ON THE ZERO-ONE-POLE SET OF A MEROMORPHIC FUNCTION, II

By Hideharu Ueda

0. Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{p_{n}\right\}$ be three disjoint sequences with no finite limit points. If it is possible to construct a meromorphic function f in the plane C whose zeros, d-points and poles are exactly $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{p_{n}\right\}$ respectively, where their multiplicities are taken into consideration, then the given triad ($\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{p_{n}\right\}$) is called a zero-d-pole set. Here of course d is a nonzero complex number. Further if there exists only one meromorphic function f whose zero- d-pole set is just the given triad, then the triad is called unique. It is well known that unicity in this sense does not hold in general.

In Sections 1 and 2, the letter E will denote sets of finite linear measure which will not necessarily be the same at each occurrence.

1. Let f and g be meromorphic functions in the plane C. If f and g assume the value $a \in C \cup\{\infty\}$ at the same points with the same multiplicities, we denote this by $f=a \Leftrightarrow g=a$. With this notation, our first result of this note is stated as follows.

THEOREM 1. Let f and g be nonconstant meromorphic functions satisfying $f=0 \Leftrightarrow g=0, f=1 \Leftrightarrow g=1$ and $f=\infty \Leftrightarrow g=\infty$. If

$$
\begin{equation*}
\bar{K}(f)=\limsup _{r \rightarrow \infty}\{\bar{N}(r, 0, f)+\bar{N}(r, \infty, f)\} / T(r, f)<1 / 2 \tag{1.1}
\end{equation*}
$$

then $f \equiv g$ or $f g \equiv 1$.
From this we immediately deduce the following
COROLLARY 1. Let f be a nonconstant meromorphic function satisfying $n(r, 0, f)+n(r, \infty, f) \not \equiv 0$ and $\bar{K}(f)<1 / 2$. Then the zero-one-pole set of f is unique.

The estimate (1.1) is sharp. For example, let us consider $f=e^{\alpha}\left(1-e^{\alpha}\right)$ and $g=e^{-\alpha}\left(1-e^{-\alpha}\right)$ with a nonconstant entire function α. Then we easily see that $f=0 \Leftrightarrow g=0, f=1 \Leftrightarrow g=1$ and $f=\infty \Leftrightarrow g=\infty$. Also, $f \not \equiv g$ and $f g \not \equiv 1$ are evident.

Received March 10, 1989 ; revised August 14, 1989

To determine the value $\bar{K}(f)$, we may note that $T(r, f) \sim T(r, f-1 / 4)=$ $2 m\left(r, e^{\alpha}-1 / 2\right) \sim 2 m\left(r, e^{\alpha}\right)(r \rightarrow \infty), \bar{N}(r, 0, f)=\bar{N}\left(r, 1, e^{\alpha}\right) \leqq m\left(r, e^{\alpha}\right)+O(1)(r \rightarrow \infty)$, and $\bar{N}\left(r, 1, e^{\alpha}\right) \sim m\left(r, e^{\alpha}\right)(r \notin E, r \rightarrow \infty)$. The combination of these estimates gives $\bar{K}(f)=1 / 2$, and thus (1.1) is actually sharp. Also we remark that Theorem 1 is an improvement of [4, Theorem 2].

Before proceeding to the proof of Theorem 1, we state two lemmas.
Lemma 1. If α is a nonconstant entire function, then

$$
\begin{equation*}
m\left(r, \alpha^{\prime}\right)=o\left\{m\left(r, e^{\alpha}\right)\right\} \quad(r \notin E, r \rightarrow \infty), \tag{1.2}
\end{equation*}
$$

and for any nonzero constant c

$$
\begin{equation*}
\bar{N}\left(r, c, e^{\alpha}\right) \sim N\left(r, c, e^{\alpha}\right) \sim m\left(r, e^{\alpha}\right) \quad(r \notin E, r \rightarrow \infty) . \tag{1.3}
\end{equation*}
$$

(1.2) is immediately deduced from the fact that $\alpha^{\prime}=\left(e^{\alpha}\right)^{\prime} / e^{\alpha}$ and [1, Theorem 2.3.]. (1.3) is easily obtained from the first and the second fundamental theorems.

Lemma 2. If f is meromorphic and not constant in the plane C, then we have

$$
\begin{equation*}
N\left\{r, \infty, 2\left(f^{\prime} / f\right)^{2}-f^{\prime \prime} / f\right\} \leqq 2 \bar{N}(r, 0, f)+\bar{N}(r, \infty, f)+\bar{N}_{1}(r, \infty, f) . \tag{1.4}
\end{equation*}
$$

This estimate is easily verified from the computation which was done in [4, p. 28].

Proof of Theorem 1. We make use of notations and argument in the proof of [4, Theorem 2]. Our assumptions of this theorem imply

$$
\begin{equation*}
f=e^{\alpha} g, \quad f-1=e^{\beta}(g-1) \tag{1.5}
\end{equation*}
$$

with two entire functions α and β. If e^{β} or $e^{\beta-\alpha}$ is identically equal to one, we deduce $f \equiv g$ from (1.5) at once. We divide our argument into the following three cases.

Case 1. e^{β} is a constant $c(\neq 0,1)$,
Case 2. $e^{\beta-\alpha}$ is a constant $c(\neq 0,1)$,
Case 3. neither e^{β} nor $e^{\beta-\alpha}$ are constants.
In Cases 1, 2, and 3 with $\Delta \equiv 0$ and $C \neq 0$, the argument in [4, pp. 29-30] and (1.3) are combined to show that $\bar{K}(f)=1$. This is inconsistent with (1.1). In Case 3 with $\Delta \equiv 0$ and $C=0$, the argument in [4, p. 30] gives $f g \equiv 1$. Consider Case 3 with $\Delta \not \equiv 0$. The argument in [4, p. 30] yields

$$
\begin{equation*}
m(r, f) \leqq O\{\log T(r, f)+\log r\}+N(r, \infty, \Delta) \quad(r \notin E, r \rightarrow \infty), \tag{1.6}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
m\left(r, e^{\alpha}\right) \tag{1.7}\\
m\left(r, e^{\beta}\right)
\end{array}\right\} \leqq\{4+o(1)\} T(r, f) \quad(r \notin E, r \rightarrow \infty)
$$

Since $f=\left(1-e^{\beta}\right) /\left(1-e^{\beta-\alpha}\right)$, we readily obtain from (1.2) and (1.7)

$$
\begin{align*}
\bar{N}_{1}(r, \infty, f) & \leqq N_{1}(r, \infty, f) \leqq N\left(r, 0, \beta^{\prime}-\alpha^{\prime}\right) \leqq m\left(r, \beta^{\prime}-\alpha^{\prime}\right)+O(1) \tag{1.8}\\
& \leqq\{\log T(r, f)+\log r\} \quad(r \notin E, r \rightarrow \infty) .
\end{align*}
$$

By the definition of Δ and (1.4)

$$
\begin{equation*}
N(r, \infty, \Delta) \leqq 2 \bar{N}(r, 0, f)+\bar{N}(r, \infty, f)+\bar{N}_{1}(r, \infty, f) \tag{1.9}
\end{equation*}
$$

Combining (1.6), (1.8) and (1.9), we have

$$
\begin{align*}
T(r, f)= & m(r, f)+\bar{N}(r, \infty, f)+N_{1}(r, \infty, f) \tag{1.10}\\
\leqq & 2\{\bar{N}(r, 0, f)+\bar{N}(r, \infty, f)\}+O\{\log T(r, f)+\log r\} \\
& (r \notin E, r \rightarrow \infty) .
\end{align*}
$$

The nonconstancy of β and (1.7) imply that f is transcendental, and thus (1.10) gives $\bar{K}(f) \geqq 1 / 2$. This is also inconsistent with (1.1). This completes the proof of Theorem 1.
2. Suppose that f is a nonconstant meromorphic function in the plane C. We denote the zero-one-pole set of f by $\left(\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{p_{n}\right\}\right)$. Let $\left\{c_{n}\right\},\left\{d_{n}\right\}$ and $\left\{q_{n}\right\}$ be subsequences of $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{p_{n}\right\}$ respectively such that $\left\{c_{n}\right\} \cup\left\{d_{n}\right\}$ $\cup\left\{q_{n}\right\} \neq \varnothing$. Then for shortening we write $\left\{a_{n}\right\} \cup\left\{p_{n}\right\}=\left\{s_{n}\right\}$ and $\left\{c_{n}\right\} \cup\left\{q_{n}\right\}=$ $\left\{t_{n}\right\}$. Further we define a subsequence $\left\{u_{n}\right\}$ of $\left\{s_{n}\right\}$ as follows: $u_{n} \in\left\{u_{n}\right\}$ if and only if u_{n} occurs in $\left\{s_{n}\right\}$ only once but never in $\left\{t_{n}\right\}$.

In this section we prove
Theorem 2. Let $f,\left(\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{p_{n}\right\}\right),\left\{c_{n}\right\},\left\{d_{n}\right\},\left\{q_{n}\right\},\left\{s_{n}\right\},\left\{t_{n}\right\}$ and $\left\{u_{n}\right\}$ be given as above. If $\left\{s_{n}\right\} \neq \varnothing$ and

$$
\begin{equation*}
\underset{r \rightarrow \infty}{\limsup } \frac{4 \bar{N}\left(r,\left\{s_{n}\right\} \cup\left\{d_{n}\right\}\right)+N\left(r,\left\{s_{n}\right\}\right)+\bar{N}\left(r,\left\{t_{n}\right\}\right)-\bar{N}\left(r,\left\{u_{n}\right\}\right)}{T(r, f)}<2, \tag{2.1}
\end{equation*}
$$

then $\left(\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\},\left\{p_{n}\right\} \backslash\left\{q_{n}\right\}\right)$ is not a zero-one-pole set of any nonconstant meromorphic function.

In view of Corollary 1 the zero-one-pole set of f in Theorem 2 is unique. Also, the estimate (2.1) is sharp. In fact, let P and Q be canonical products with no common zeros, let L be a transcendental entire function, and consider $g=(P / Q) e^{L}$ and $f=g^{2}$. Then simple computations show that the left hand side of $(2.1)=2$. Further we notice that Theorem 2 improves [5, Theorem 4] in some sense.

The proof of Theorem 2 needs the following estimate of Weierstrass products.

Lemma 3. ([3, Lemma 4]) Let $\left\{a_{\nu \mu}\right\}$ be n sequences ($1 \leqq \mu \leqq n$) of complex
numbers satisfying $\left|a_{1 \mu}\right| \leqq\left|a_{2 \mu}\right| \leqq \cdots, \lim _{\nu \rightarrow \infty}\left|a_{\nu \mu}\right|=+\infty$ for each μ. Then we can construct the Weierstrass products P_{μ} of $\left\{a_{\nu \mu}\right\}(1 \leqq \mu \leqq n)$ with the property that

$$
\frac{\sum_{\mu=1}^{n} \log m\left(r, P_{\mu}\right)}{\sum_{\mu=1}^{n} N\left(r, 0, P_{\mu}\right)} \longrightarrow 0
$$

holds as $r \rightarrow \infty$ inside a certain set Ω of infinite linear measure.
Proof of Theorem 2. We shall seek a contradiction from the assumption that $\left(\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\},\left\{p_{n} \backslash \backslash\left\{q_{n}\right\}\right)\right.$ is the zero-one-pole set of a nonconstant meromorphic function g. First, we construct entire functions P, R and Q whose zeros are $\left\{c_{n}\right\},\left\{d_{n}\right\}$ and $\left\{q_{n}\right\}$ respectively as follows:
(i) If $\left\{c_{n}\right\}=\varnothing$, then $P \equiv 1$. It is the same with R and Q.
(ii) If $1 \leqq \sharp\left\{c_{n}\right\}<+\infty$, then P is the polynomial $\prod_{n}\left(z-c_{n}\right)$. It is the same with R and Q.

$$
\begin{equation*}
\frac{\log m(r, P)+\log m(r, R)+\log m(r, Q)}{N(r, 0, P)+N(r, 0, R)+N(r, 0, Q)} \longrightarrow 0 \tag{iii}
\end{equation*}
$$

holds as $r \rightarrow \infty$ inside a suitable set Ω of infinite linear measure.
The condition (iii) is possible by means of (ii) and Lemma 3. From the first fundamental theorem it follows that $N(r, 0, P)+N(r, 0, R)+N(r, 0, Q) \leqq$ $N(r, 0, f)+N(r, 1, f)+N(r, \infty, f) \leqq 3 T(r, f)+O(1)$, and hence by (iii)

$$
\begin{equation*}
\frac{\log m(r, P)+\log m(r, R)+\log m(r, Q)}{T(r, f)} \longrightarrow 0 \quad(r \in \Omega, r \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

Now, under our assumptions there are two entire functions α and β such that

$$
\begin{equation*}
g P / Q=f e^{\alpha}, \quad(g-1) R / Q=(f-1) e^{\beta} . \tag{2.3}
\end{equation*}
$$

Eliminating g from (2.3), we have

$$
\begin{equation*}
f-f S e^{r}+T e^{-\beta}=1, \text { or } \quad 1 / f-T e^{-\beta} / f+S e^{r}=1, \tag{2.4}
\end{equation*}
$$

where $S=R / P, T=R / Q$ and $\gamma=\alpha-\beta$. For simplicity's sake, we write $\phi_{1}=f$, $\phi_{2}=-f S e^{\gamma}, \phi_{3}=T e^{-\beta}, \phi_{1}=1 / f, \phi_{2}=-T e^{-\beta} / f$ and $\psi_{3}=S e^{\gamma}$. With these $\phi_{3}(j=1$, 2,3) define Δ and Δ^{\prime} by

$$
\Delta=\left|\begin{array}{ccc}
1 & 1 & 1 \\
\phi_{1}^{\prime} / \phi_{1} & \phi_{2}^{\prime} / \phi_{2} & \phi_{3}^{\prime} / \phi_{3} \\
\phi_{1}^{\prime \prime} / \phi_{1} & \phi_{2}^{\prime \prime} / \phi_{2} & \phi_{3}^{\prime \prime} / \phi_{3}
\end{array}\right|, \quad \Delta^{\prime}=\left|\begin{array}{cc}
\phi_{2}^{\prime} / \phi_{2} & \phi_{3}^{\prime} / \phi_{3} \\
\phi_{2}^{\prime \prime} / \phi_{2} & \phi_{3}^{\prime \prime} / \phi_{3}
\end{array}\right|
$$

and further with ϕ, replaced by $\psi_{\text {, }}$ we define Δ_{1} and Δ_{1}^{\prime} similarly.
(A) First we consider the case $\Delta \equiv 0$. By (2.4)

$$
\begin{gather*}
-f S e^{\gamma}=\phi_{2}=C \phi_{1}+D=C f+D \tag{2.5}\\
T e^{-\beta}=\phi_{3}=1-\phi_{1}-\phi_{2}=1-D-(C+1) f \tag{2.6}
\end{gather*}
$$

with two constants C and D. Eliminating f from (2.5) and (2.6), we get

$$
\begin{equation*}
R\left\{C P e^{-\beta}+R e^{\gamma-\beta}+(D-1) Q e^{\gamma}\right\}=(C+D) P Q . \tag{2.7}
\end{equation*}
$$

$\left(A_{1}\right)$ If $\left\{d_{n}\right\} \neq \varnothing$, then (2.7) implies $C+D=0$ and $(C+1) Q e^{\beta+\gamma}-R e^{\gamma}=C P$. It is easily verified that $C \neq 0,-1$. Hence from (2.5) and (2.6) we deduce that $\left\{c_{n}\right\}=\left\{a_{n}\right\},\left\{d_{n}\right\}=\left\{b_{n}\right\}$ and $\left\{q_{n}\right\}=\left\{p_{n}\right\}$. This is contradictory to the assumption that g is nonconstant.
$\left(A_{2}\right)$ Now, we proceed to the case $\left\{d_{n}\right\}=\varnothing$, i. e. $R \equiv 1$. If $D=0$, (2.5) implies $P \equiv 1$, so that Q has at least one zero. Hence by (2.6) $C \neq-1$ and $f=$ $\left(1-1 / Q e^{\beta}\right) /(C+1)$, from which we have $\bar{K}(f) \geqq 1$. (Here we remark that (2.1) implies $\bar{K}(f)<1 / 2$. This is an immediate consequence of the fact that $\left\{u_{n}\right\}$ is a subsequence of $\left\{s_{n}\right\}$.) If $D=1,(2.7)$ implies $P \equiv 1$ and $C \neq 0$. Hence in view of (2.5) $f=-\left(C+e^{r}\right)^{-1}$, from which we have $\bar{K}(f)=1$. It remains to consider the case $D \neq 0,1$. If $C=-1$, (2.6) implies $e^{\beta} \equiv(1-D)^{-1}$. From this and (2.5) it follows that $f=D P /\left\{P+(D-1) e^{\alpha}\right\}$, so that $\bar{K}(f) \geqq 1$. If $C \neq-1$, (2.6) gives $f=$ $\left(1-D-1 / Q e^{\beta}\right) /(C+1)$, which also yields $\bar{K}(f) \geqq 1$.
(B) The case $\Delta_{1} \equiv 0$ can be handled in all the same way as the case $\Delta \equiv 0$, and after all $\Delta_{1} \equiv 0$ leads us to imcompatible results with our assumptions.
(C) Next we suppose that neither Δ nor Δ_{1} are identically zero. From (2.4) it follows that $f=\Delta^{\prime} / \Delta$. Using the same reasoning as in Case 3 in the proof of Theorem 1, we obtain the following estimates:

$$
\begin{align*}
& m(r, f) \leqq m\left(r, \Delta^{\prime}\right)+m(r, \Delta)+N(r, \infty, \Delta)+O(1) \tag{2.8}\\
& m\left(r, \Delta^{\prime}\right)+m(r, \Delta)= O\{\log T(r, f)+\log r+\log m(r, P) \tag{2.9}\\
&+\log m(r, R)+\log m(r, Q)\} \quad(r \notin E, r \rightarrow \infty)
\end{align*}
$$

$$
\begin{equation*}
N(r, \infty, \Delta) \leqq 2 \bar{N}(r, 0, f)+\bar{N}(r, \infty, f)+\bar{N}(r, 0, P)+\bar{N}(r, 0, Q)+2 \bar{N}(r, 0, R) \tag{2.10}
\end{equation*}
$$

$$
+\bar{N}_{1}(r, \infty, f Q)-\bar{N}(r,\{Q=0\} \cap\{\text { multiple poles of } f Q\}),
$$

(2.11) $N(r, \infty, f)=\bar{N}(r, \infty, f)+N_{1}(r, 0, Q)+N_{1}(r, \infty, f Q)+\bar{N}(r,\{Q=0\} \cap\{f Q=\infty\})$. In particular, if f is a rational function, (2.9) can be replaced by

$$
\begin{equation*}
m\left(r, \Delta^{\prime}\right)+m(r, \Delta)=O(1) \tag{2.9}
\end{equation*}
$$

Indeed, we may use the first and the second fundamental theorems to find that g is rational, and next note from (ii) that all of P, R and Q are polynomials, so that e^{α} and e^{β} are constants. Hence ϕ_{1}, ϕ_{2} and ϕ_{3} are all rational functions, and thus (2.9) holds.

After (2.2), (2.9) ((2.9)' in case that f is a rational function) and (2.10) are taken into account, (2.8) and (2.11) yield

$$
\begin{align*}
& \{1-o(1)\} T(r, f) \leqq 2\{\bar{N}(r, 0, f)+\bar{N}(r, \infty, f)+\bar{N}(r, 0, R)\} \tag{2.12}\\
& \quad+\bar{N}(r, 0, P)+N(r, 0, Q)+\left(N_{1}+\bar{N}_{1}\right)(r, \infty, f Q) \\
& \quad+\bar{N}(r,\{Q=0\} \cap\{\text { simple poles of } f Q\}) \quad(r \in \Omega \backslash E, r \rightarrow \infty) .
\end{align*}
$$

In the same way, starting from $1 / f=\Lambda_{1}^{\prime} / \Delta_{1}$ we deduce

$$
\begin{align*}
& \{1-o(1)\} T(r, 1 / f) \leqq 2\{\bar{N}(r, \infty, f)+\bar{N}(r, 0, f)+\bar{N}(r, 0, R)\} \tag{2.13}\\
& \quad+\bar{N}(r, 0, Q)+N(r, 0, P)+\left(N_{1}+\bar{N}_{1}\right)(r, 0, f / P) \\
& \quad+\bar{N}(r,\{P=0\} \cap\{\text { simple zeros of } f / P\}) \quad(r \in \Omega \backslash E, r \rightarrow \infty),
\end{align*}
$$

where Ω and E are the same as in (2.12). Summing up (2.12) and (2.13), we have

$$
\begin{aligned}
& \{2-o(1)\} T(r, f) \leqq 4\{\bar{N}(r, 0, f)+\bar{N}(r, \infty, f)+\bar{N}(r, 0, R)\}+(N+\bar{N})(r, 0, P) \\
& \quad+(N+\bar{N})(r, 0, Q)+\left(N_{1}+\overline{N_{1}}\right)(r, 0, f / P)+\left(N_{1}+\bar{N}_{1}\right)(r, \infty, f Q) \\
& \quad+\bar{N}(r,\{P=0\} \cap\{\text { simple zeros of } f / P\}) \\
& \quad+\bar{N}(r,\{Q=0\} \cap\{\text { simple poles of } f Q\}) \quad(r \in \Omega \backslash E, r \rightarrow \infty),
\end{aligned}
$$

which is also inconsistent with (2.1).
Thus ($\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\},\left\{p_{n}\right\} \backslash\left\{q_{n}\right\}$) is not a zero-one-pole set of any nonconstant meromorphic function.
3. Suppose that f is a nonconstant meromorphic function in the plane C whose zero- d-pole set is not unique, where $d(\neq 0,1)$ is a constant. Let ($\left\{a_{n}\right\}$, $\left\{b_{n}\right\},\left\{p_{n}\right\}$) be the zero-one-pole set of f, and let $\left\{c_{n}\right\},\left\{d_{n}\right\}$ and $\left\{q_{n}\right\}$ be subsequences of $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{p_{n}\right\}$ respectively such that $\left\{c_{n}\right\} \cup\left\{d_{n}\right\} \cup\left\{q_{n}\right\} \neq \varnothing$ and such that

$$
\begin{equation*}
\sum_{c_{n} \neq 0}\left|c_{n}\right|^{-1}+\sum_{d_{n} \neq 0}\left|d_{n}\right|^{-1}+\sum_{q_{n} \neq 0}\left|q_{n}\right|^{-1}<+\infty . \tag{3.1}
\end{equation*}
$$

Under these assumptions we prove the following result.
Theorem 3. Let $f, d,\left(\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{p_{n}\right\}\right),\left\{c_{n}\right\},\left\{d_{n}\right\}$ and $\left\{q_{n}\right\}$ be given as above. Then $\left(\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\},\left\{p_{n}\right\} \backslash\left\{q_{n}\right\}\right)$ is not a zero-one-pole set of any nonconstant meromorphic function.

We have already showed the corresponding result for the case $d=1$ in [5, Theorem 1]. Also, Ozawa [2, Section 4] has proved this result for $\left\{p_{n}\right\}=\left\{q_{n}\right\}$ $=\left\{c_{n}\right\}=\varnothing$ and $1 \leqq \#\left\{d_{n}\right\}<+\infty$. The assumption (3.1) cannot be omitted. For
example, let us consider $f=d\left(e^{z}-1\right) /\left(e^{z}-d\right), N=d f$ and $g=e^{z} /\left(e^{z}-d\right)$ with a constant $d(\neq 0,1)$. Then we easily see that f and N have the same zero- d pole set, say ($\left\{a_{n}\right\}, \phi,\left\{p_{n}\right\}$), and therefore the zero- d-pole set of f is not unique. On the other hand, the zero-one-pole sets of f and g are ($\left\{a_{n}\right\}, \phi,\left\{p_{n}\right\}$) and $\left(\phi, \phi,\left\{p_{n}\right\}\right)$ respectively, and $\sum_{a_{n} \neq 0}\left|a_{n}\right|^{-1}=\pi^{-1} \sum_{k=1}^{\infty} k^{-1}=+\infty$. Further we remark that this result does not hold in general in the case that the zero- d-pole set of f is unique for any $d \neq 0$. In fact, let g be a nonconstant meromorphic function of order less than one, and consider $f=g^{2}$. See [1, p. 25, Lemma 1.4.].

In the proof of Theorem 3, we frequently use the following form of the impossibility of Borel's identity.

LEMmA 4. (cf. [5]) Let $P_{0}, P_{1}, \cdots, P_{n}\left(P_{\rho} \not \equiv 0,0 \leqq j \leqq n, n \geqq 1\right)$ be entire functions satisfying $m\left(r, P_{j}\right)=o(r)(r \rightarrow \infty)$, and let $g_{1}, g_{2}, \cdots, g_{n}$ be nonconstant entire functions. Then an identity of the following form is impossible: $\sum_{j=1}^{n} P_{\rho} e^{g_{j}}=P_{0}$.

Proof of Theorem 3. We suppose that $\left(\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\},\left\{p_{n}\right\} \backslash\left\{q_{n}\right\}\right)$ is the zero-one-pole set of a nonconstant meromorphic function g, To begin with, we construct entire functions P, R and Q whose zeros are $\left\{c_{n}\right\},\left\{d_{n}\right\}$ and $\left\{q_{n}\right\}$ respectively in the following manner.
(i) If $\left\{c_{n}\right\}$ is empty, then $P \equiv 1$. It is the same with R and Q.
(ii) All of P, R and Q have genus zero, so that $m(r, P)+m(r, R)+m(r, Q)$ $=o(r)(r \rightarrow \infty)$.
The condition (ii) is possible from (3.1). Let $N(\not \equiv f)$ be the meromorphic function whose zero- d-pole set is the same as the one of f.

According to our assumptions, there are four entire functions α, β, γ and δ such that

$$
\begin{equation*}
N=f e^{\alpha}, \quad N-d=(f-d) e^{\beta}, \quad g P / Q=f e^{r}, \quad(g-1) R / Q=(f-1) e^{\delta} . \tag{3.2}
\end{equation*}
$$

We note that each of e^{α}, e^{β} and $e^{\alpha-\beta}$ is not identically equal to one, otherwise we immediately deduce from (3.2) $f \equiv N$. The elimination of N, g and f from (3.2) gives

$$
\begin{equation*}
P R e^{\alpha}-P R e^{\beta}-d Q R e^{\gamma}+d Q R e^{\beta+\gamma}+d P Q e^{\delta}-P Q e^{\alpha+\delta}+(1-d) P Q e^{\beta+\delta}=0 . \tag{3.3}
\end{equation*}
$$

Suppose that e^{α} is a constant $c(\neq 0,1)$. Then e^{β} is not a constant because of the nonconstancy of f, and by (3.3)

$$
\begin{equation*}
P R e^{\beta}+d Q R e^{r}+(c-d) P Q e^{\delta}-d Q R e^{\beta+\gamma}+(d-1) P Q e^{\beta+\delta}=c P R . \tag{3.4}
\end{equation*}
$$

We first consider the case $c=d$. Recall that P, R and Q satisfy the condition (ii). Then applying Lemma 4 to (3.4), we find that at least one of $e^{\gamma}, e^{\beta+\gamma}$ and $e^{\beta+\delta}$ is a constant, say x. If $e^{\gamma} \equiv x$, (3.4) becomes $(P-d x Q) R e^{\beta}+(d-1) P Q e^{\beta+\delta}$
$=d(P-x Q) R$. It is easily seen that $R \equiv 1, P-d x Q \not \equiv 0$ and $P-x Q \not \equiv 0$, so that $e^{\beta+\delta}$ is a constant, say y, and hence $(P-d x Q) e^{\beta}=d(P-x Q)-y(d-1) P Q$. This is impossible. If $e^{\beta+\gamma} \equiv x$, then $P R e^{\beta}+d x Q R e^{-\beta}+(d-1) P Q e^{\beta+\delta}=d(P+x Q) R$, which implies that $R \equiv 1$ and $P+x Q \not \equiv 0$. Hence $e^{\beta+\grave{o}}$ must be a constant, say y, and thus $P e^{\beta}+d x Q e^{-\beta}=d(P+x Q)-y(d-1) P Q \neq 0$, which is absurd. If $e^{\beta+\delta} \equiv x$ but neither e^{γ} nor $e^{\beta+\gamma}$ are constants, then $P R e^{\beta}+d Q R e^{\gamma}-d Q R e^{\beta+\gamma}=$ $\{d R-x(d-1) Q\} P$ by (3.4), so that $d R-x(d-1) Q \equiv 0$. Hence $R \equiv Q \equiv 1$ and $d e^{\beta}-P e^{\beta-\gamma}=d$. This is also untenable. We can discuss the case $c \neq d$ in much the same way as the case $c=d$, and in each subcase we make an appeal to Lemma 4 to obtain an absurd result. Thus we see that e^{α} is not a constant. Similarly, we can make sure that e^{β}, e^{r} and e^{δ} are not constants.

Suppose next that $e^{\beta-\alpha}$ is a constant $c(\neq 0,1)$. From (3.3) it follows that

$$
\begin{equation*}
c d Q R e^{\gamma}+\{c(1-d)-1\} P Q e^{\delta}-d Q R e^{\gamma-\alpha}+d P Q e^{\delta-\alpha}=(c-1) P R, \tag{3.5}
\end{equation*}
$$

which implies that at least one of $e^{\gamma-\alpha}$ and $e^{\delta-\alpha}$ is a constant, say x. First assume that $e^{\gamma-\alpha} \equiv x$. In view of (3.5)

$$
\begin{equation*}
c d x Q R e^{\alpha}+\{c(1-d)-1\} P Q e^{\grave{\delta}}+d P Q e^{\grave{\delta}-\alpha}=\{(c-1) P+d x Q\} R . \tag{3.6}
\end{equation*}
$$

If $(c-1) P+d x Q \equiv 0$, then $P \equiv Q \equiv 1$ and $c-1+d x=0$. Substituting these into (3.6), we have $c x R e^{\alpha-\delta}+e^{-\alpha}=c+x$. Since R has at least one zero, $c+x \neq 0$, and so $e^{\alpha-\delta}$ must be a constant, say y. Thus $e^{-\alpha}=c+x-c x y R$. This is untenable. If $(c-1) P+d x Q \not \equiv 0$, then (3.6) yields that $e^{\delta-\alpha}$ is a constant, say y, and that $[c d x R+y\{c(1-d)-1\} P] Q e^{\alpha}=\{(c-1) P+d x Q\} R-d y P Q \not \equiv 0$. This is also impossible. Next assume that $e^{\delta-\alpha} \equiv x$. By means of (3.5) $c d Q R e^{\gamma}+\{c(1-d)-1\} P Q e^{\delta}$ $-d Q R e^{\gamma-\alpha}=\{(c-1) R-d x Q\} P$, from which we have $(c-1) R-d x Q \equiv 0$. Hence $Q \equiv R \equiv 1, c-1=d x$, and so $(c-x) P e^{\delta-r}+e^{-\alpha}=c$. This is absurd. Thus we may assume that $e^{\beta-\alpha}$ is not a constant. In the similar manner, we can ascertain the fact that $e^{\gamma-\alpha}, e^{\beta+\gamma-\alpha}, e^{\delta-\alpha}$ and $e^{\beta+\delta-\alpha}$ are not constants.

It remains to consider the case that none of $e^{\alpha}, e^{\beta}, e^{\gamma}, e^{\delta}, e^{\beta-\alpha}, e^{\gamma-\alpha}, e^{\beta+\gamma-\alpha}$, $e^{\hat{j}-\alpha}$ and $e^{\beta+\delta-\alpha}$ are constants. Using (3.3) once more, we have $P Q e^{\delta}+P R e^{\beta-\alpha}$ $+d Q R e^{\gamma-\alpha}-d Q R e^{\beta+\gamma-\alpha}-d P Q e^{\delta-\alpha}+(d-1) P Q e^{\beta+\delta-\alpha}=P R$. This is also impossible because of Lemma 4.

All the above arguments are combined to show that $\left(\left\{a_{n}\right\} \backslash\left\{c_{n}\right\},\left\{b_{n}\right\} \backslash\left\{d_{n}\right\}\right.$, $\left\{p_{n}\right\} \backslash\left\{q_{n}\right\}$) is not a zero-one-pole set of any nonconstant meromorphic function.

References

[1] W.K. Hayman, Meromorphic functions, Oxford (1964).
[2] M. Ozawa, On the zero-one set of an entire function, II, Kodai Math. J. Vol. 2 No. 2 (1979), 194-199.
[3] K. Tohge, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. Vol. 11 No. 2 (1988), 249-279.
[4] H. Ueda, Unicity theorems for meromorphic or entire functions, II, Kodai Math. J. Vol. 6 No. 1 (1983), 26-36.
[5] H. Ueda, On the zero-one-pole set of a meromorphic function, Kodai Math. J. Vol. 12 No. 1 (1989), 9-22.

Department of Mathematics
Daido Institute of Technology
Daido, Minami, Nagoya, Japan

