, Δ)^2N(r, 0, /)+JV(r, oo, f)+N(r, 0, P)+JV(r, 0, Q)+2JV(r, 0,

+JVt(r, oo, /ρ)_]γ(r, {Q^0}n{ multiple poles of f Q } } ,

(2.11) 7V(r, oo, /)=JV(r, oo, /)+^(r, 0,

In particular, if / is a rational function, (2.9) can be replaced by

(2.9X m(r,

Indeed, we may use the first and the second fundamental theorems to find that
g is rational, and next note from (ii) that all of P, R and Q are polynomials,
so that ea and eβ are constants. Hence φ ί f φ2 and φ3 are all rational functions,
and thus (2.9)r holds.
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After (2.2), (2.9) ((2.9)' in case that / is a rational function) and (2.10) are
taken into account, (2.8) and (2.11) yield

(2.12) {l-o(l}}T(r, f}^2{N(r, 0, ft+R(r9 ™, f)+N(r, 0, /?)}

+N(r, 0, P)+N(r, 0, Q)+(Nl+Ffl)(r9 <*>, /Q)

+N(r, {<?=0}Π {simple poles of f Q } } (rt=Ω\E, r->co).

In the same way, starting from I/ f=Δ(/Δl we deduce

(2.13) {l-o(l)}T(r, l//)^2{Mr, oo, /)+JΫ(r, 0, /)+JV(r, 0, 7?)}

+JV(r, 0, £)+ 7V(r, 0, P)+(7V1+JΫ1)(r, 0, f/P)

+N(r, {P=Q}ΓΛ {simple zeros of f / P } } (r(ΞΩ\E, r->oo) ,

where Ω and E are the same as in (2.12). Summing up (2.12) and (2.13), we
have

, 0, /)+JV(r, oo, /)+JV(r, 0, 7?)}+(^V+JΫ)(r, 0, P)

+(7V+ΛO(r, 0, Q)+(M+JV1)(r, 0, f/P)+(N1+N1)(rί oo,

+JV(r, {P=0}Π{s/τnί/e zβrί?s <?/ //P})

+JV(r, {0=0}Γ\{s/mί/e ίo/es of /(?}) (r<=Ω\E, r->co) ,

which is also inconsistent with (2.1).
Thus ({an}^{cn}, {bn}^{dn}, { P n } ^ { q n } ) is not a zero-one-pole set of any

nonconstant meromorphic function.

3. Suppose that / is a nonconstant meromorphic function in the plane C
whose zero-d-ρole set is not unique, where d(φQ, 1) is a constant. Let ({an},
{bn}> { p n } ) be the zero-one-pole set of /, and let {cn}, {dn} and {qn} be sub-
sequences of {an}, {bn} and { p n } respectively such that {cn}\J{dn}^J{qn}i:ι0
and such that

(3.1) Σ kJ-M- Σ \dn\-l+ Σ k n l
cn*0 dn*0 qn*0

Under these assumptions we prove the following result.

THEOREM 3. Let f, d, ({an}, {bn}, { ρ n } ) , {cn}, {dn} and {qn} be given as
above. Then ({an}\{cn}, {bn}\{dn}, {pn}^{qn}) ts not a zero-one-pole set of any
nonconstant meromorphic function.

We have already showed the corresponding result for the case d = l in [5,
Theorem 1]. Also, Ozawa [2, Section 4] has proved this result for { p n } = {qn}
— {cn} — ^) and l^#{dn}< + °°. The assumption (3.1) cannot be omitted. For
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example, let us consider f—d(ez—l}/(ez—d)y N=df and g=ez/(ez—d) with a
constant d(=£θ, 1). Then we easily see that / and N have the same zero-d-
pole set, say ({an}, φ, {pn})> and therefore the zero-d-pole set of / is not uni-
que. On the other hand, the zero-one-pole sets of / and g are ( { a n } , φ, {pn}}

and ( φ , φ , { p n \ ) respectively, and Σ | an\~1=π~1 Σ k"l= + oo. Further we
an*Q k=ι

remark that this result does not hold in general in the case that the zero-d-pole
set of / is unique for any d^Q. In fact, let g be a nonconstant meromorphic
function of order less than one, and consider f=g2. See [1, p. 25, Lemma 1.4.].

In the proof of Theorem 3, we frequently use the following form of the
impossibility of BoreΓs identity.

LEMMA 4. (cf. [5]) Let P0, Plt ••• , Pn (P^O, 0^/^n, n^l) be entire func-
tions satisfying m(r, Pj)=o(r) (r^oo), and let glr g2, ~ , gn be nonconstant entire

n
functions. Then an identity of the following form is impossible : 2 Pje8J=P0.

.7=1

Proof of Theorem 3. We suppose that ({an}\{cn}, {bn}\{dn}, {pn}\{qn}) is
the zero-one-pole set of a nonconstant meromorphic function g, To begin with,
we construct entire functions P, R and Q whose zeros are {cn}, {dn} and {qn}
respectively in the following manner.

( i ) If {cn} is empty, then P=l. It is the same with R and Q.
(ii) All of P, R and Q have genus zero, so that m(r, P)+m(r, R)+m(r9 Q)

=o(r) (r— >oo).
The condition (ii) is possible from (3.1). Let N(^f) be the meromorphic func-
tion whose zero-d-pole set is the same as the one of /.

According to our assumptions, there are four entire functions a, β, T and δ
such that

(3.2) N=fea, N-d = (f-d)eβ, gp/Q = fer, (g-l)R/Q=(f-l)e* .

We note that each of ea, eβ and ea~β is not identically equal to one, otherwise
we immediately deduce from (3.2) f=N. The elimination of TV, g and / from
(3.2) gives

(3.3) PRea-PReP-dQRer+dQReβ+r+dPQeδ-PQea+δ+(l-d)PQeP+δ=Q.

Suppose that ea is a constant c(=£θ, 1). Then eβ is not a constant because
of the nonconstancy of /, and by (3.3)

(3.4) PReP+dQRer+(c-d)PQeδ-dQReP+r+(d-l)PQeP+δ=cPR.

We first consider the case c—ά. Recall that P, R and Q satisfy the condition
(ii). Then applying Lemma 4 to (3.4), we find that at least one of er, eβ+r and
eβ+δ is a constant, say x. If er=χ, (3.4) becomes (P-dxQ)Reβ+(d-l)PQeβ+δ
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= d(P—xQ)R. It is easily seen that R = l, P—dxQ=£Q and P-.τQξέO, so that
eβ+δ is a constant, say y, and hence (P-dxQ)eβ=d(P-xQ)-y(d-l)PQ. This
is impossible. If eβ+r=xt then PReβ + dxQRe-

β + (d-l)PQeβ+δ=d(P+xQ)R,
which implies that R = l and P+xQ^O. Hence eβ+δ must be a constant, say y,
and thus Peβ + dxQe~β = d(P+xQ) — y(d-l)PQ3ΞQ, which is absurd. If eβ+δ = x
but neither er nor eβ+r are constants, then PReβ + dQRe7—dQReβ+r=
{dR-x(d-l)Q}P by (3.4), so that dR-x(d-l)Q=0. Hence # = QEE! and
deβ—Peβ~r—d. This is also untenable. We can discuss the case cφά in much
the same way as the case c—d, and in each subcase we make an appeal to
Lemma 4 to obtain an absurd result. Thus we see that ea is not a constant.
Similarly, we can make sure that eβ, er and eδ are not constants.

Suppose next that eβ~a is a constant c(^0, 1). From (3.3) it follows that

(3.5) cdQRer+{c(l-d)-l}PQeδ-dQRer-a

which implies that at least one of er~a and eδ~n is a constant, say x. First

assume that er~a = x. In view of (3.5)

(3.6) cdxQRea+{c(l-d)-l}PQeδ+dPQeδ-a={(c-l)P+dxQ}R.

If (c — l)P+d;cQ=0, then P=Q = l and c-l + rf^=0. Substituting these into
(3.6), we have cxRea~δ+e~a = c+x. Since R has at least one zero, c-\-xΦΰ, and
so ea~δ must be a constant, say y. Thus £~^ = c+* — cxyR. This is untenable.
If (c — l)P+dxQ^Q, then (3.6) yields that eδ~a is a constant, say y} and that
[ci/^/? + 3;{c(l-i/)-l}P]Oea-:{(c-l)P+i/zO}^-6/3;P(5^0. This is also impos-
sible. Next assume that eδ~a = x. By means of (3.5) cdQRer+{c(l-d)-l}PQeδ

-dQRer~a = {(c-l)R-dxQ}P, from which we have (c-l)R-dxQ=Q. Hence
Q = R = 1, c-l=dx, and so (c—x)Peδ-r+e~a = c. This is absurd. Thus we may
assume that eβ~a is not a constant. In the similar manner, we can ascertain
the fact that er~a, eβ+r~a, eδ~a and e

β+δ~a are not constants.
It remains to consider the case that none of ea , eβ, er, eδ, eβ~a, er~a, eβ+r~a,

eδ~a and eβ+δ~a are constants. Using (3.3) once more, we have PQeδ+PReβ-a

+ dQRer-a-dQReβ+r-a-dPQeδ-a + (d-l)PQeβ+δ-a = PR. This is also impossible
because of Lemma 4.

All the above arguments are combined to show that ({an}\{cn}, {bn}\{dn},
{pn\^{qn}) is not a zero-one-pole set of any nonconstant meromorphic function.
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