H. UEDA KODAI MATH. J. 13 (1990), 134-142

ON THE ZERO-ONE-POLE SET OF A MEROMORPHIC FUNCTION, II

By Hideharu Ueda

0. Let $\{a_n\}, \{b_n\}$ and $\{p_n\}$ be three disjoint sequences with no finite limit points. If it is possible to construct a meromorphic function f in the plane Cwhose zeros, d-points and poles are exactly $\{a_n\}, \{b_n\}$ and $\{p_n\}$ respectively, where their multiplicities are taken into consideration, then the given triad $(\{a_n\}, \{b_n\}, \{p_n\})$ is called a *zero-d-pole set*. Here of course d is a nonzero complex number. Further if there exists only one meromorphic function fwhose zero-d-pole set is just the given triad, then the triad is called *unique*. It is well known that unicity in this sense does not hold in general.

In Sections 1 and 2, the letter E will denote sets of finite linear measure which will not necessarily be the same at each occurrence.

1. Let f and g be meromorphic functions in the plane C. If f and g assume the value $a \in C \cup \{\infty\}$ at the same points with the same multiplicities, we denote this by $f = a \Leftrightarrow g = a$. With this notation, our first result of this note is stated as follows.

THEOREM 1. Let f and g be nonconstant meromorphic functions satisfying $f=0 \Leftrightarrow g=0, f=1 \Leftrightarrow g=1$ and $f=\infty \Leftrightarrow g=\infty$. If

(1.1)
$$\overline{K}(f) = \limsup_{r \to \infty} \{ \overline{N}(r, 0, f) + \overline{N}(r, \infty, f) \} / T(r, f) < 1/2 ,$$

then $f \equiv g$ or $fg \equiv 1$.

From this we immediately deduce the following

COROLLARY 1. Let f be a nonconstant meromorphic function satisfying $n(r, 0, f)+n(r, \infty, f) \not\equiv 0$ and $\overline{K}(f) < 1/2$. Then the zero-one-pole set of f is unique.

The estimate (1.1) is sharp. For example, let us consider $f=e^{\alpha}(1-e^{\alpha})$ and $g=e^{-\alpha}(1-e^{-\alpha})$ with a nonconstant entire function α . Then we easily see that $f=0 \Leftrightarrow g=0$, $f=1 \Leftrightarrow g=1$ and $f=\infty \Leftrightarrow g=\infty$. Also, $f \not\equiv g$ and $fg \not\equiv 1$ are evident.

Received March 10, 1989; revised August 14, 1989

To determine the value $\overline{K}(f)$, we may note that $T(r, f) \sim T(r, f-1/4) = 2m(r, e^{\alpha}-1/2) \sim 2m(r, e^{\alpha}) (r \to \infty)$, $\overline{N}(r, 0, f) = \overline{N}(r, 1, e^{\alpha}) \leq m(r, e^{\alpha}) + O(1) (r \to \infty)$, and $\overline{N}(r, 1, e^{\alpha}) \sim m(r, e^{\alpha}) (r \notin E, r \to \infty)$. The combination of these estimates gives $\overline{K}(f) = 1/2$, and thus (1.1) is actually sharp. Also we remark that Theorem 1 is an improvement of [4, Theorem 2].

Before proceeding to the proof of Theorem 1, we state two lemmas.

LEMMA 1. If α is a nonconstant entire function, then

(1.2)
$$m(r, \alpha') = o\{m(r, e^{\alpha})\} \qquad (r \notin E, r \to \infty),$$

and for any nonzero constant c

(1.3)
$$\overline{N}(r, c, e^{\alpha}) \sim N(r, c, e^{\alpha}) \sim m(r, e^{\alpha}) \quad (r \notin E, r \to \infty).$$

(1.2) is immediately deduced from the fact that $\alpha' = (e^{\alpha})'/e^{\alpha}$ and [1, Theorem 2.3.]. (1.3) is easily obtained from the first and the second fundamental theorems.

LEMMA 2. If f is meromorphic and not constant in the plane C, then we have

(1.4)
$$N\{r, \infty, 2(f'/f)^2 - f''/f\} \leq 2\overline{N}(r, 0, f) + \overline{N}(r, \infty, f) + \overline{N}_1(r, \infty, f).$$

This estimate is easily verified from the computation which was done in [4, p. 28].

Proof of Theorem 1. We make use of notations and argument in the proof of [4, Theorem 2]. Our assumptions of this theorem imply

(1.5)
$$f = e^{\alpha}g$$
, $f - 1 = e^{\beta}(g - 1)$

with two entire functions α and β . If e^{β} or $e^{\beta-\alpha}$ is identically equal to one, we deduce $f \equiv g$ from (1.5) at once. We divide our argument into the following three cases.

Case 1. e^{β} is a constant $c(\neq 0, 1)$,

Case 2. $e^{\beta-\alpha}$ is a constant $c(\neq 0, 1)$,

Case 3. neither e^{β} nor $e^{\beta-\alpha}$ are constants.

In Cases 1, 2, and 3 with $\Delta \equiv 0$ and $C \neq 0$, the argument in [4, pp. 29-30] and (1.3) are combined to show that $\overline{K}(f)=1$. This is inconsistent with (1.1). In Case 3 with $\Delta \equiv 0$ and C=0, the argument in [4, p. 30] gives $fg\equiv 1$. Consider Case 3 with $\Delta \equiv 0$. The argument in [4, p. 30] yields

(1.6)
$$m(r, f) \leq O\{\log T(r, f) + \log r\} + N(r, \infty, \Delta) \qquad (r \notin E, r \to \infty),$$

and

(1.7)
$$\begin{array}{c} m(r, e^{\alpha}) \\ m(r, e^{\beta}) \end{array} \rbrace \leq \{4+o(1)\}T(r, f) \qquad (r \notin E, r \to \infty). \end{array}$$

Since $f = (1-e^{\beta})/(1-e^{\beta-\alpha})$, we readily obtain from (1.2) and (1.7)

(1.8)
$$\overline{N}_{1}(r, \infty, f) \leq N_{1}(r, \infty, f) \leq N(r, 0, \beta' - \alpha') \leq m(r, \beta' - \alpha') + O(1)$$
$$\leq O\{\log T(r, f) + \log r\} \qquad (r \notin E, r \to \infty).$$

By the definition of \varDelta and (1.4)

(1.9)
$$N(r, \infty, \Delta) \leq 2\overline{N}(r, 0, f) + \overline{N}(r, \infty, f) + \overline{N}_1(r, \infty, f).$$

Combining (1.6), (1.8) and (1.9), we have

(1.10)
$$T(r, f) = m(r, f) + \overline{N}(r, \infty, f) + N_1(r, \infty, f)$$
$$\leq 2\{\overline{N}(r, 0, f) + \overline{N}(r, \infty, f)\} + O\{\log T(r, f) + \log r\}$$
$$(r \notin E, r \to \infty).$$

The nonconstancy of β and (1.7) imply that f is transcendental, and thus (1.10) gives $\overline{K}(f) \ge 1/2$. This is also inconsistent with (1.1). This completes the proof of Theorem 1.

2. Suppose that f is a nonconstant meromorphic function in the plane C. We denote the zero-one-pole set of f by $(\{a_n\}, \{b_n\}, \{p_n\})$. Let $\{c_n\}, \{d_n\}$ and $\{q_n\}$ be subsequences of $\{a_n\}, \{b_n\}$ and $\{p_n\}$ respectively such that $\{c_n\} \cup \{d_n\} \cup \{q_n\} \neq \emptyset$. Then for shortening we write $\{a_n\} \cup \{p_n\} = \{s_n\}$ and $\{c_n\} \cup \{q_n\} = \{t_n\}$. Further we define a subsequence $\{u_n\}$ of $\{s_n\}$ as follows: $u_n \in \{u_n\}$ if and only if u_n occurs in $\{s_n\}$ only once but never in $\{t_n\}$.

In this section we prove

THEOREM 2. Let f, $(\{a_n\}, \{b_n\}, \{p_n\})$, $\{c_n\}, \{d_n\}, \{q_n\}, \{s_n\}, \{t_n\}$ and $\{u_n\}$ be given as above. If $\{s_n\} \neq \emptyset$ and

(2.1)
$$\limsup_{r \to \infty} \frac{4\overline{N}(r, \{s_n\} \cup \{d_n\}) + N(r, \{s_n\}) + \overline{N}(r, \{t_n\}) - \overline{N}(r, \{u_n\})}{T(r, f)} < 2$$

then $(\{a_n\}\setminus\{c_n\}, \{b_n\}\setminus\{d_n\}, \{p_n\}\setminus\{q_n\})$ is not a zero-one-pole set of any nonconstant meromorphic function.

In view of Corollary 1 the zero-one-pole set of f in Theorem 2 is unique. Also, the estimate (2.1) is sharp. In fact, let P and Q be canonical products with no common zeros, let L be a transcendental entire function, and consider $g=(P/Q)e^{L}$ and $f=g^{2}$. Then simple computations show that the left hand side of (2.1)=2. Further we notice that Theorem 2 improves [5, Theorem 4] in some sense.

The proof of Theorem 2 needs the following estimate of Weierstrass products.

LEMMA 3. ([3, Lemma 4]) Let $\{a_{\nu\mu}\}\$ be n sequences $(1 \leq \mu \leq n)$ of complex

136

numbers satisfying $|a_{1\mu}| \leq |a_{2\mu}| \leq \cdots$, $\lim_{\nu \to \infty} |a_{\nu\mu}| = +\infty$ for each μ . Then we can construct the Weierstrass products P_{μ} of $\{a_{\nu\mu}\}$ $(1 \leq \mu \leq n)$ with the property that

$$\frac{\sum\limits_{\mu=1}^{n}\log m(r, P_{\mu})}{\sum\limits_{\mu=1}^{n}N(r, 0, P_{\mu})} \longrightarrow 0$$

holds as $r \rightarrow \infty$ inside a certain set Ω of infinite linear measure.

Proof of Theorem 2. We shall seek a contradiction from the assumption that $(\{a_n\} \setminus \{c_n\}, \{b_n\} \setminus \{d_n\}, \{p_n\} \setminus \{q_n\})$ is the zero-one-pole set of a nonconstant meromorphic function g. First, we construct entire functions P, R and Q whose zeros are $\{c_n\}, \{d_n\}$ and $\{q_n\}$ respectively as follows:

(i) If $\{c_n\} = \emptyset$, then $P \equiv 1$. It is the same with R and Q.

(ii) If $1 \leq || < +\infty$, then P is the polynomial $\prod_n (z-c_n)$. It is the same with R and Q.

(iii)
$$\frac{\log m(r, P) + \log m(r, R) + \log m(r, Q)}{N(r, 0, P) + N(r, 0, R) + N(r, 0, Q)} \longrightarrow 0$$

holds as $r \rightarrow \infty$ inside a suitable set Ω of infinite linear measure.

The condition (iii) is possible by means of (ii) and Lemma 3. From the first fundamental theorem it follows that $N(r, 0, P)+N(r, 0, R)+N(r, 0, Q) \leq N(r, 0, f)+N(r, 1, f)+N(r, \infty, f) \leq 3T(r, f)+O(1)$, and hence by (iii)

(2.2)
$$\frac{\log m(r, P) + \log m(r, R) + \log m(r, Q)}{T(r, f)} \longrightarrow 0 \quad (r \in \Omega, r \to \infty).$$

Now, under our assumptions there are two entire functions α and β such that

(2.3)
$$gP/Q = fe^{\alpha}$$
, $(g-1)R/Q = (f-1)e^{\beta}$.

Eliminating g from (2.3), we have

(2.4)
$$f - fSe^{r} + Te^{-\beta} = 1$$
, or $1/f - Te^{-\beta}/f + Se^{r} = 1$,

where S=R/P, T=R/Q and $\gamma=\alpha-\beta$. For simplicity's sake, we write $\phi_1=f$, $\phi_2=-fSe^{\gamma}$, $\phi_3=Te^{-\beta}$, $\phi_1=1/f$, $\phi_2=-Te^{-\beta}/f$ and $\phi_3=Se^{\gamma}$. With these ϕ_2 (j=1, 2, 3) define Δ and Δ' by

$$\mathcal{\Delta} = \begin{vmatrix} 1 & 1 & 1 \\ \phi_1'/\phi_1 & \phi_2'/\phi_2 & \phi_3'/\phi_3 \\ \phi_1''/\phi_1 & \phi_2''/\phi_2 & \phi_3''/\phi_3 \end{vmatrix}, \qquad \mathcal{\Delta}' = \begin{vmatrix} \phi_2'/\phi_2 & \phi_3'/\phi_3 \\ \phi_2''/\phi_2 & \phi_3''/\phi_3 \\ \phi_3''/\phi_3 \end{vmatrix},$$

and further with ϕ_j replaced by ϕ_j we define \varDelta_1 and \varDelta'_1 similarly.

(A) First we consider the case $\Delta \equiv 0$. By (2.4)

(2.5)
$$-fSe^{\gamma} = \phi_2 = C\phi_1 + D = Cf + D,$$

(2.6)
$$Te^{-\beta} = \phi_3 = 1 - \phi_1 - \phi_2 = 1 - D - (C+1)f$$

with two constants C and D. Eliminating f from (2.5) and (2.6), we get

(2.7)
$$R\{CPe^{-\beta} + Re^{\gamma-\beta} + (D-1)Qe^{\gamma}\} = (C+D)PQ.$$

 (A_1) If $\{d_n\} \neq \emptyset$, then (2.7) implies C+D=0 and $(C+1)Qe^{\beta+r}-Re^r=CP$. It is easily verified that $C \neq 0, -1$. Hence from (2.5) and (2.6) we deduce that $\{c_n\} = \{a_n\}, \{d_n\} = \{b_n\}$ and $\{q_n\} = \{p_n\}$. This is contradictory to the assumption that g is nonconstant.

 (A_2) Now, we proceed to the case $\{d_n\} = \emptyset$, i.e. $R \equiv 1$. If D=0, (2.5) implies $P \equiv 1$, so that Q has at least one zero. Hence by (2.6) $C \neq -1$ and $f = (1-1/Qe^{\beta})/(C+1)$, from which we have $\overline{K}(f) \ge 1$. (Here we remark that (2.1) implies $\overline{K}(f) < 1/2$. This is an immediate consequence of the fact that $\{u_n\}$ is a subsequence of $\{s_n\}$.) If D=1, (2.7) implies $P \equiv 1$ and $C \neq 0$. Hence in view of (2.5) $f = -(C+e^{r})^{-1}$, from which we have $\overline{K}(f)=1$. It remains to consider the case $D \neq 0, 1$. If C=-1, (2.6) implies $e^{\beta} \equiv (1-D)^{-1}$. From this and (2.5) it follows that $f = DP/\{P+(D-1)e^{\alpha}\}$, so that $\overline{K}(f) \ge 1$. If $C \neq -1$, (2.6) gives $f = (1-D-1/Qe^{\beta})/(C+1)$, which also yields $\overline{K}(f) \ge 1$.

(B) The case $\Delta_1 \equiv 0$ can be handled in all the same way as the case $\Delta \equiv 0$, and after all $\Delta_1 \equiv 0$ leads us to imcompatible results with our assumptions.

(C) Next we suppose that neither Δ nor Δ_1 are identically zero. From (2.4) it follows that $f = \Delta' / \Delta$. Using the same reasoning as in *Case* 3 in the proof of Theorem 1, we obtain the following estimates:

(2.8)
$$m(r, f) \leq m(r, \Delta') + m(r, \Delta) + N(r, \infty, \Delta) + O(1),$$

(2.9)
$$m(r, \Delta') + m(r, \Delta) = O\{\log T(r, f) + \log r + \log m(r, P)\}$$

$$+\log m(r, R) + \log m(r, Q)\} \quad (r \notin E, r \to \infty),$$

$$(2.10) \quad N(r, \infty, \Delta) \leq 2\overline{N}(r, 0, f) + \overline{N}(r, \infty, f) + \overline{N}(r, 0, P) + \overline{N}(r, 0, Q) + 2\overline{N}(r, 0, R) \\ + \overline{N}_1(r, \infty, fQ) - \overline{N}(r, \{Q=0\} \cap \{ \text{ multiple poles of } fQ\}),$$

(2.11) $N(r, \infty, f) = \overline{N}(r, \infty, f) + N_1(r, 0, Q) + N_1(r, \infty, fQ) + \overline{N}(r, \{Q=0\} \cap \{fQ=\infty\}).$ In particular, if f is a rational function, (2.9) can be replaced by

$$(2.9)' \qquad \qquad m(r, \Delta') + m(r, \Delta) = O(1).$$

Indeed, we may use the first and the second fundamental theorems to find that g is rational, and next note from (ii) that all of P, R and Q are polynomials, so that e^{α} and e^{β} are constants. Hence ϕ_1 , ϕ_2 and ϕ_3 are all rational functions, and thus (2.9)' holds.

138

After (2.2), (2.9) ((2.9)' in case that f is a rational function) and (2.10) are taken into account, (2.8) and (2.11) yield

$$\begin{array}{ll} (2.12) & \{1-o(1)\}T(r,\ f) \leq 2\{\overline{N}(r,\ 0,\ f) + \overline{N}(r,\ \infty,\ f) + \overline{N}(r,\ 0,\ R)\} \\ & \quad + \overline{N}(r,\ 0,\ P) + N(r,\ 0,\ Q) + (N_1 + \overline{N}_1)(r,\ \infty,\ fQ) \\ & \quad + \overline{N}(r,\ \{Q=0\} \cap \{simple\ poles\ of\ fQ\}) \quad (r \in \Omega \smallsetminus E,\ r \to \infty). \end{array}$$

In the same way, starting from $1/f = \Delta'_1/\Delta_1$ we deduce

$$(2.13) \qquad \{1-o(1)\}T(r, 1/f) \leq 2\{\overline{N}(r, \infty, f) + \overline{N}(r, 0, f) + \overline{N}(r, 0, R)\} \\ + \overline{N}(r, 0, Q) + N(r, 0, P) + (N_1 + \overline{N}_1)(r, 0, f/P) \\ + \overline{N}(r, \{P=0\} \cap \{simple \ zeros \ of \ f/P\}) \quad (r \in Q \setminus E, \ r \to \infty),$$

where ${\it Q}$ and ${\it E}$ are the same as in (2.12). Summing up (2.12) and (2.13), we have

$$\begin{split} \{2-o(1)\}T(r, f) &\leq 4\{\overline{N}(r, 0, f) + \overline{N}(r, \infty, f) + \overline{N}(r, 0, R)\} + (N+\overline{N})(r, 0, P) \\ &+ (N+\overline{N})(r, 0, Q) + (N_1 + \overline{N}_1)(r, 0, f/P) + (N_1 + \overline{N}_1)(r, \infty, fQ) \\ &+ \overline{N}(r, \{P=0\} \cap \{simple \ zeros \ of \ f/P\}) \\ &+ \overline{N}(r, \{Q=0\} \cap \{simple \ poles \ of \ fQ\}) \quad (r \in \Omega \smallsetminus E, r \to \infty), \end{split}$$

which is also inconsistent with (2.1).

Thus $(\{a_n\} \setminus \{c_n\}, \{b_n\} \setminus \{d_n\}, \{p_n\} \setminus \{q_n\})$ is not a zero-one-pole set of any nonconstant meromorphic function.

3. Suppose that f is a nonconstant meromorphic function in the plane C whose zero-*d*-pole set is not unique, where $d(\neq 0, 1)$ is a constant. Let $(\{a_n\}, \{b_n\}, \{p_n\})$ be the zero-one-pole set of f, and let $\{c_n\}, \{d_n\}$ and $\{q_n\}$ be subsequences of $\{a_n\}, \{b_n\}$ and $\{p_n\}$ respectively such that $\{c_n\} \cup \{d_n\} \cup \{q_n\} \neq \emptyset$ and such that

(3.1)
$$\sum_{c_n \neq 0} |c_n|^{-1} + \sum_{d_n \neq 0} |d_n|^{-1} + \sum_{q_n \neq 0} |q_n|^{-1} < +\infty.$$

Under these assumptions we prove the following result.

THEOREM 3. Let f, d, $(\{a_n\}, \{b_n\}, \{p_n\})$, $\{c_n\}, \{d_n\}$ and $\{q_n\}$ be given as above. Then $(\{a_n\} \setminus \{c_n\}, \{b_n\} \setminus \{d_n\}, \{p_n\} \setminus \{q_n\})$ is not a zero-one-pole set of any nonconstant meromorphic function.

We have already showed the corresponding result for the case d=1 in [5, Theorem 1]. Also, Ozawa [2, Section 4] has proved this result for $\{p_n\} = \{q_n\} = \{c_n\} = \emptyset$ and $1 \leq \#\{d_n\} < +\infty$. The assumption (3.1) cannot be omitted. For

example, let us consider $f=d(e^z-1)/(e^z-d)$, N=df and $g=e^z/(e^z-d)$ with a constant $d(\neq 0, 1)$. Then we easily see that f and N have the same zero-d-pole set, say $(\{a_n\}, \phi, \{p_n\})$, and therefore the zero-d-pole set of f is not unique. On the other hand, the zero-one-pole sets of f and g are $(\{a_n\}, \phi, \{p_n\})$ and $(\phi, \phi, \{p_n\})$ respectively, and $\sum_{a_n\neq 0} |a_n|^{-1} = \pi^{-1} \sum_{k=1}^{\infty} k^{-1} = +\infty$. Further we remark that this result does not hold in general in the case that the zero-d-pole set of f is unique for any $d\neq 0$. In fact, let g be a nonconstant meromorphic function of order less than one, and consider $f=g^2$. See [1, p. 25, Lemma 1.4.].

In the proof of Theorem 3, we frequently use the following form of the impossibility of Borel's identity.

LEMMA 4. (cf. [5]) Let P_0, P_1, \dots, P_n $(P_j \not\equiv 0, 0 \leq j \leq n, n \geq 1)$ be entire functions satisfying $m(r, P_j) = o(r)$ $(r \rightarrow \infty)$, and let g_1, g_2, \dots, g_n be nonconstant entire

functions. Then an identity of the following form is impossible: $\sum_{j=1}^{n} P_{j} e^{g_{j}} = P_{0}$.

Proof of Theorem 3. We suppose that $(\{a_n\} \setminus \{c_n\}, \{b_n\} \setminus \{d_n\}, \{p_n\} \setminus \{q_n\})$ is the zero-one-pole set of a nonconstant meromorphic function g. To begin with, we construct entire functions P, R and Q whose zeros are $\{c_n\}, \{d_n\}$ and $\{q_n\}$ respectively in the following manner.

(i) If $\{c_n\}$ is empty, then $P \equiv 1$. It is the same with R and Q.

(ii) All of P, R and Q have genus zero, so that $m(r, P)+m(r, R)+m(r, Q) = o(r) \ (r \to \infty)$.

The condition (ii) is possible from (3.1). Let $N(\equiv f)$ be the meromorphic function whose zero-*d*-pole set is the same as the one of *f*.

According to our assumptions, there are four entire functions α , β , γ and δ such that

(3.2)
$$N = f e^{\alpha}, \quad N - d = (f - d) e^{\beta}, \quad g P/Q = f e^{\gamma}, \quad (g - 1) R/Q = (f - 1) e^{\delta}.$$

We note that each of e^{α} , e^{β} and $e^{\alpha-\beta}$ is not identically equal to one, otherwise we immediately deduce from (3.2) $f \equiv N$. The elimination of N, g and f from (3.2) gives

$$(3.3) \qquad PRe^{\alpha} - PRe^{\beta} - dQRe^{\gamma} + dQRe^{\beta+\gamma} + dPQe^{\delta} - PQe^{\alpha+\delta} + (1-d)PQe^{\beta+\delta} = 0.$$

Suppose that e^{α} is a constant $c(\neq 0, 1)$. Then e^{β} is not a constant because of the nonconstancy of f, and by (3.3)

$$(3.4) \qquad PRe^{\beta} + dQRe^{\gamma} + (c-d)PQe^{\delta} - dQRe^{\beta+\gamma} + (d-1)PQe^{\beta+\delta} = cPR.$$

We first consider the case c=d. Recall that P, R and Q satisfy the condition (ii). Then applying Lemma 4 to (3.4), we find that at least one of e^r , $e^{\beta+\gamma}$ and $e^{\beta+\delta}$ is a constant, say x. If $e^{\gamma} \equiv x$, (3.4) becomes $(P-dxQ)Re^{\beta}+(d-1)PQe^{\beta+\delta}$

=d(P-xQ)R. It is easily seen that $R\equiv 1$, $P-dxQ\equiv 0$ and $P-xQ\equiv 0$, so that $e^{\beta+\delta}$ is a constant, say y, and hence $(P-dxQ)e^{\beta}=d(P-xQ)-y(d-1)PQ$. This is impossible. If $e^{\beta+\gamma}\equiv x$, then $PRe^{\beta}+dxQRe^{-\beta}+(d-1)PQe^{\beta+\delta}=d(P+xQ)R$, which implies that $R\equiv 1$ and $P+xQ\equiv 0$. Hence $e^{\beta+\delta}$ must be a constant, say y, and thus $Pe^{\beta}+dxQe^{-\beta}=d(P+xQ)-y(d-1)PQ\equiv 0$, which is absurd. If $e^{\beta+\delta}\equiv x$ but neither e^{γ} nor $e^{\beta+\gamma}$ are constants, then $PRe^{\beta}+dQRe^{\gamma}-dQRe^{\beta+\gamma}=\{dR-x(d-1)Q\}P$ by (3.4), so that $dR-x(d-1)Q\equiv 0$. Hence $R\equiv Q\equiv 1$ and $de^{\beta}-Pe^{\beta-\gamma}=d$. This is also untenable. We can discuss the case $c\neq d$ in much the same way as the case c=d, and in each subcase we make an appeal to Lemma 4 to obtain an absurd result. Thus we see that e^{α} is not a constant. Similarly, we can make sure that e^{β} , e^{γ} and e^{δ} are not constants.

Suppose next that $e^{\beta-\alpha}$ is a constant $c(\neq 0, 1)$. From (3.3) it follows that

$$(3.5) \qquad cdQRe^{\gamma} + \{c(1-d)-1\}PQe^{\delta} - dQRe^{\gamma-\alpha} + dPQe^{\delta-\alpha} = (c-1)PR,$$

which implies that at least one of $e^{\gamma-\alpha}$ and $e^{\delta-\alpha}$ is a constant, say x. First assume that $e^{\gamma-\alpha} \equiv x$. In view of (3.5)

(3.6)
$$cdxQRe^{\alpha} + \{c(1-d)-1\}PQe^{\delta} + dPQe^{\delta-\alpha} = \{(c-1)P + dxQ\}R.$$

If $(c-1)P+dxQ\equiv 0$, then $P\equiv Q\equiv 1$ and c-1+dx=0. Substituting these into (3.6), we have $cxRe^{\alpha-\delta}+e^{-\alpha}=c+x$. Since R has at least one zero, $c+x\neq 0$, and so $e^{\alpha-\delta}$ must be a constant, say y. Thus $e^{-\alpha}=c+x-cxyR$. This is untenable. If $(c-1)P+dxQ\equiv 0$, then (3.6) yields that $e^{\delta-\alpha}$ is a constant, say y, and that $[cdxR+y\{c(1-d)-1\}P]Qe^{\alpha}=\{(c-1)P+dxQ\}R-dyPQ\equiv 0$. This is also impossible. Next assume that $e^{\delta-\alpha}\equiv x$. By means of (3.5) $cdQRe^r+\{c(1-d)-1\}PQe^{\delta}-dQRe^{r-\alpha}=\{(c-1)R-dxQ\}P$, from which we have $(c-1)R-dxQ\equiv 0$. Hence $Q\equiv R\equiv 1$, c-1=dx, and so $(c-x)Pe^{\delta-r}+e^{-\alpha}=c$. This is absurd. Thus we may assume that $e^{\beta-\alpha}$ is not a constant. In the similar manner, we can ascertain the fact that $e^{r-\alpha}$, $e^{\beta+r-\alpha}$, $e^{\delta-\alpha}$ and $e^{\beta+\delta-\alpha}$ are not constants.

It remains to consider the case that none of e^{α} , e^{β} , e^{γ} , e^{δ} , $e^{\gamma-\alpha}$, $e^{\beta+\gamma-\alpha}$, $e^{\delta-\alpha}$ and $e^{\beta+\delta-\alpha}$ are constants. Using (3.3) once more, we have $PQe^{\delta}+PRe^{\beta-\alpha}$ + $dQRe^{\gamma-\alpha}-dQRe^{\beta+\gamma-\alpha}-dPQe^{\delta-\alpha}+(d-1)PQe^{\beta+\delta-\alpha}=PR$. This is also impossible because of Lemma 4.

All the above arguments are combined to show that $(\{a_n\} \setminus \{c_n\}, \{b_n\} \setminus \{d_n\}, \{p_n\} \setminus \{q_n\})$ is not a zero-one-pole set of any nonconstant meromorphic function.

References

- [1] W.K. HAYMAN, Meromorphic functions, Oxford (1964).
- [2] M. OZAWA, On the zero-one set of an entire function, II, Kodai Math. J. Vol. 2 No. 2 (1979), 194-199.
- [3] K. TOHGE, Meromorphic functions covering certain finite sets at the same points, Kodai Math. J. Vol. 11 No. 2 (1988), 249-279.

- [4] H. UEDA, Unicity theorems for meromorphic or entire functions, II, Kodai Math. J. Vol. 6 No. 1 (1983), 26-36.
- [5] H. UEDA, On the zero-one-pole set of a meromorphic function, Kodai Math. J. Vol. 12 No. 1 (1989), 9-22.

Department of Mathematics Daido Institute of Technology Daido, Minami, Nagoya, Japan

142