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TORSION AND CRITICAL METRICS ON

CONTACT THREE-MANIFOLDS

BY DOMENICO PERRONE0

1. Introduction. Let M be a compact orientable manifold of class C°°. It
is well known that a Riemannian metric g on M is a critical point of the

allfunctional "integral of the scalar curvature \ rdv" defined on the set of

Riemannian metrics of the same total volume on M, if and only if g is an
Einstein metric.

Now let (M, ω) be a compact contact three-manifold. Then there exists an
unique vector field XQ on M such that ω(XQ)=l and dω(X0, )=0. Consider the
following functional

= ί rdv

where <3tt(ώ) denotes the space of all associated Riemannian metrics to the
contact form ω. This functional was studied by Blair and Ledger [2] in
general dimension. However the three-dimensional case has many special
features to merit a separate study. Chern and Hamilton [7] introduced the
torsion τ=LχQg, namely the Lie derivative of g with respect to X0, in their
study of compact contact three-manifolds, and studied the Dirichlet energy

= ( c2dv

over the set of "C/?-structures" on M (see also Tanno [15]). Goldberg, the
present author and Toth [10] studied the geometry of a compact contact
Riemannian three-manifold (M, ω, g) with g critical metric of βc

The main purpose of this paper is to study compact Riemannian three-
manifolds (M, ω, g) with g critical metric of the functional £F.

In § 3, we show that a point g of <?M(ώ) is a critical point of 9", if and
only if

(1.1) Vτβτ=0.
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This condition is related to some interesting geometric properties, for example
it is equivalent to the condition that the sectional curvatures of all planes, at a
given point, perpendicular to J5=kerα> are equal to (1— c2/4). The (1.1) was
incorrectly obtained in [7] as the condition for the critical metrics of the
functional €c Note that XQ is a Killing vector field with respect to g, if and
only if g is a critical point of 6c and £F. Besides if g is ω-Einstein or locally
symmetric, then it is a critical point of £F.

In § 4 we show that a metric g of <3tt(ώ) is ω-Einstein if, and only if, the
following hold: (1) g is a critical point of EF, and (2) the ^-torsion ψ=—τ-φ is
perpendicular to the orbit of g under the group of diffeomorphisms of M.
Moreover we give some properties of a tensor Si which measures the deviation

from the co-Einstein structure, for example Sl=——VχQτ if and only if the above

condition (2) holds.
In § 5, we extend some results of [8] and [10]. Precisely we show that

the metric of a compact contact Riemannian three-manifold (M, ω, g, X0) whose
characteristic vector field X0 is of Killing, may be deformed to a contact metric
of positive sectional curvature if either the Ricci curvature is greater than — 2g
or the ^-sectional curvature is greater than —3. Hence if, in addition, M is
simply connected, then by [11] it is diffeomorphic with the three-sphere.

2. Contact manifolds. A (2n + l)-dimensional manifold M is said to be a
contact manifold if it carries a global 1-form ω^O with the property that
ω/\(dώ)nφΰ everywhere. It has an underlying almost contact structure (XQ, ω, φ),
where ω(XQ)=l, φX0=Q and φ2= — I+ω®XQ. A metric g, called an associated
metric, can then be found such that ω=g(XQ, •)> dω(X, Y)=g(φX, Y) and hence
g(φX, Y)=—g(X, φY). These metrics are constructed by the polarization of
dω evaluated on a local orthonormal basis of an arbitrary metric on the sub-
bundle B of TM defined by kerω. We refer to (ω, g) or (ω, g, X0, φ) as a
contact Riemannian structure. All metrics g of Jft(ώ), namely associated to the
contact form ω, have the same volume element (l/2nn\)ω/\(dω)n, and hence we
will write dυ instead of dvg. Given a contact metric structure (ω, g, X0, φ\
the torsion τ—LXQg satisfies (cf. [9]):

(2.1) r(Z0, 0-0, τ(X,Y)=τ(Y,X)

(2.2) τ(φX, Y)=τ(X, φY), τ(φX, φY)=-τ(X9 Y).

Moreover (see for example formula (3.1)) τ(X, Y)=2g(φX, hY) where h=-^-LχQφ.

So h is a symmetric operator which anticommutes with φ. If XQ is a Killing
vector field with respect to g, the contact metric structure is said to be K-
contact. It is easy to see that a contact metric structure is ΛΓ-contact if and
only if τ=0 (or equivalently Λ=0). The reader is referred to [3] for details
and other properties of contact manifolds. In the sequel we denote by R, S, r
and K, respectively, the curvature tensor, the Ricci tensor, the scalar curvature
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and the sectional curvature of a given contact Riemannian manifold moreover
for tensor fields U and V of the same type, we put

<£/, V>=U^'"VIJ... and | £7 1 2=<t7, C7> .

3. Torsion and critical metrics. Let M(ω, g, -Xo, 0) be a (2n+ ̂ -dimen-
sional contact Riemannian manifold and 7 the Riemannian connection with
respect to g. First we give the following.

PROPOSITION 3.1. The tensor field 7χ0r satisfies the following properties:
( i )
(i i)

(iv) /0r £ m 5, |E|=1, ί/ze sectional curvature K(X0, E) is given by

K(XQ, £)=-- ί(7χ0τXE, £)+l-|A(£)|2,

(v) 7χ0τ=0 if, and only if, K(X0, E'}-K(X,, J5)=| /z(E)|2- 1 A(£OΓ
;y E, E' m 5, |£| = |£'|=1,
(vi) // n=l, ί/zen

, X)

Proof, ( i ) 7χ0τ is symmetric because τ is symmetric.
(i i) (7^0τ)(Z0, 0=-ϊβτ(-yβ, )-τ(7^0Z0, )-*(*„, Vχβ )=0 because 7^0Z

(cf. [3]) and r(Z0, )=0.
(iii) follows from Vχ0φ=Q (cf. [3]), i.e. Vχ0φ(X)=φ(VXoX), and (2.2).
(iv) Since LχQdω=Q (cf. [3]), we have

and hence

(3.1)

Since 7jr00=0, from (3.1) it follows that

(3.2) (7*βrXX, y )=2^(#-Y, (7z0 A)y ) .

Moreover we have the following formula (cf. (3.3) of [4])

(3.3) VXoh=φ-φh*-φR(., Zo)Z0.

From (3.3) and (3.2), since A is symmetric and anticommutes with φ, we get
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, E)=g(R(E, Z0)*o, E}=g(-WXQh)E+φE-φh*E, φE}

= -(7τ0r)(£, E)+l-g(hE,

(v) If Vχ0τ— 0, from (iv) we have

*, E')-K(X0, E)= \ h(E) 1 2- I λ(E') \ 2

for E,E' in B, \E\ = E'\=l. Conversely if this formula holds, then (iv)
implies (7χ0τ)(E, E)^(7χ0r)(E/, £')• Choosing E'=φE, by (iii), we obtain

(7χ0r)(E, E)=0 for JS in 5, |£|=1.

So, by (ii), 7χ0τ=0.
(vi) For £ in B, \E\=1, since hφ=-φh, we have | Λ £ | = | Λ j > £ | and hence

(iv) implies

(3.4) #(*β, E)-K(X0, φE)=-(VfΰτXE, E)

(see also Lemma 7.1 of [15]). Since dimM=3, from (3.4) it follows that

S(φE, φE}-S(E, £)=(

Consequently for E, jE7 in 5,

S(φ(E+Ef), φ(E+E'»-S(E+E',

implies

(3.5) S(φE, φE')-S(E, £')=(

Finally for Z and F in TM, ^Z and ^F are in 5 and
^2F — — Y+ω(Y)X0, therefore by (iii) and (3.5) we get the property (vi).

THEOREM 3.2. Let (A/, ω) δβ α compact contact three-manifold. Then a
metric g in JM(ω} is a critical point of the functional £F if and only if

Proof. Let g(t) be a smooth curve in <^(α>) such that g(o)=g. We calculate
at ί=0, where

=( r(ί)dυ.
JM

We put

where [ί2] denotes a set of terms of higher order (J>2) in t, and /? is a second
order symmetric tensor that satisfies (see [6] p. 304)
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k(X0, )=0 and k(φX, φY}=-k(X, Y).

Moreover the scalar curvature r(i) is given (see [15] § 13) by

where div denotes a term which is a divergence. So, by Green's Theorem, we
get

at

Since k(X0, •)—0, we can write <&, £>=<&, T> where

τ=s-s(z0,

Moreover, since k(φE,φE)=-k(E, E) for £ in 5, <£, T>=<&, F> where

F=— T— — S(0 , φ ). On the other hand by Proposition 3.1 property (vi),

Therefore

(3.6)

So if Vz0τ=0, then g is a critical point of 2". Conversely assume that g is
critical for £F. We put k—1xj:, then by Proposition 3.1 & is symmetric,
&(Z0, )=0, and k(φX, Y)=-k(X, φY\ Consequently, by [6] p. 304 (see also
[15]), g(t)=getk*, —ε<t<ε, is a smooth curve in <%t(ώ) such that g(Q)=g
where k*=(kj) and g(t)(X, Y)=g(X, etkΎ). Applying (3.6) to this deformation,
we get V^r0r=0.

Remark 3.1. ( i ) Blair and Ledger [2] proved, in general dimension, that
a metric g in M(ω) is a critical point of £F if and only if the Ricci operator
and φ when restricted to the contact distribution, commute.

(ii) 7jτ0τ— 0 is the condition incorrectly obtained in [7] (cf. Theorem 5.4)
for a metric <?c-critical. Therefore, by our Theorem 3.2, the main result of
[9] holds replacing the assumption g £c-critical by g £F -critical.

(iii) The condition Vχ0r— 0, in general dimension, was studied by Tanno
(see [15] § 7) because it is related to some interesting properties. For example
he proved that the conditions : 7χ0r=0, Vχ07Z0=0 and 7^0T*— 0, are equivalent,
where T* is the torsion tensor of the generalized Tanaka connection. From
Proposition 3.1 we obtain

V^r0r-0 iff K(X0, E')-K(XQ, £)= | HE |2- I hE'\ 2 for E, E' in B, \ E \ = \ E'\ =1.

Hence, when Vχ0r— 0, we have at a given point
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K(X9, E')>K(X0, E) (resp. =) iff \hE\>\hE'\ (resp. =).

In particular if E1 is an unit vector of the plane generated by {E, φE}, we
have \hE'\ = \hE\. So, for three-dimensional manifolds, the condition Vχ0τ=0
is equivalent to the condition that the sectional curvatures of all planes at a
given point perpendicular to B be equal.

Remark 3.2. Let (M, ω) be a compact contact three-manifold. Chern and
Hamilton [7] studied also the following energy

1 / cz \
where W=-=- (r-\ — = — 1-2) is the Webster scalar curvature (see [7] p. 284). If

o \ Z /
g(f) is a smooth curve in M(ω) with g(0)=g, then &£„,(£(*))=

, g) and hence

(3.7)

Tanno proved (see [15] §5) that

(3.8)
J M

From (3.6), (3.7) and (3.8), we get

(3.9) (d€w/dtm= <k,τ φydv.
O J M

If r— 0, then g is a critical point of <5W. Conversely assume that g is a critical
point of €Wί defining k—τ-φ, g(t)—getk* is a smooth curve in JH(ώ) (see [6] p.
304 or [15]) with g(0)=g. Applying (3.9) to this deformation we have r=0.
Therefore we obtain the following.

THEOREM 3.3 (Chern-Hamilton). Let (M, ω) be a compact contact three-
manifold. Then a metric g in JM(ώ) is a critical point of 6W if and only if the
characteristic vector field X0 is of Killing with respect to g.

This Theorem was obtained in [7] (see Theorem 5.2) where Gw was studied
as a functional on M&) regarded as the set of "Cft-structures" on M.

Examples, of critical metrics. Let (ω, g) be a contact Riemannian structure
on a compact three-manifold M.

( i ) Note that : M is /Γ-contact if and only if g is a critical metric for <ϊ
and €c

( ii ) If g is ω-Einstein (in particular if g is of constant sectional curvature),
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then g is critical for £F (see Theorem 4.3). If g is of constant sectional curva-
ture K=Q, then it is not /^-contact and so this metric is critical for 3 but not
for βc.

(iii) If g is locally symmetric, then g is a critical metric for £F. In fact,
since g is locally symmetric, by Lemma 1 of [5] we have 7jr0/ι=0, and so by
formula (3.2) we get Vχ0τ=0.

(iv) The natural contact Riemannian structure of the tangent sphere bundle
of a compact Riemannian 2-manifold with constant curvature —1 is critical for
βc but not for £F (combine (i), Theorem of [4] and a result of Tashiro [3] p.
136).

(v) Let TV be a compact orientable surface of constant negative curvature
— 1. Let (θ1, θ2) be an orthonormal coframe and Ω\ the connection 1-form.
Chern and Hamilton [7] defined on the unit tangent bundle 7\Λf a contact
Riemannian structure (ω, g') by

ω^Ω\ and g'^{θl®θl +

It is not difficult to see that the Ricci curvature in the direction of XQ and the
scalar curvature of (TΊΛf, ω, g') are given by

S(XQ, X0)=2 and r=const. = —10.

Recall that a contact Riemannian three-manifold is /^-contact iff S(X0, X0)=2
(see [3] p. 65). Also recall the result of Tanno [14] that a locally symmetric
jRΓ-contact manifold is of constant curvature. So the metric g' is critical for 9"
and βc but is not locally symmetric.

4. Contact ω-Einstein spaces of dimension three. Let M be a (2n+l)-
dimensional manifold with contact metric structure (ω, g, X0, φ). M is said to
be ω-Einstein if the Ricci tensor 5 is of the form

(4.1) S=ag+bω®ω

where a and b are functions on M. It is known that if M is a /f-contact ω-
Einstein (2n-f-l)-manifold, with n>l, then the functions a and b are constant.
Moreover every Tf-contact three-manifold is ω-Einstein and the Ricci tensor is
given by

However, we know nothing about the geometry of contact ω-Einstein three-mani-
folds. Note that the connected sum of two non-simply connected closed three-
manifolds has never /^-contact structure (see [13]), while every compact orient-
able three-manifold has a contact structure (see [12]). In this section we give
a characterization of contact ω-Einstein three-manifolds in terms of critical
metrics of £F. Moreover we give some properties of a tensor Si which measures
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the deviation from the ω-Einstein structure.

PROPOSITION 4.1. Let M be a (2n + V)-dimensional manifold with contact
metric structure (ω, g, XQ, φ). If M is ω-Einstein, then the Ricci tensor is given
by

(4.2) S

//, in addition, n = l, then the curvature tensor is given by

(4.3) R(X, Y)Z={j-2(l—j-)} {g(Y, Z)X-g(X, Z)Y}+

, Z)ω(X)Xϋ+ω(Y)ω(Z)X-g(X, Z)ω(Y)X<,-ω(X)ω(Z)Y} .

Proof. Let (X,, Elt φEt) be an orthonormal 0-basis. From (4.1),
S(X,, X<,)=a+b. Besides (see [3])

S(Xt, X0)=2n-

Consequently

(4.4) α+b=2n-cz/2.

Moreover (4.1) implies

(4.5) r=S(X0, Xo)+2^S(El} Et)
1

From (4.4) and (4.5) we get

α^-l+^L and ,=_^Γ

Finally, when n— 1, the curvature tensor is given by

(4.6) R(X, Y)Z=S(Y, Z)X+g(Y, Z}Q(X}-S(X, Z}Y-g(X, Z)Q(Y)

~{g(Y, Z}X-g(X, Z)Y]

where Q=S*=(Sj) is the Ricci curvature operator. So (4.3) follows from (4.2)
and (4.6).

Remark 4.1. If M is an Einstein contact manifold, by (4.2) the scalar
curvature r^2n(2n+l) where the equality holds if and only if M is a /^-contact
Einstein manifold.
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PROPOSITION 4.2. Let M be a three-manifold with contact metric structure
(ω, g, Xo, φ). Let Sl be the tensor defined by

(4.7) Sι=S-ag

where

α=(τ-1+τc2) and 6=(-
Then

(j) |S1 |
2=2|σ| s+j|7χβr|a where σ=S(XQ, •)&;

( J j ) <Sι, r>=<S, Γ>=-l<7Jrβr, r>;

(jjj) z/ ^jsToT^O or ^JχQτ—2τ φ holds, then S and Si are perpendicular to τ ;

(jv) <S19 Vz0τ>-<S, 7χβr>=— |-|V^0ri2.

Proof, ( j ) By a direct computation we get

and hence

(4.8) I S, 1 2= I S 1 2-^(r-2+-

If (E, φE, Xo) is an arbitrary ^-basis, from (3.4) we get

(4.9) S(φE, φE)-S(E, £)=(7i.T)(£, £) .

From (3.5), by putting E'=φE, we obtain

(4.10) S(E, φE)=-^Xΰτ}(E, φE)

Moreover the scalar curvature is given by

r=S(E, E)+S(φE, φE)+S(X», X,)=2S(E, E}+φx^(E, E)+S(X0, A.),

from which

S(E, £)=- - l - c 2 - ( 7 χ 0 r ) ( £ , £)

It follows that
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is 2

So, by (4.8) we obtain (j).
(jj) Let (Z0, E, φE) be an arbitrary 0-basis. Using (2.1), (2.2), (4.7), (4.9)

and (4.10) we get

, φE)τ(E, φE)+S(φE, φE}τ(φE, φE)

= -τ(E, E){S(φE, φE)-S(E, E)}+2S(E, φE}τ(E, φE)

= -τ(E, £)(7τ0r)(£, £)-r(£, φE)φXQτ}(E, #£)=-y<7τβr, r>.

(jjj) is a consequence of (jj) and (2.2).
(jv) is obtained like (jj) by using (i)-(iii) of Proposition 3.1.

Combining Theorem 3.2, Proposition 4.1 and ( j ) of Proposition 4.2 we obtain
the following result.

THEOREM 4.3. Let M be a compact three-manifold with contact metric struc-
ture (ω, g). Then g is ω-Einstein if, and only if, g is a critical point of 3 and
(7=0.

Remark 4.2. The condition σ— 0 means (see [9] p. 372) that in the space
31 of all Riemannian metrics on M, the tangent vector ψ^T g(3ϊ), ψ(X, Y)—
—τ(X, φY\ is perpendicular to the orbit of g under the group of diffeo-
morphisms of M.

THEOREM 4.4. Let (M, ω, g) be a contact Riemannian three-manifold. Then

(7=0 if and only if Sλ = — yVχ0τ, that is, the Ricci tensor is given by

(4.11) S=-v^0r

Proof. Let T be the tensor defined by

Then

\τ

and hence (j) and (jv) of Proposition 4.2 imply
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So Theorem 4.4 follows from (4.7).

THEOREM 4.5. Let (M, ω, g) be a compact contact Riemannian three-manifold.
Then g is a critical metric for βc and <r=0 if and only if S1=ψ, that is, the
Ricci tensor is given by

(4.12) S

Proof. If g is a critical metric for 6c and σ=Q, from Theorem 4.4 above
and Theorem 5.1 of [15] we get (4.12). Conversely assume (4.12), since ψ(Xς» •)
=0, we have σ=0. So (4.11), (4.12) and Theorem 5.1 of [15] imply that g is
critical for βc

5. Curvature of ^-contact three-manifolds. In [10] the following was
proved.

THEOREM 5.1. Let M be a compact three-manifold with K-contact metric
structure (ω, g). If the scalar curvature r>—2 or the Webster curvature W>Q,
then M admits a K-contact metric structure (ω=aω, g=ag-{-(a2—a)ω®ω) of
positive sectional curvature for some a,

This result is relative to the question posed by S. S. Chern (cf . appendix of
[7]) of determining those compact three-manifolds admitting a contact metric
structure (ω, g) for which the torsion invariant | τ \ is identically zero (i. e. the
contact metric structure is /Γ-contact). In this section we extend Theorem 5.1;
precisely we give the following.

THEOREM 5.2. Let M be a compact three-manifold with K-contact metric
structure (ω, g). If one of the following four conditions holds :
(a) W>Q, (b) r>-2, (c) S+2£>0, (d) the φ-sectional curvature #>-3,
then M admits a K-contact metric structure (ω, g) of positive sectional curvature.

This Theorem is a consequence of Theorem 5.1 and of the following
Proposition.

PROPOSITON 5.3. Let M be a contact ω-Einstein three-manifold with contact
metric structure (ω, g, XQ, φ). Then, if c<2, the following five conditions are
equivalent :
(a) W>cη%, (b) r+2>c2/2, (c) S+2g>(c*/2)g,
(d) the sectional curvature K>— 3(1— c2/4),
(e) the φ-sectional curvature H>—3(l— c2/4).

Proof. Since 8W=r+2+c2/2, (a) and (b) are equivalent. If X is vertical,
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that is, if X=tX0, then

{S+2(l-c2/4)g}(X, X)=4tz(l-c2

If X is horizontal, that is, if ω(X)=Q, then by (4.2)

On the other hand S(X0, ){B=σ=Q, so (b) and (c) are equivalent. For each
point xeM, we consider an arbitrary plane P of TX(M) and an orthonormal
basis (X, Y) of P with Y=Pr\B. Then, by (4.3), the sectional curvature K(P)
at x is given by

K(P)=g(R(X, Y)Y, X)=(r/2-

and hence

(5.1)

where a is the angle between P and 5. By (5.1) we get that (b) implies (d).
The converse is trivial. Moreover the scalar curvature at x is given by

retrace S=2S(X0, XQ)+2g(R(E, φE)φE, E ) ,

where E is an unit vector of B, that is

(5.2) r=4(l-<:2/4)4-2//.

Therefore (b) and (e) are equivalent.

Remark 5.1. ( i) The main result of [7] says that every contact structure
on a compact orientable three-manifold has a contact metric whose Webster
curvature W is either>0 or W=con$t.<,0.

(i i) Hamilton [11] showed that a metric g of positive Ricci curvature on
a compact three-manifold can be deformed to a metric of (positive) constant
curvature. Hence in Theorem 5.2 if, in addition, M is simply-connected, then
it is diffeomorphic with the three-sphere. This extends Corollary of [8] (cf.
p. 654).

(iii) The formula (5.2) holds for every metric g^JM(ώ). So the conditions
on the scalar curvature given in [10] can be replaced by conditions on the φ-
sectional curvature H.

(iv) Let (M, g) be a compact Riemannian manifold and S2 the space of all
symmetric tensor fields of type (0, 2). Berger and Ebin (cf . [1] § 6) introduced
a zero-order differential operator JC : S2-><S2 which is related to the rough
Laplacian and to the Lichnerowicz operator. They proved that the operator Jί
is positive definite on TZ—{D^S2: trace D— 0} if (M, g) is of strictly positive
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sectional curvature. Now observe that if (M, ω, g) is a compact three-manifold
as in Theorem 5.2, then M1 admits a contact metric structure (ω, g) for which
the corresponding operator Jt is positive definite on Tg(32(ω))=TZ, where 3l(ω)
is the set of all Riemannian metrics on M which have the same volume element
of the metrics of <3li(ω).
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