# CERTAIN PROPERTIES OF $S(x, n)$ 

## By Tominosuke Otsuki

Let $S(x, n)$ be the function of $x$ and $n$ defined as follows:

$$
\begin{equation*}
S(x, n)=-B S_{\mathrm{s}}(x, n)+(n-x)^{n-1} S_{4}(x, n), \tag{1}
\end{equation*}
$$

where $B=(n-1)^{n-1}$,

$$
\begin{align*}
& S_{3}(x, n)=\left(8 n^{2}-5\right) x^{3}-2\left(8 n^{3}+20 n^{2}-15 n+20\right) x^{2}  \tag{2}\\
& \quad+3\left(24 n^{3}-68 n^{2}+42 n-5\right) x+4 n(4 n-1)(4 n-3)
\end{align*}
$$

and

$$
\begin{align*}
& S_{4}(x, n)=(n-1)\left(4 n^{2}-10 n+5\right) x^{4}+\left(8 n^{3}-52 n^{2}+87 n-40\right) x^{3}  \tag{3}\\
& \quad+3\left(12 n^{3}-42 n^{2}+37 n-5\right) x^{2}+3 n\left(16 n^{2}-32 n+9\right) x+12 n^{2}(2 n-1) .
\end{align*}
$$

The present author proved the following facts:
FACT 1. $S(x, n)>0$ for $0 \leqq x \leqq n, x \neq 1$, with $n \geqq 2$
(Proposition 4 in [1]);
FACT 2. $S(x, n)$ is decreasing in $0<x<1$ with $n \geqq 2$, and increasing in $1<$ $x<n$ with $2 \leqq n \leqq \frac{11+\sqrt{77}}{4}=4.9437410 \cdots$
(Proposition 8 in [2]).
The proof of the second part of Fact 2 was too long and worked out elaborately even though it was expected with $n \geqq 2$. We shall give another proof of it with $n \geqq 2$.

Main Theorem. $S(x, n)$ is increasing in $1<x<n$ with $n \geqq 2$.
By means of the argument of $\S 3$ in [2], setting $x=1+y$ and $n=1+m$, we have from (1) and (2)

$$
\begin{aligned}
& S_{3}(1+y)=\left(8 m^{2}+16 m+3\right) y^{3}-\left(16 m^{3}+64 m^{2}-22 m-15\right) y^{2} \\
& \quad+10 m\left(4 m^{2}-14 m-7\right) y+60 m^{2}(2 m+1),
\end{aligned}
$$

$$
\begin{aligned}
& S_{4}(1+y)=m\left(4 m^{2}-2 m-1\right) y^{4}+3\left(8 m^{3}-12 m^{2}+m+1\right) y^{3} \\
& \quad+3\left(28 m^{3}-38 m^{2}-6 m+5\right) y^{2}+10 m\left(16 m^{2}-8 m-7\right) y \\
& \quad+60 m^{2}(2 m+1),
\end{aligned}
$$

where $S_{3}(x)=S_{3}(x, n)$ and $S_{4}(x)=S_{4}(x, n)$ for simplicity, and

$$
\begin{aligned}
& \frac{1}{B}\left[\frac{\partial}{\partial x} S(x, n)\right]_{x=1+y}=-10 m\left(4 m^{2}-14 m-7\right) \\
& \quad+2\left(16 m^{3}+64 m^{2}-22 m-15\right) y-3\left(8 m^{2}+16 m+3\right) y^{2} \\
& \quad+\left(1-\frac{y}{m}\right)^{m-1}\left\{\left(1-\frac{y}{m}\right) S_{4}^{\prime}(1+y)-S_{4}(1+y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& (m-y) S_{4}^{\prime}(1+y)-m S_{4}(1+y)=10 m^{2}\left(4 m^{2}-14 m-7\right) \\
& \quad+2 m\left(4 m^{3}-154 m^{2}+57 m+50\right) y-3\left(4 m^{4}+54 m^{3}-85 m^{2}\right. \\
& \quad-10 m+10) y^{2}-\left(8 m^{4}+44 m^{3}-101 m^{2}+12 m+9\right) y^{3} \\
& \quad-m(m+4)\left(4 m^{2}-2 m-1\right) y^{4} .
\end{aligned}
$$

Furthermore, setting $y=m(1-t)$, from the above expressions we obtain

$$
\begin{align*}
\sigma(t) & =\frac{1}{B m}\left[\frac{\partial}{\partial x} S(x, n)\right]_{x=1+m(1-t)}  \tag{4}\\
& =L_{2}(t)-t^{m-1} L_{4}(t),
\end{align*}
$$

$$
\begin{equation*}
L_{2}(t)=a_{0}+2 a_{1} t-3 a_{2} t^{2}, \tag{5}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
a_{0}=a_{0}(m)=8 m^{3}+40 m^{2}+87 m+40,  \tag{6}\\
a_{1}=a_{1}(m)=8 m^{3}-16 m^{2}+31 m+15, \\
a_{2}=a_{2}(m)=m\left(8 m^{2}+16 m+3\right)
\end{array}\right.
$$

and

$$
\begin{equation*}
L_{4}(t)=b_{0}-b_{1} t+3 b_{2} t^{2}-b_{3} t^{3}+b_{4} t^{4}, \tag{7}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
b_{0}=b_{0}(m)=m(m+1)\left(4 m^{4}+18 m^{3}+29 m^{2}+20 m+5\right),  \tag{8}\\
b_{1}=b_{1}(m)=(m+1)^{2}\left(16 m^{4}+48 m^{3}+8 m^{2}-67 m-40\right), \\
b_{2}=b_{2}(m)=(m+2)\left(8 m^{5}+20 m^{4}-10 m^{3}-35 m^{2}-3 m+5\right), \\
b_{3}=b_{3}(m)=m(m+3)\left(16 m^{4}+16 m^{3}-40 m^{2}+3 m+3\right), \\
b_{4}=b_{4}(m)=m^{3}(m+4)\left(4 m^{2}-2 m-1\right)
\end{array}\right.
$$

It is sufficient to prove $\sigma(t)>0$ for $0<t<1$ with $m \geqq 1$.
Now, we have

$$
\begin{aligned}
L_{2}(1) & =a_{0}+2 a_{1}-3 a_{2}=-10\left(4 m^{2}-14 m-7\right), \\
L_{4}(1) & =b_{0}-b_{1}+3 b_{2}-b_{3}+b_{4}=-10\left(4 m^{2}-14 m-7\right) \\
& =L_{2}(1),
\end{aligned}
$$

and hence we can put

$$
\begin{aligned}
L_{4}(t) & -L_{2}(t)=b_{4} t^{4}-b_{3} t^{3}+3\left(a_{2}+b_{2}\right) t^{2} \\
& -\left(2 a_{1}+b_{1}\right) t+b_{0}-a_{0}=(t-1) L_{3}(t),
\end{aligned}
$$

where

$$
L_{3}(t)=b_{4} t^{3}+\left(b_{4}-b_{3}\right) t^{2}+\left(3 a_{2}+3 b_{2}-b_{3}+b_{4}\right) t+a_{0}-b_{0} .
$$

Then, we have

$$
\begin{aligned}
L_{3}(1) & =3 b_{4}-2 b_{3}+3 b_{2}-b_{0}+3 a_{2}+a_{0} \\
& =40 m^{3}-180 m^{2}+70 m+70 \\
& =10(m-1)\left(4 m^{2}-14 m-7\right)=-(m-1) L_{2}(1),
\end{aligned}
$$

and hence we can put

$$
\begin{aligned}
L_{3}(t) & +(m-1) L_{2}(t)=b_{4} t^{3}-\left\{3(m-1) a_{2}+b_{3}-b_{4}\right\} t^{2} \\
& +\left\{2(m-1) a_{1}+3 a_{2}+3 b_{2}-b_{3}+b_{4}\right\} t+m a_{0}-b_{0} \\
& =(t-1) L_{2}^{*}(t),
\end{aligned}
$$

where

$$
L_{2}^{*}(t)=b_{4} t^{2}-\left\{3(m-1) a_{2}+b_{3}-2 b_{4}\right\} t-m a_{0}+b_{0} .
$$

Next, we have

$$
\begin{aligned}
L_{2}^{*}(1) & =3 b_{4}-b_{3}+b_{0}-3(m-1) a_{2}-m a_{0} \\
& =-20 m^{4}+90 m^{3}-35 m^{2}-35 m \\
& =-5 m(m-1)\left(4 m^{2}-14 m-7\right)=\frac{1}{2} m(m-1) L_{2}(1),
\end{aligned}
$$

and hence we can put

$$
\begin{aligned}
2 L_{2}^{*}(t) & -m(m-1) L_{2}(t)=\left\{3 m(m-1) a_{2}+2 b_{4}\right\} t^{2} \\
& -2\left\{3(m-1) a_{2}+m(m-1) a_{1}+b_{3}-2 b_{4}\right\} t \\
& -m(m+1) a_{0}+2 b_{0}=(t-1) L_{1}^{*},
\end{aligned}
$$

where
and

$$
L_{1}^{*}(t)=\left\{3 m(m-1) a_{2}+2 b_{4}\right\} t+m(m+1) a_{0}-2 b_{0}
$$

$$
\begin{aligned}
3 m(m-1) a_{2}+2 b_{4} & =m^{2}\left(8 m^{4}+52 m^{3}+6 m^{2}-47 m-9\right) \\
& =m^{2}(m+1)\left(8 m^{3}+44 m^{2}-38 m-9\right), \\
-m(m+1) a_{0}+2 b_{0} & =m(m+1)\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) .
\end{aligned}
$$

Now, we set

$$
\begin{equation*}
L_{1}(t)=d_{1} t-d_{0} \tag{9}
\end{equation*}
$$

where
(10)

$$
\left\{\begin{array}{l}
d_{0}=d_{0}(m)=8 m^{4}+28 m^{3}+18 m^{2}-47 m-30 \\
d_{1}=d_{1}(m)=m\left(8 m^{3}+44 m^{2}-38 m-9\right)
\end{array}\right.
$$

From these computations we obtain

$$
\begin{aligned}
2 L_{2}^{*}(t)= & m(m-1) L_{2}(t)-m(m+1)(1-t) L_{1}(t) \\
L_{3}(t)= & -(m-1) L_{2}(t) \\
& -(1-t)\left[\frac{m(m-1)}{2} L_{2}(t)-\frac{m(m+1)}{2}(1-t) L_{1}(t)\right] \\
= & -(m-1)\left\{1+\frac{m}{2}(1-t)\right\} L_{2}(t)+\frac{m(m+1)}{2}(1-t)^{2} L_{1}(t),
\end{aligned}
$$

and

$$
L_{4}(t)=L_{2}(t)-(1-t) L_{3}(t),
$$

i. e.

$$
\begin{align*}
L_{4}(t)= & \left\{1+(m-1)(1-t)+\frac{m(m-1)}{2}(1-t)^{2}\right\} L_{2}(t)  \tag{11}\\
& -\frac{m(m+1)}{2}(1-t)^{3} L_{1}(t)
\end{align*}
$$

Thus we obtain an important expression:

$$
\begin{equation*}
\sigma(t)=\varphi_{1}(t) L_{1}(t)+\varphi_{2}(t) L_{2}(t) \tag{12}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
\varphi_{1}(t)=\frac{m(m+1)}{2} t^{m-1}(1-t)^{3}  \tag{13}\\
\varphi_{2}(t)=1-t^{m-1}\left\{1+(m-1)(1-t)+\frac{m(m-1)}{2}(1-t)^{2}\right\}
\end{array}\right.
$$

LEMMA 1. i) $d_{1}(m)$ is $\nearrow$ in $1<m<\infty$ and $\geqq 5$ for $m \geqq 1$,
ii) $d_{0}(m)$ is $\nearrow$ in $1<m<\infty$ and

$$
\left\{\begin{aligned}
d_{0}(m)<0 & \text { for } 1 \leqq m<1.17 \cdots \\
>0 & \text { for } 1.17 \cdots<m<\infty
\end{aligned}\right.
$$

iii) $d_{1}(m)-d_{0}(m)$ is $\searrow$ in $1<m<\infty$ and $>0$ for $m \geqq 1$.

Proof. i) Since we have

$$
8 m^{3}+44 m^{2}-38 m-9 \geqq 14 m-9 \geqq 5 \quad \text { for } m \geqq 1
$$

and

$$
24 m^{2}+88 m-38 \geqq 74 \quad \text { for } m \geqq 1,
$$

we obtain the claim i).
ii)

$$
\begin{aligned}
d_{0}^{\prime}(m) & =32 m^{3}+84 m^{2}+36 m-47 \\
& \geqq 152 m-47 \geqq 105 \quad \text { for } m \geqq 1,
\end{aligned}
$$

and we see $d_{0}(m)$ is $\nearrow$ in $1<m<\infty$. Since we have $d_{0}(1.17)=-0.513538 \cdots$ and $d_{0}(1.18)=1.118318 \cdots$, we obtain the claim ii).
iii) We have

$$
L_{1}(1)=d_{1}-d_{0}=16 m^{3}-56 m^{2}+38 m+30,
$$

and $24 m^{2}-56 m+19=-4.04$ at $m=1.8$ and $=3$ at $m=2$. Thus, we see that $d_{1}(m)-d_{0}(m)$ is $\searrow \nearrow$ in $1<m<\infty$, which is equal to 10.272 at $m=1.8$ and 10 at $m=2$. For $1.8 \leqq m \leqq 2$, we have

$$
d_{1}(m)--d_{0}(m)>10.272-2 \times 4.04 \times 0.2=8.656 .
$$

Therefore, it must be

$$
d_{1}(m)-d_{0}(m)>8.656 \quad \text { for } m \geqq 1 .
$$

Q.E.D.

Lemma 2. Regarding $L_{2}(t)$, we have the following •
i) $a_{0}, a_{1}$ and $a_{2}$ are positive for $m \geqq 1$;
ii) $1 / 3<a_{1} / 3 a_{2}<1 / 2$ for $1 \leqq m<5 / 4$ and $0<a_{1} / 3 a_{2} \leqq 1 / 3$ for $m \geqq 5 / 4$;
iii) for the root $\beta(m)$ of the quadratic equation $L_{2}(t)=0$ :

$$
\begin{gather*}
\beta(m)=\frac{a_{1}+\sqrt{a_{1} a_{1}+3 a_{0} a_{2}}}{3 a_{2}},  \tag{14}\\
\beta(m)>1 \quad \text { for } 1 \leqq m<\frac{7+\sqrt{77}}{4} \text { and } \\
\frac{3}{4}<\beta(m)<1 \quad \text { for } m>\frac{7+\sqrt{77}}{4}=3.9437410 \cdots ;
\end{gather*}
$$

iv) $L_{2}(t)>0$ for $0 \leqq t \leqq 1$ with $1 \leqq m<\frac{7+\sqrt{77}}{4}$.

Proof. i) is evident. On ii) we have

$$
\frac{a_{1}}{3 a_{2}}=\frac{8 m^{3}-16 m^{2}+31 m+15}{3 m\left(8 m^{2}+16 m+3\right)} \rightarrow \frac{1}{3} \quad \text { as } m \rightarrow \infty .
$$

The condition $a_{1} / 3 a_{2} \leqq 1 / 3$ is equivalent to

$$
32 m^{2}-28 m-15=(4 m-5)(8 m+3) \geqq 0, \quad \text { i.e. } m \geqq \frac{5}{4} .
$$

Next, the condition $a_{1} / 3 a_{2} \leqq 1 / 2$ is equivalent to

$$
8 m^{3}+80 m^{2}-53 m-30>0,
$$

whose left hand side $\geqq 5$ for $m \geqq 1$. These imply the claim ii).
iii) Since we have $L_{2}(1)=-10\left(4 m^{2}-14 m-7\right)$ and

$$
\begin{aligned}
L_{2}\left(\frac{3}{4}\right) & =a_{0}+\frac{3}{2} a_{1}-\frac{27}{16} a_{2} \\
& =\frac{1}{16}\left(104 m^{3}-176 m^{2}+2055 m+1000\right)>0 \quad \text { for } m \geqq 1,
\end{aligned}
$$

we obtain the claim iii) immediately.
iv) is evident from iii).
Q.E.D.

Lemma 3. i) $\varphi_{1}(t)>0$ for $0<t<1$ with $m \geqq 1$, and

$$
\begin{equation*}
\varphi_{1}^{\prime}(t)=\frac{m(m+1)}{2} t^{m-2}(1-t)^{2}\{m-1-(m+2) t\} . \tag{15}
\end{equation*}
$$

ii) $0<\varphi_{2}(t)<1$ for $0<t<1$ with $m>1$, and

$$
\begin{align*}
& \varphi_{2}^{\prime}(t)=-\frac{(m+1) m(m-1)}{2} t^{m-2}(1-t)^{2}  \tag{16}\\
& \varphi_{2}^{\prime \prime}(t)=-\frac{(m+1) m(m-1)}{2} t^{m-3}(1-t)(m-2-m t) \tag{17}
\end{align*}
$$

iii) $\quad \varphi_{1}(1)=\varphi_{2}(1)=0$.

Proof. We obtain easily (15), (16) and (17) from (13). The rest things are evident from them.
Q.E.D.

Lemma 4. We have

$$
\alpha(m)=d_{0}(m) / d_{1}(m)<\beta(m) \quad \text { for } m \geqq 1
$$

Proof. Since $\beta(m)>3 / 4$ for $m \geqq 1$ by iii) of Lemma 2 and $\alpha(m)<0$ for $1 \leqq$
$m<1.17 \cdots$ by ii) of Lemma 1 , we shall prove the inequality for $m>1.17 \cdots$. Since $a_{2}(m)>0$ for $m \geqq 1$, it is sufficient to show

$$
a_{0} d_{1}^{2}+2 a_{1} d_{1} d_{0}-3 a_{2} d_{0}^{2}>0 .
$$

By (6) and (10) we have

$$
\begin{aligned}
a_{0} d_{1}-a_{1} d_{0}= & m\left(8 m^{3}+40 m^{2}+87 m+40\right)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
& -\left(8 m^{3}-16 m^{2}+31 m+15\right)\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) \\
= & m\left(64 m^{6}+672 m^{5}+2152 m^{4}+2556 m^{3}-1906 m^{2}\right. \\
& -2303 m-360)-\left(64 m^{7}+96 m^{6}-56 m^{5}+324 m^{4}\right. \\
+ & \left.1490 m^{3}-707 m^{2}-1635 m-450\right) \\
= & 3\left(192 m^{6}+736 m^{5}+744 m^{4}-1132 m^{3}-532 m^{2}+425 m+150\right), \\
\left(a_{1} d_{1}-a_{2} d_{0}\right) / m= & \left(8 m^{3}-16 m^{2}+31 m+15\right)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
& -\left(8 m^{2}+16 m+3\right)\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) \\
= & 64 m^{6}+224 m^{5}-760 m^{4}+2020 m^{3}-374 m^{2} \\
& -849 m-135)-\left(64 m^{6}+352 m^{5}+616 m^{4}-4 m^{3}\right. \\
& \left.-938 m^{2}-621 m-90\right) \\
= & -128 m^{5}-1376 m^{4}+2024 m^{3}+564 m^{2}-228 m-45,
\end{aligned}
$$

and hence

$$
\begin{aligned}
\left(a_{0} d_{1}^{2}+\right. & \left.2 a_{1} d_{1} d_{0}-3 a_{2} d_{0}^{2}\right) / 3 m \\
= & \left(8 m^{3}+44 m^{2}-38 m-9\right)\left(192 m^{6}+736 m^{5}+744 m^{4}\right. \\
& \left.-1132 m^{3}-532 m^{2}+425 m+150\right) \\
& -\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right)\left(128 m^{5}+1376 m^{4}\right. \\
& \left.-2024 m^{3}-564 m^{2}+228 m+45\right) \\
= & 1536 m^{9}+14336 m^{8}+31040 m^{7}-6016 m^{6}-88960 m^{5} \\
& +16312 m^{4}+50304 m^{3}-4762 m^{2}-9525 m-1350 \\
& -1024 m^{9}-14592 m^{8}-24640 m^{7}+42432 m^{6}+118912 m^{5} \\
& -50440 m^{4}-92592 m^{3}-7014 m^{2}+8955 m+1350,
\end{aligned}
$$

i.e.

$$
\begin{equation*}
a_{0} d_{1}^{2}+2 a_{1} d_{1} d_{0}-3 a_{2} d_{0}^{2}=6 m^{2} \times P(m), \tag{18}
\end{equation*}
$$

where

$$
\begin{align*}
P(m)= & 256 m^{8}-128 m^{7}+3200 m^{6}+18208 m^{5}  \tag{19}\\
& +14976 m^{4}-17064 m^{3}-21144 m^{2}-5888 m-285 .
\end{align*}
$$

Since we have

$$
\begin{aligned}
P^{\prime}(m)= & 2048 m^{7}-896 m^{6}+19200 m^{5}+91040 m^{4} \\
& +59904 m^{3}-51192 m^{2}-42288 m-5888 \\
\geqq & 20352 m^{5}+91040 m^{4}+59904 m^{3}-51192 m^{2}-42288 m-5888 \\
\geqq & 171296 m^{3}-51192 m^{2}-42288 m-5888 \\
\geqq & 77816 m-5888>0 \quad \text { for } m \geqq 1_{n}
\end{aligned}
$$

$P(m)$ is increasing in $1<m<\infty$. We have

$$
P(1)=-7869 \text { and } P(1.1)=2160.6218
$$

which implies $P(m)>0$ for $m>1.1$. From these facts we see that

$$
\alpha(m)<\beta(m) \quad \text { for } m \geqq 1.1 \text {. }
$$

Q.E.D.

## Proof of Main Theorem.

When $1 \leqq m \leqq 1.17 \cdots$ (the root of $d_{0}(m)=0$ ),

$$
L_{1}(t)>0 \quad \text { and } \quad L_{2}(t)>0 \quad \text { for } 0<t<1
$$

by Lemma 1 and Lemma 2. By Lemma 3 and (12) we obtain

$$
\sigma(t)>0 \quad \text { for } 0<t<1
$$

When $m>1.17 \cdots$, we have $0<\alpha(m)<1$ by Lemma 1 . We shall show $\sigma(t)>0$ for $0 \leqq t \leqq \alpha(m)$. If it does not hold, then there exist $\xi_{1}, \xi_{2}$ such that $0<\xi_{1} \leqq \xi_{2}$ $<\alpha(m)$,

$$
\sigma\left(\xi_{1}\right)=0, \quad \sigma^{\prime}\left(\xi_{1}\right) \leqq 0 \quad \text { and } \quad \sigma\left(\xi_{2}\right)=0, \quad \sigma^{\prime}\left(\xi_{2}\right) \geqq 0 .
$$

We have $L_{2}(t)>0$ for $0 \leqq t \leqq \alpha(m)$ by Lemma 2 and

$$
\begin{aligned}
\left(\varphi_{2}+\varphi_{1} \frac{L_{1}}{L_{2}}\right)^{\prime}= & \frac{1}{L_{2}^{2}}\left[\varphi_{2}^{\prime} L_{2}^{2}+\varphi_{1}^{\prime} L_{1} L_{2}+\varphi_{1}\left(L_{1}^{\prime} L_{2}-L_{1} L_{2}^{\prime}\right)\right] \\
= & \frac{1}{L_{2}^{2}}\left[-\frac{(m+1) m(m-1)}{2} t^{m-2}(1-t)^{2} L_{2}^{2}\right. \\
& +\frac{(m+1) m}{2}\{m-1-(m+2) t\} L_{1} L_{2} \\
& \left.+\frac{(m+1) m}{2} t^{m-1}(1-t)^{3}\left(L_{1}^{\prime} L_{2}-L_{1} L_{2}^{\prime}\right)\right]
\end{aligned}
$$

$$
\begin{align*}
= & \frac{(m+1) m}{2 L_{2}^{2}} t^{m-2}(1-t)^{2}\left[-(m-1) L_{2}^{2}\right.  \tag{20}\\
& \left.+\{m-1-(m+2) t\} L_{1} L_{2}+t(1-t)\left(L_{1}^{\prime} L_{2}-L_{1} L_{2}^{\prime}\right)\right]
\end{align*}
$$

by Lemma 3. Now, we compute the expression in the above brackets. We obtain by (5), (6) and (9), (10)

$$
\begin{aligned}
& -(m-1) L_{2}^{2}+\{m-1-(m+2) t\} L_{1} L_{2}+t(1-t)\left(L_{1}^{\prime} L_{2}-L_{1} L_{2}^{\prime}\right) \\
= & L_{2}\left[-(m-1) L_{2}+\{m-1-(m+2) t\} L_{1}+t(1-t) L_{1}^{\prime}\right]-t(1-t) L_{1} L_{2}^{\prime} \\
= & L_{2}\left[-(m-1)\left(a_{0}+2 a_{1} t-3 a_{2} t^{2}\right)+\{m-1-(m+2) t\}\left(d_{1} t-d_{0}\right)\right. \\
& \left.+t(1-t) d_{1}\right]-2 t(1-t)\left(d_{1} t-d_{0}\right)\left(a_{1}-3 a_{2} t\right) \\
= & -\left(a_{0}+2 a_{1} t-3 a_{2} t^{2}\right)\left[(m-1)\left(a_{0}+d_{0}\right)\right. \\
& \left.-\left\{(m+2) d_{0}+m d_{1}-2(m-1) a_{1}\right\} t+\left\{(m+3) d_{1}-3(m-1) a_{2}\right\} t^{2}\right] \\
& +2 t(1-t)\left\{d_{0} a_{1}-\left(d_{1} a_{1}+3 d_{0} a_{2}\right) t+3 d_{1} a_{2} t^{2}\right\},
\end{aligned}
$$

and

$$
\begin{aligned}
& -(m-1) a_{0}\left(a_{0}+d_{0}\right) \\
= & -2(m-1) a_{0}\left(4 m^{4}+18 m^{3}+29 m^{2}+20 m+5\right)=-2 c_{0}, \\
& a_{0}\left\{(m+2) d_{0}+m d_{1}-2(m-1) a_{1}\right\}-2(m-1) a_{1}\left(a_{0}+d_{0}\right)+2 d_{0} a_{1} \\
= & 2 d_{0}\left\{(m+1) a_{0}-(m-2) a_{1}\right\}+m\left(d_{1}-d_{0}\right) a_{0}-4(m-1) a_{0} a_{1} \\
= & 6\left(192 m^{7}+864 m^{6}+1376 m^{5}+540 m^{4}-1307 m^{3}\right. \\
& \left.-2183 m^{2}-1340 m-300\right)=6 c_{1}, \\
& -a_{0}\left\{(m+3) d_{1}-3(m-1) a_{2}\right\}+2 a_{1}\left\{(m+2) d_{0}+m d_{1}-2(m-1) a_{1}\right\} \\
& +3(m-1) a_{2}\left(a_{0}+d_{0}\right)-2\left(d_{1} a_{1}+3 d_{0} a_{2}\right)-2 d_{0} a_{1} \\
= & \left\{-(m+3) a_{0}+4 m a_{1}+3(m-3) a_{2}\right\} d_{1} \\
& -\left\{2(m+1) a_{1}+3(m-3) a_{2}\right\}\left(d_{1}-d_{0}\right)+2(m-1)\left(3 a_{0} a_{2}-2 a_{1}^{2}\right) \\
= & 6 m\left(64 m^{7}+64 m^{6}-632 m^{5}-1172 m^{4}-142 m^{3}+783 m^{2}+475 m+15\right)=6 c_{2}, \\
& -2 a_{1}\left\{(m+3) d_{1}-3(m-1) a_{2}\right\} \\
& -3 a_{2}\left\{(m+2) d_{0}+m d_{1}-2(m-1) a_{1}\right\}+6 d_{1} a_{2}+2\left(d_{1} a_{0}+3 d_{0} a_{2}\right) \\
= & -2\left\{(m+2) a_{1}+3(m-1) a_{2}\right\} d_{1}+3 m a_{2}\left(d_{1}-d_{0}\right)+12(m-1) a_{1} a_{2} \\
= & -2 m^{2}\left(256 m^{6}+1024 m^{5}+192 m^{4}-1696 m^{3}+204 m^{2}-385 m-159\right)=-2 c_{3},
\end{aligned}
$$

$$
\begin{aligned}
& 3 a_{2}\left\{(m+3) d_{1}-3(m-1) a_{2}\right\}-6 d_{1} a_{2} \\
= & 6 m^{3}\left(4 m^{3}+14 m^{2}-9 m-4\right)\left(8 m^{2}+16 m+3\right) \\
= & 6 m^{3}(m+4)\left(4 m^{2}-2 m-1\right)\left(8 m^{2}+16 m+3\right)=6 c_{4} .
\end{aligned}
$$

Thus, we obtain the formula:

$$
\begin{equation*}
\left(\varphi_{2}(t)+\varphi_{1}(t) \frac{L_{1}(t)}{L_{2}(t)}\right)^{\prime}=\frac{(m+1) m}{L_{2}(t)^{2}} t^{m-2} M_{4}(t) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{4}(t)=-c_{0}+3 c_{1} t+3 c_{2} t^{2}-c_{3} t^{3}+3 c_{4} t^{4} \tag{22}
\end{equation*}
$$

(23) $\left\{\begin{array}{l}c_{0}=c_{0}(m)=(m-1)\left(8 m^{3}+40 m^{2}+87 m+40\right)\left(4 m^{4}+18 m^{3}+29 m^{2}+20 m+5\right), \\ c_{1}=c_{1}(m)=192 m^{7}+864 m^{6}+1376 m^{5}+540 m^{4}-1307 m^{3}-2183 m^{2}-1340 m-300, \\ c_{2}=c_{2}(m)=m\left(64 m^{7}+64 m^{6}-632 m^{5}-1172 m^{4}-142 m^{3}+783 m^{2}+475 m+15,\right. \\ c_{3}=c_{3}(m)=m^{2}\left(256 m^{6}+1024 m^{5}+192 m^{4}-1696 m^{3}+204 m^{2}-385 m-159\right), \\ c_{4}=c_{4}(m)=m^{3}(m+4)\left(8 m^{2}+16 m+3\right)\left(4 m^{2}-2 m-1\right) .\end{array}\right.$

We obtained the same auxiliary function $M_{4}(t)=M_{4}(t, m)$ in $\S 3$ in [2], which is derived from (4). We can use $\sigma(t) / L_{2}(t)$ in place of $\sigma(t)$ for the interval $0 \leqq t \leqq$ $\alpha(m)$, and so we may put

$$
\begin{equation*}
M_{4}\left(\xi_{1}\right) \leqq 0 \quad \text { and } \quad M_{4}\left(\xi_{2}\right) \geqq 0, \tag{24}
\end{equation*}
$$

which contradicts the following lemma.
Lemma 5. For $m$ such that $d_{0}(m)>0$, we have

$$
M_{4}(t, m)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m)=d_{0}(m) / d_{1}(m) .
$$

Proof. Since $c_{0}>0$ for $m>1$, we have $M_{4}(0, m)<0$. From (20) and (21) we have at $t=\alpha=\alpha(m)$

$$
\begin{aligned}
2 M_{4}(\alpha) & =-(m-1) L_{2}^{2}+\alpha(1-\alpha) d_{1} L_{2} \\
& =-L_{2}\left\{(m-1) L_{2}-\alpha(1-\alpha) d_{1}\right\} \\
& =-\frac{L_{2}}{d_{1}^{2}}\left\{(m-1)\left(a_{0} d_{1}^{2}+2 a_{1} d_{1} d_{0}-3 a_{2} d_{0}^{2}\right)-d_{0} d_{1}\left(d_{1}-d_{0}\right)\right\}
\end{aligned}
$$

and by (18), (19)

$$
\begin{aligned}
(m-1) & \left(a_{0} d_{1}^{2}+2 a_{1} d_{1} d_{0}-3 a_{2} d_{0}^{2}\right)-d_{0} d_{1}\left(d_{1}-d_{0}\right) \\
= & 6 m^{2}(m-1) P(m)-2 m\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) \\
& \times\left(8 m^{3}+44 m^{2}-38 m-9\right)\left(8 m^{3}-28 m^{2}+19 m+15\right) \\
= & 4 m \times Q(m),
\end{aligned}
$$

where

$$
\begin{align*}
Q(m)= & 128 m^{10}-1984 m^{9}+8160 m^{8}+34448 m^{7}-16456 m^{6}  \tag{25}\\
& -95892 m^{5}+28102 m^{4}+65128 m^{3}-4944 m^{2}-13860 m-2025 .
\end{align*}
$$

We show that $Q(m)>0$ for $m \geqq 1$. Since we have

$$
\begin{aligned}
\frac{1}{8 \times 5!} Q^{(5)}(m)= & 4032 m^{5}-31248 m^{4}+57120 m^{3} \\
& +90426 m^{2}-12342 m-11986.5,
\end{aligned}
$$

and $4032 m^{3}-31248 m^{2}+57120 m+90426>76918$ for $m \geqq 1$, because $3 \times 4032 m^{2}-2 \times$ $31248 m+57120$ is equal to $6720,-2634.24,672$ at $m=1,3.9,4$, respectively and $31248 / 3 \times 4032=2.58 \cdots$, and $4032 m^{3}-31248 m^{2}+57120 m+90426$ is equal to 120330 , $77086.128,76986$ at $m=1,3.9,4$, respectively and $>76986-672 \times 0.1=76918.8$ for $3.9<m<4$, therefore

$$
\frac{1}{8 \times 5!} Q^{(5)}(m)>76918 m^{2}-12342 m-11986.5 \geqq 76918.8 \quad \text { for } m \geqq 1
$$

Hence we have

$$
\begin{aligned}
\frac{1}{4!} Q^{(4)}(m)= & 26880 m^{6}-249984 m^{5}+571200 m^{4}+1205680 m^{3} \\
& -246840 m^{2}-479460 m+28102 \geqq 855578 \quad \text { for } m \geqq 1
\end{aligned}
$$

and $Q^{(3)}(m)$ is increasing in $1<m<\infty$. Furthermore

$$
\begin{aligned}
\frac{1}{3!} Q^{(3)}(m)= & 15360 m^{7}-166656 m^{6}+456960 m^{5}+1205680 m^{4}-329120 m^{3} \\
& -958920 m^{2}+112408 m+65128 \geqq 400840 \quad \text { for } m \geqq 1,
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{1}{2} Q^{\prime \prime}(m)= & 5760 m^{8}-71424 m^{7}+228480 m^{6} \\
& +723408 m^{5}-246840 m^{4}-958920 m^{3}+168612 m^{2} \\
& +195384 m-4944 \geqq 39516 \quad \text { for } m \geqq 1,
\end{aligned}
$$

and $Q^{\prime}(m)$ is increasing in $1<m<\infty$. Then, we have

$$
\begin{aligned}
Q^{\prime}(m)= & 1280 m^{9}-17856 m^{8}+65280 m^{7}+241136 m^{6}-98736 m^{5} \\
& -479460 m^{4}+112408 m^{3}+195384 m^{2}-9888 m-13860,
\end{aligned}
$$

which is equal to $-4312,-763.213215,1002.36431$ at $m=1,1.03,1.04$, respectively, from which we see that $Q(m)$ is $\backslash$ in $1<m<1.03$ and $\nearrow$ in $1.04<m<\infty$. We have $Q(1.03)=722.7389906$ and $Q(1.04)=723.669575$ and

$$
Q(m)>722.7389906-763.213215 \times 0.01=715.1068585 \quad \text { for } 1.03<m<1.04 .
$$

Thus, we obtain $Q(m)>0$ for $m>1$ and so

$$
\begin{equation*}
M_{4}(\alpha(m))<0 \quad \text { for } m \geqq 1 . \tag{26}
\end{equation*}
$$

Next, we investigate the sign of $M_{4}^{\prime}(\alpha(m))$. From (20) we obtain

$$
\begin{aligned}
& 2 M_{4}^{\prime}(\alpha)=L_{2}\left[-2(m-1) L_{2}^{\prime}+\{m-(m+4) \alpha\} d_{1}\right], \\
& -2(m-1) L_{2}^{\prime}(\alpha)+\{m-(m+4)\} d_{1} \\
= & -2(m-1)\left(2 a_{1}-6 a_{2} \alpha\right)+\{m-(m+4) \alpha\} d_{1} \\
= & -4(m-1) a_{1}+12(m-1) a_{2} \frac{d_{0}}{d_{1}}+m d_{1}-(m+4) d_{0}, \\
& -4(m-1) a_{1}+m d_{1}-(m+4) d_{0} \\
= & -4\left(8 m^{4}-24 m^{3}+47 m^{2}-16 m-15\right)+\left(8 m^{5}+44 m^{4}-38 m^{3}-9 m^{2}\right) \\
& -8 m^{5}-60 m^{4}-130 m^{3}-25 m^{2}+218 m+120 \\
= & -48 m^{4}-72 m^{3}-222 m^{2}+282 m+180,
\end{aligned}
$$

and

$$
\begin{align*}
M_{4}^{\prime}(\alpha) d_{1}= & 6(m-1) a_{2} d_{0}-\left(24 m^{4}+36 m^{3}+111 m^{2}-141 m-90\right) d_{1} \\
= & 6 m(m-1)\left(64 m^{6}+352 m^{5}+616 m^{4}-4 m^{3}-938 m^{2}\right.  \tag{27}\\
& -621 m-90)-m\left(192 m^{7}+1344 m^{6}+1560 m^{5}+2172 m^{4}\right. \\
& \left.-11466 m^{3}+399 m^{2}+4689 m+810\right)=3 m \times R(m),
\end{align*}
$$

where

$$
\begin{equation*}
R(m)=64 m^{7}+128 m^{6}+8 m^{5}-1964 m^{4}+1954 m^{3}+501 m^{2}-501 m-90 . \tag{28}
\end{equation*}
$$

Since we have

$$
\begin{aligned}
& \frac{1}{4!} R^{(4)}(m)=2240 m^{3}+1920 m^{2}+40 m-1964>0 \quad \text { for } m \geqq 1 \\
& \frac{1}{3!} R^{(3)}(m)=2240 m^{4}+2560 m^{3}+80 m^{2}-7856 m+1954
\end{aligned}
$$

which is equal to $-1022,1169.62863$ at $m=1,1.17$, respectively, and so $>0$ for $m \geqq 1.17$,

$$
\frac{1}{2} R^{\prime \prime}(m)=1344 m^{5}+1920 m^{4}+80 m^{3}-11784 m^{2}+5862 m+501
$$

which is equal to $-2098.93495,-129.678661,49.28175698$ at $m=1.17,1.37,1.38$, respectively, and so

$$
R^{\prime}(m)=448 m^{6}+768 m^{5}+40 m^{4}-7856 m^{3}+5862 m^{2}+1002 m-501
$$

is $\searrow \nearrow$ in $1.17<m<\infty$, is equal to $-978.490785,-99.0477806,48.90886028$ at $m=1.17,1.61,1.62$, respectively. Therefore $R(m)$ is $\searrow \nearrow$ in $1.17<m<\infty$, and

$$
R(m)=\left\{\begin{array}{lr}
-3.1536809 & \text { at } m=1.17, \\
-9.99221242 & 1.83, \\
50.72843899 & 1.84,
\end{array}\right.
$$

and hence we obtain $R(m)<0$ for $1.17 \leqq m<1.83 \cdots$ and $R(m)>0$ for $m>1.83 \cdots$, i.e.

$$
M_{4}^{\prime}(\alpha(m)) \begin{cases}<0 & \text { for } 1.17<m<1.83 \cdots,  \tag{29}\\ >0 & \text { for } 1.83 \cdots<m<\infty,\end{cases}
$$

because $d_{1}(m)>0$ for $m \geqq 1$ by Lemma 1 .
Next, we have from (10)

$$
1-\alpha(m)=\frac{d_{1}(m)-d_{0}(m)}{d_{1}(m)}=\frac{2}{m} h(m),
$$

where

$$
\begin{equation*}
h(m):=\frac{8 m^{3}-28 m^{2}+19 m+15}{8 m^{3}+44 m^{2}-38 m-9} \tag{30}
\end{equation*}
$$

which is positive for $m \geqq 1$ by Lemma 1 , $\searrow$ in $1<m<2.1 \cdots$ and $\nearrow$ in $2.1 \cdots<m$ $<\infty$, since we have

$$
\begin{aligned}
& \left(24 m^{2}-56 m+19\right)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
\quad & -\left(24 m^{2}+88 m-38\right)\left(8 m^{3}-28 m^{2}+19 m+15\right) \\
= & 3\left(192 m^{4}-304 m^{3}-116 m^{2}-272 m+133\right)
\end{aligned}
$$

and $4 \times 192 m^{3}-3 \times 304 m^{2}-2 \times 116 m-272$ is $\nearrow$ in $1<m<\infty$, equal to $-648,-80$, 167.808 at $m=1,1.5,1.6$, respectively, and so $192 m^{4}-304 m^{3}-116 m^{2}-272 m+133$ is $\searrow \nearrow$ in $1<m<\infty$, equal to $-367,-31.0688,233.8832$ at $m=1,2.1,2.2$, respectively, and hence $<0$ for $1 \leqq m<2.1 \cdots$ and $>0$ for $m>2.1 \cdots$.

Now, for convenience of calculation, setting $t=1-u$, we have

$$
\begin{aligned}
\frac{1}{6} M_{4}^{\prime \prime}(t) & =6 c_{4} t^{2}-c_{3} t+c_{2} \\
& =6 c_{4} u^{2}-\left(12 c_{4}-c_{3}\right) u+6 c_{4}-c_{3}+c_{2}
\end{aligned}
$$

and

$$
\begin{align*}
\frac{1}{6 m} M_{4}^{\prime \prime}(t)= & m^{2} u^{2}\left(192 m^{5}+1056 m^{4}+984 m^{3}\right.  \tag{31}\\
& \left.-804 m^{2}-546 m-72\right)-m u\left(128 m^{6}+1088 m^{5}+1776 m^{4}\right. \\
& \left.+88 m^{3}-1296 m^{2}+241 m+159\right)+96 m^{6}+160 m^{5} \\
& -280 m^{4}-892 m^{3}+1096 m^{2}+634 m+15
\end{align*}
$$

and
(32) $\frac{1}{3} M_{4}^{\prime}(t)=4 c_{4} t^{3}-c_{3} t^{2}+2 c_{2} t+c_{1}$

$$
\begin{aligned}
= & -4 c_{4} u^{3}+\left(12 c_{4}-c_{3}\right) u^{2}-2\left(6 c_{4}-c_{3}+c_{2}\right) u+4 c_{4}-c_{3}+2 c_{2}+c_{1} \\
= & -m^{3} u^{3}\left(128 m^{5}+704 m^{4}+656 m^{3}-536 m^{2}-364 m-48\right) \\
& +m^{2} u^{2}\left(128 m^{6}+1088 m^{5}+1776 m^{4}+88 m^{3}-1296 m^{2}+241 m+159\right) \\
& -m u\left(192 m^{6}+320 m^{5}-560 m^{4}-1784 m^{3}+2192 m^{2}+1268 m+30\right) \\
& +64 m^{6}+192 m^{5}-312 m^{4}+596 m^{3}-1074 m^{2}-1310 m-300
\end{aligned}
$$

(see Lemma 3.3 in [2]).
Let $\gamma=\gamma(m)$ be the root of $6 c_{4} t^{2}-c_{3} t+c_{2}=0$ as

$$
\begin{equation*}
\gamma(m)=\left(c_{3}+\sqrt{\left.c_{3} c_{3}-24 c_{2} c_{4}\right)} / 12 c_{4},\right. \tag{33}
\end{equation*}
$$

for which $0<\gamma(m)<1$ for $m \geqq 1$ by Lemma 3.3 in [2]. For $m \geqq 6$, we have

$$
h(m) \geqq h(6)=\frac{849}{3075}=\frac{283}{1025}=0.276097 \cdots
$$

by (30) and so

$$
1-\alpha(m)=\frac{2}{m} h(m)>\frac{0.55}{m}
$$

and

$$
\begin{aligned}
\frac{1}{6 m} M_{4}^{\prime \prime}\left(1-\frac{0.55}{m}\right)= & 25.6 m^{6}-380.32 m^{5}-937.36 m^{4} \\
& -642.74 m^{3}+1565.59 m^{2}+336.285 m-94.23 \\
\leqq & -2180.56 m^{4}-642.74 m^{3}+1565.59 m^{2}+336.285 m-94.23 \\
\leqq & -80791.01 m^{2}+336.285 m-94.23<0 \quad \text { for } 6 \leqq m \leqq 10
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\alpha<1-\frac{0.55}{m}<\gamma \quad \text { for } 6 \leqq m \leqq 10 . \tag{34}
\end{equation*}
$$

Next, for $m \geqq 10$, we have

$$
h(m) \geqq h(10)=\frac{5405}{12011}=0.4500041 \cdots
$$

and

$$
1-\alpha(m)>\frac{0.9}{m}
$$

and

$$
\begin{aligned}
\frac{1}{6 m} M_{4}^{\prime \prime}\left(1-\frac{0.9}{m}\right)= & -19.2 m^{6}-663.68 m^{5}-1023.04 m^{4}-174.16 m^{3} \\
& +1611.16 m^{2}-25.16 m-186<0 \quad \text { for } m \geqq 10,
\end{aligned}
$$

from which we obtain

$$
\begin{equation*}
\alpha<1-\frac{0.9}{m}<\gamma \quad \text { for } m \geqq 10 \text {. } \tag{35}
\end{equation*}
$$

From (34), (35) and (29) we obtain

$$
M_{4}^{\prime}(t)>0 \quad \text { for } 0 \leqq t \leqq \alpha(m) \quad \text { with } m \geqq 6
$$

and so by (26) and $M_{4}(0)<0$

$$
\begin{equation*}
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m) \quad \text { with } m \geqq 6 . \tag{36}
\end{equation*}
$$

Next we consider the interval: $1.17 \cdots<m<6$. From (32) we have

$$
\begin{aligned}
\frac{1}{3} M_{4}^{\prime}(1) & =4 c_{4}-c_{3}+2 c_{2}+c_{1} \\
& =2\left(32 m^{6}+96 m^{5}-156 m^{4}+298 m^{3}-537 m^{2}-655 m-150\right),
\end{aligned}
$$

which is negative for $1 \leqq m<1.81 \cdots$ and positive for $m>1.81 \cdots$ by (3.42) in [2].


Fig. 1.
Considering the graph of the cubic polynomial of $t: y=M_{4}^{\prime}(t)$ (Fig. 1), on the segment $A B$ we have

$$
\begin{aligned}
A B & =\frac{M_{4}^{\prime}(1)}{M_{4}^{\prime \prime}(1)}=\frac{4 c_{4}-c_{3}+2 c_{2}+c_{1}}{2\left(6 c_{4}-c_{3}+c_{2}\right)} \\
& =\frac{32 m^{6}+96 m^{5}-156 m^{4}+298 m^{3}-537 m^{2}-655 m-150}{m\left(96 m^{6}+160 m^{5}-280 m^{4}-892 m^{3}+1096 m^{2}+634 m+15\right)}
\end{aligned}
$$

Since $6 c_{4}-c_{3}+c_{2}>0$ for $m \geqq 1$ by (3.35) in [2], the condition:

$$
A B>\frac{1}{3 m}
$$

is equivalent to

$$
T(m):=128 m^{5}-188 m^{4}+1786 m^{3}-2707 m^{2}-2599 m-465>0
$$

Since we have

$$
\begin{aligned}
\frac{1}{2} T^{\prime \prime}(m) & =1280 m^{3}-1128 m^{2}+5358 m-2707 \\
& \geqq 5510 m-2707 \geqq 2803 \quad \text { for } m \geqq 1 \\
T^{\prime}(m) & =640 m^{4}-752 m^{3}+5358 m^{2}-5414 m-2599
\end{aligned}
$$

which is equal to $-2767,-406.42,718.216$ at $m=1,1.3,1.4$, respectively, $T(m)$ is $\searrow \nearrow$ in $1<m<\infty$. Furthermore we have

$$
T(m)= \begin{cases}-4045 & \text { at } m=1 \\ -45.9522282 & 2.08 \\ 100.8901599 & 2.09\end{cases}
$$

and so as a sensed segment we obtain

$$
\begin{align*}
& A B<\frac{1}{3 m} \quad \text { for } 1 \leqq m<2.08 \cdots  \tag{37}\\
& A B>\frac{1}{3 m} \quad \text { for } 2.08 \cdots<m<\infty
\end{align*}
$$

Since we have from (31)

$$
\begin{aligned}
\frac{1}{2 m} M_{4}^{\prime \prime}\left(1-\frac{1}{3 m}\right)= & 160 m^{6}-544 m^{5}-2264 m^{4} \\
& -2436 m^{3}+4316 m^{2}+1479 m-138:=W(m)
\end{aligned}
$$

and

$$
\frac{1}{4!} W^{(4)}(m)=2400 m^{2}-2720 m-2264
$$

which is $\nearrow$ in $1<m<\infty$ and equal to $-2584,1896$ at $m=1,2$, respectively, and so

$$
\frac{1}{3!} W^{(3)}(m)=3200 m^{3}-5440 m^{2}-9056 m-2436
$$

is $\searrow \nearrow$ in $1<m<\infty$, equal to $-13732,-16708,7836$ at $m=1,2,3$, respectively, and so

$$
\frac{1}{2} W^{\prime \prime}(m)=2400 m^{4}-5440 m^{3}-13584 m^{2}-7308 m+4316
$$

is $\searrow \nearrow$ in $1<m<\infty$, equal to $-19616,-92344,23980$ at $m=1,3,4$, respectively, and so

$$
W^{\prime}(m)=960 m^{5}-2720 m^{4}-9056 m^{3}-7308 m^{2}+8632 m+1479
$$

is $\searrow \nearrow$ in $1<m<\infty$, equal to $-8013,-53382.1056,29939$ at $m=1,4.9,5$, respectively, $W(m)$ is $\searrow \nearrow$ in $1<m<\infty$. We have

$$
W(m)=\left\{\begin{array}{lr}
573 & \text { at } m=1 \\
18.60313031 & 1.06 \\
-88.7997998 & 1.07 \\
-6896.16946 & 6.03 \\
11844.21018 & 6.04
\end{array}\right.
$$

and hence

$$
W(m)<0 \quad \text { for } 1.06 \cdots<m \leqq 6,
$$

which implies

$$
\begin{equation*}
1-\frac{1}{3 m}<\gamma(m) \quad \text { for } 1.06 \cdots<m \leqq 6 . \tag{38}
\end{equation*}
$$

By means of (37) and (38) we have

$$
M_{4}^{\prime}(\gamma(m))>0 \quad \text { for } 2.08 \cdots<m \leqq 6
$$

and $M_{4}^{\prime}(0)=3 c_{1}(m)>0$ for $m>1.17 \cdots$ by (3.41) in [2], hence we obtain

$$
M_{4}^{\prime}(t)>0 \quad \text { for } 0<t<1 \quad \text { with } 2.08 \cdots \leqq m \leqq 6,
$$

which implies

$$
\begin{equation*}
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m), \quad \text { with } 2.08 \cdots \leqq m \leqq 6 . \tag{39}
\end{equation*}
$$

Finally we investigate the rest part: $1.17 \cdots<m<2.08 \cdots$, where $1.17 \cdots$ and $2.08 \cdots$ mean the roots of $\alpha(m)=0$ and $A B=1 / 3 m$ by (37), respectively. We notice that $M_{4}^{\prime}(0)=3 c_{1}$ and $c_{1}=c_{1}(m)$ is $\nearrow$ in $1<m<\infty$, since we have from (23)

$$
\begin{aligned}
c_{1}^{\prime}(m) & =1344 m^{6}+5184 m^{5}+6880 m^{4}+2160 m^{3}-3921 m^{2}-4366 m-1340 \\
& \geqq 11647 m^{2}-4366 m-1340 \geqq 5941 \quad \text { for } m \geqq 1,
\end{aligned}
$$

and $c_{1}(1.17)=-128.1689 \cdots, \quad c_{1}(1.18)=70.6684 \cdots$, hence $c_{1}(m)>0$ for $m \geqq 1.18$. $M_{4}^{\prime \prime}(0)=6 c_{2}$ is negative for $1 \leqq m<3.4 \cdots$ and positive for $m>3.4 \cdots$, because

$$
\frac{1}{4!}\left(\frac{c_{2}}{m}\right)^{(4)}=2240 m^{3}+960 m^{2}-3160 m-1172
$$

which is $\nearrow$ in $1<m<\infty$ and equal to $-1132,-504.96,289.12$ at $m=1,1.1,1.2$, respectively, and so

$$
\frac{1}{3!}\left(\frac{c_{2}}{m}\right)^{(3)}=2240 m^{4}+1280 m^{3}-6320 m^{2}-4688 m-142
$$

is $\searrow \nearrow$ in $1<m<\infty$ and equal to $-7630,-1379.056,1922.384$ at $m=1,1.7,1.8$, respectively, and so

$$
\frac{1}{2}\left(\frac{c_{2}}{m}\right)^{\prime \prime}=1344 m^{5}+960 m^{4}-6320 m^{3}-7032 m^{2}-426 m+783
$$

is $\searrow \nearrow$ in $1<m<\infty$ and equal to $-10691,-922.33408,10756.76256$ at $m=1,2.3$, 2.4, respectively, and so

$$
\left(\frac{c_{2}}{m}\right)^{\prime}=448 m^{6}+384 m^{5}-3160 m^{4}-4688 m^{3}-426 m^{2}+1566 m+475
$$

is $\searrow \nearrow$ in $1<m<\infty$ and equal to $-5401,-13647.6426,8840.971968$ at $m=1,2.8$, 2.9, respectively, and so $c_{2} / m$ is $\searrow \nearrow$ in $1<m<\infty,-545,-3653.22333,26790$ at $m=1,3.4,3.5$, respectively, which implies the above claim. First, for $m$ such that $\alpha(m)>0, c_{1}(m)<0$ we have the graph of $M_{4}^{\prime}(t)$ by (29) as Fig. 2, we have $M_{4}^{\prime}(t)<0$ for $0 \leqq t \leqq \alpha(m)$ and hence

$$
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m) .
$$



Fig. 2.


Fig. 3.

Next for $m$ such that $\alpha(m)>0, c_{1}(m)>0$, we consider $M_{4}^{\prime \prime}(\alpha(m))$. From (31) and (30), we have

$$
\begin{equation*}
M_{4}^{\prime \prime}(\alpha(m))=\frac{6 m}{\left(8 m^{3}+44 m^{2}-38 m-9\right)^{2}} \times \Gamma(m), \tag{40}
\end{equation*}
$$

where

$$
\begin{align*}
\Gamma(m):=4\left(192 m^{5}\right. & \left.+1056 m^{4}+984 m^{3}-804 m^{2}-546 m-72\right)  \tag{41}\\
& \times\left(8 m^{3}-28 m^{2}+19 m+15\right)^{2}
\end{align*}
$$

$$
\begin{aligned}
-2\left(128 m^{6}\right. & \left.+1088 m^{5}+1776 m^{4}+88 m^{3}-1296 m^{2}+241 m+159\right) \\
& \times\left(8 m^{3}-28 m^{2}+19 m+15\right)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
+\left(96 m^{6}+\right. & \left.160 m^{5}-280 m^{4}-892 m^{3}+1096 m^{2}+634 m+15\right) \\
& \times\left(8 m^{3}+44 m^{2}-38 m-9\right)^{2}
\end{aligned}
$$

which is $\searrow \nearrow$ in $1.17<m<2.09$ and equal to $-12659.00711 \cdots,-693.19339 \cdots$, $300.79369 \cdots$ at $m=1.17,1.88,1.89$, respectively. Since $\Gamma(m)$ is a polynomial of order 12 in $m$ with integral coefficients of very large, here we used a numerical argument by a computor. Therefore we have

$$
\begin{array}{ll}
M_{4}^{\prime \prime}(\alpha(m))<0 & \text { for } 1.17 \leqq m<1.88 \cdots,  \tag{42}\\
M_{4}^{\prime \prime}(\alpha(m))>0 & \text { for } 1.88 \cdots<m<2.09
\end{array}
$$

and see that the behavior of $M_{4}^{\prime}(t)$ and $M_{4}(t)$ are as Fig. 3, when $1.17 \cdots<m<$ $1.88 \cdots$. For such $m$, we consider the condition:

$$
-\frac{M_{4}(0)}{M_{4}^{\prime}(0)}=\frac{c_{0}}{3 c_{1}} \geqq \alpha=\frac{d_{0}}{d_{1}},
$$

which is equivalent to

$$
\begin{aligned}
& c_{0} d_{1}-3 c_{1} d_{0} \\
&= m\left(32 m^{8}+272 m^{7}+996 m^{6}+1746 m^{5}+1037 m^{4}-983 m^{3}\right. \\
&\left.-1865 m^{2}-1035 m-200\right)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
&-3\left(192 m^{7}+864 m^{6}+1376 m^{5}+540 m^{4}-1307 m^{3}-2183 m^{2}\right. \\
&-1340 m-300)\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) \\
&= m\left(256 m^{11}+3584 m^{10}+18720 m^{9}+47168 m^{8}+44824 m^{7}-37548 m^{6}\right. \\
&\left.-113292 m^{5}-62319 m^{4}+32577 m^{3}+47315 m^{2}+16915 m+1800\right) \\
&-3\left(1536 m^{11}+12288 m^{10}+38656 m^{9}+49376 m^{8}-16936 m^{7}-134932 m^{6}\right. \\
&\left.-162030 m^{5}-33985 m^{4}+109291 m^{3}+123070 m^{2}+54300 m+9000\right)=\Pi(m)>0
\end{aligned}
$$

by (10) and (23), where

$$
\begin{align*}
\Pi(m):= & 256 m^{12}-1024 m^{11}-18144 m^{10}-68800 m^{9}-103304 m^{8}  \tag{43}\\
& +13260 m^{7}+291504 m^{6}+423771 m^{5}+134532 m^{4} \\
& -280558 m^{3}-352295 m^{2}-161100 m-27000,
\end{align*}
$$

which is $\nearrow \searrow$ in $1.17<m<2.09$ by the numerical argument by a computor as
for $\Gamma(m)$ and equal to $84962.14696 \cdots, 5745.25969 \cdots,-34308.14753 \cdots$ at $m=1.17$, 1.38, 1.39, respectively. Therefore we have $\Pi(m)>0$ for $1.17 \leqq m<1.38 \cdots$ and $<0$ for $1.38 \cdots<m<2.09$, which implies

$$
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m) \quad \text { with } 1.17 \cdots<m<1.38 \cdots
$$

Next, for $1.38 \cdots<m<1.83 \cdots$ (see (29)) we consider the condition:

$$
\begin{equation*}
-\frac{M_{4}(0)}{M_{4}^{\prime}(0)}+\frac{M_{4}(\alpha)}{M_{4}^{\prime}(\alpha)} \geqq \alpha=\frac{d_{0}}{d_{1}}, \tag{44}
\end{equation*}
$$

whose left hand becomes by (25), (27)

$$
\frac{c_{0}}{3 c_{1}}-\frac{L_{2}(\alpha) \times 2 m Q(m)}{d_{1}^{2}} / \frac{3 m R(m)}{d_{1}}=\frac{c_{0}}{3 c_{1}}-\frac{2 L_{2}(\alpha) Q(m)}{3 d_{1} R(m)},
$$

and hence it is equivalent to

$$
-R\left(c_{0} d_{1}-3 c_{1} d_{0}\right)+2 c_{1} L_{2}(\alpha) Q \geqq 0,
$$

since $R(m)<0$ for $1.17 \leqq m<1.83 \cdots$. Using (43) and (18) this condition can be written as

$$
\begin{equation*}
\Lambda(m):=12 c_{1} P(m) Q(m)-\left(8 m^{3}+44 m^{2}-38 m-9\right)^{2} R(m) \Pi(m) \geqq 0 . \tag{45}
\end{equation*}
$$

$\Lambda(m)$ is a polynomial of $m$ of order 25 , and we can prove that it is increasing in $1.38 \leqq m \leqq 2.08$ and positive there. In fact, for $1.38 \leqq m<1.84$, we obtain by (23), (19), (25), (28) and (43)

$$
\begin{aligned}
& c_{1}(m) \geqq c_{1}(1.38)=6901.245307 \cdots>6901, \\
& P(m) \geqq P(1.38)=76169.63772 \cdots>76169, \\
& Q(m) \geqq Q(1.38)=51784.48189 \cdots>51784, \\
& 8 m^{3}+44 m^{2}-38 m-9 \leqq 119.882432<120, \\
& 0>R(m)>R(1.61)+R^{\prime}(1.61) \times 0.01 \\
& \quad=-529.06177 \cdots-99.04778 \cdots \times 0.01>-531, \\
& \Pi(m) \geqq \Pi(1.84)=-19253060.98286>-19253061, \\
& \begin{aligned}
\begin{array}{l}
1(m)
\end{array} & >12 \times 6901 \times 76169 \times 51784-(120)^{2} \times 531 \times 19253061 \\
= & 12\left(2.721985926 \times 10^{13}-1.226805047 \times 10^{13}\right) \\
= & 12 \times 1.495180879 \times 10^{13} \\
= & 179421705500000>0 .
\end{aligned}
\end{aligned}
$$

and hence

Therefore the condition (44) is satisfied for $1.38 \cdots<m<1.83 \cdots$ and we obtain
also

$$
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m) \quad \text { with } 1.38 \cdots<m<1.83 \cdots .
$$

Next, for $1.83 \cdots<m \leqq 1.88 \cdots$, we have $M_{4}^{\prime}(\alpha(m))>0$ by (29) and $M_{4}^{\prime \prime}(\alpha(m))$ $<0$ by (42), and so

$$
M_{4}^{\prime}(t)>0 \quad \text { for } 0 \leqq t<\alpha(m),
$$

which implies also

$$
M_{4}(t)<0 \quad \text { for } 0 \leqq t \leqq \alpha(m) \quad \text { with } 1.83 \cdots \leqq m \leqq 1.88 \cdots
$$

Last, we consider the rest interval: $1.88 \cdots<m<2.08 \cdots$. We have there $M_{4}^{\prime}(\alpha(m))>0$ and $M_{4}^{\prime \prime}(\alpha(m))>0$ and by (30)

$$
\begin{aligned}
h(m)<h(1.88) & =\frac{4.914176}{128.230976}=0.03832 \cdots, \\
& >h(2.09)=\frac{5.437832}{176.811032}=0.030755 \cdots
\end{aligned}
$$

and

$$
\begin{equation*}
1-\frac{1}{10 m}<1-\frac{0.07664 \cdots}{m}<\alpha(m)<1-\frac{0.06151}{m} . \tag{46}
\end{equation*}
$$

We obtain from (31)

$$
\begin{align*}
& \frac{1}{6 m} M_{4}^{\prime \prime}\left(1-\frac{1}{10 m}\right)= 83.2 m^{6}+53.12 m^{5}  \tag{47}\\
&-447.04 m^{4}-890.96 m^{3}+1217.56 m^{2}+604.44 m-1.62 \\
& \leqq 27.40672 m^{4}-890.96 m^{3}+1217.56 m^{2}+604.44 m-1.62 \\
& \leqq-360.578488 m^{2}+604.44 m-1.62 \\
& \leqq-75.067559<0 \quad \text { for } 1.88 \leqq m \leqq 2.09 .
\end{align*}
$$

Therefore $M_{4}^{\prime}(t)$ is $\searrow$ in $0<t<1-1 / 10 \mathrm{~m}$. Then, we obtain from (32)
(48) $\frac{1}{3} M_{4}^{\prime}\left(1-\frac{1}{10 m}\right)=46.08 m^{6}+170.752 m^{5}-238.944 m^{4}$

$$
\begin{aligned}
& +774.624 m^{3}-1305.624 m^{2}-1434.026 m-301.362 \\
\geqq & 244.934912 m^{4}+774.624 m^{3}-1305.624 m^{2}-1434.026 m-301.362 \\
\geqq & 1016.367073 m^{2}-1434.026 m-301.362 \\
\geqq & 594.9169028>0 \quad \text { for } 1.88 \leqq m \leqq 2.09 .
\end{aligned}
$$

Since

$$
M_{4}^{\prime \prime \prime}(t)>0 \quad \text { for } t>\frac{c_{3}}{12 c_{4}}
$$

and

$$
\frac{c_{3}}{12 c_{4}}<\frac{2}{3} \quad \text { for } m \geqq 1
$$

because this is equivalent to

$$
\frac{1}{m^{2}}\left(8 c_{4}-c_{3}\right)=384 m^{5}+1120 m^{4}+624 m^{3}-932 m^{2}+289 m+159>0
$$

by (23) and it is evidently satisfied for $m \geqq 1, M_{4}^{\prime}(t)$ is convex downward in $1-1 / 10 m<t<\infty$, since

$$
1-\frac{1}{10 m}>\frac{2}{3} \quad \text { for } m>1.88
$$



Fig. 4.
Now, using (47) and (48) we obtain

$$
\begin{aligned}
& -\frac{M_{4}^{\prime}\left(1-\frac{1}{10 m}\right)}{M_{4}^{\prime \prime}\left(1-\frac{1}{10 m}\right)} \\
& =\frac{46.08 m^{6}+170.752 m^{5}-238.944 m^{4}+774.624 m^{3}-1305.624 m^{2}-1434.026 m-301.362}{-2 m\left(83.2 m^{6}+53.12 m^{5}-447.04 m^{4}-890.96 m^{3}+1217.56 m^{2}+604.44 m-1.62\right)}
\end{aligned}
$$

and

$$
\left(1-\frac{0.06151}{m}\right)-\left(1-\frac{1}{10 m}\right)=\frac{0.03849}{m} .
$$

Hence, for $1.88 \cdots<m<2.08 \cdots$ the condition :

$$
\begin{equation*}
-M_{4}^{\prime}\left(1-\frac{1}{10 m}\right) / M_{4}^{\prime \prime}\left(1-\frac{1}{10 m}\right)>\frac{0.03849}{m} \tag{49}
\end{equation*}
$$

is equivalent to

$$
\begin{aligned}
& 46.08 m^{6}+170.752 m^{5}-238.944 m^{4}+774.624 m^{3} \\
& \quad-1305.624 m^{2}-1434.026 m-301.362+0.07698 \\
& \times\left(83.2 m^{6}+53.12 m^{5}-447.04 m^{4}-890.96 m^{3}\right. \\
& \left.\quad+1217.56 m^{2}+604.44 m-1.62\right) \\
& =52.484736 m^{6}+174.8411776 m^{5}-273.3571392 m^{4}+706.0378992 m^{3} \\
& \quad-1211.89623 m^{2}-1387.4962 m-301.4867076>0,
\end{aligned}
$$

which is implied from the condition:

$$
\begin{equation*}
\Theta(m):=52 m^{6}+174 m^{5}-274 m^{4}+706 m^{3}-1212 m^{2}-1388 m-302>0 . \tag{50}
\end{equation*}
$$

For $1.88 \leqq m \leqq 2.09$ we have

$$
\begin{aligned}
\Theta^{\prime}(m) & =312 m^{5}+870 m^{4}-1096 m^{3}+2118 m^{2}-2424 m-1388 \\
& \geqq 1642.3328 m^{3}+2118 m^{2}-2424 m-1388>0
\end{aligned}
$$

and so $\Theta(m)$ is $\nearrow$ in $1.88<m<2.09$ and $\Theta(1.88)=455.46641 \cdots$, which implies that $\Theta(m)>0$ for $1.88 \leqq m \leqq 2.09$. Thus, we see that the condition (49) is satisfied, and so we obtain

$$
M_{4}^{\prime}(t)>0 \quad \text { for } 1-\frac{1}{10 m} \leqq t \leqq \alpha(m) .
$$

Combining this result and the fact $M_{4}^{\prime}(t)$ is decreasing in $0<t<1-(1 / 10 m)$ as is shown previously, we see that $M_{4}(t)$ is increasing in $0<t<\alpha(m)$ and so obtain

$$
M_{4}(t)<0 \quad \text { for } 0<t<\alpha(m) \text { with } 1.88 \cdots<m<2.08 \cdots \text {. }
$$

Thus, we can finish the proof of this lemma.
Q.E.D.

Lemma 6. For $m$ such that $d_{0}(m)>0$, i.e. $m>1.17 \cdots$, we have

$$
\sigma(t)>0 \quad \text { for } \alpha(m) \leqq t<1 .
$$

Proof. Since we have $L_{1}(t)>0, \varphi_{2}(t)>0$ for $\alpha(m)<t<1$ by Lemma 1 and Lemma 3, $\sigma(t)$ have the same sign with

$$
\frac{\sigma(t)}{\varphi_{2}(t)}=L_{2}(t)+\frac{\varphi_{1}(t)}{\varphi_{2}(t)} L_{1}(t)
$$

By Lemma 3 and the Cauchy mean value theorem we have

$$
\frac{\varphi_{1}(t)}{\varphi_{2}(t)}=\frac{\varphi_{1}(t)-\varphi_{1}(1)}{\varphi_{2}(t)-\varphi_{2}(1)}=\frac{\varphi_{1}^{\prime}\left(t_{1}\right)}{\varphi_{2}^{\prime}\left(t_{1}\right)}
$$

for some $t_{1}\left(t<t_{1}<1\right)$, and

$$
\frac{\varphi_{1}^{\prime}(t)}{\varphi_{2}^{\prime}(t)}=\frac{m+2}{m-1} t-1<\frac{m+2}{m-1} t_{1}-1 .
$$

Hence we have for $\alpha(m)<t<1$

$$
\begin{align*}
L_{2}(t) & +\frac{\varphi_{1}(t)}{\varphi_{2}(t)} L_{1}(t)>L_{2}(t)+\left(\frac{m+2}{m-1} t-1\right) L_{1}(t)  \tag{51}\\
& =\frac{1}{m-1}\left[(m-1) L_{2}(t)+\{(m+2) t-(m-1)\} L_{1}(t)\right]
\end{align*}
$$

Then, we have

$$
\begin{aligned}
(m-1) & L_{2}(t)+\{(m+2) t-(m-1)\} L_{1}(t) \\
& =(m-1)\left\{a_{0}+2 a_{1} t-3 a_{2} t^{2}\right\}+\{(m+2) t-(m-1)\}\left(d_{1} t-d_{0}\right) \\
& =\tilde{a}_{0}-\tilde{a}_{1} t+\tilde{a}_{2} t^{2}=\widetilde{L}_{2}(t),
\end{aligned}
$$

where

$$
\begin{aligned}
\tilde{a}_{0}= & (m-1)\left(a_{0}+d_{0}\right) \\
= & (m-1)\left(8 m^{4}+36 m^{3}+58 m^{2}+40 m+10\right) \\
= & 2(m-1)(m+1)^{2}\left(4 m^{2}+10 m+5\right), \\
\tilde{a}_{1}= & -2(m-1) a_{1}+(m+2) d_{0}+(m-1) d_{1} \\
= & (m-1)\left(8 m^{4}+28 m^{3}-6 m^{2}-71 m-30\right) \\
& +(m+2)\left(8 m^{4}+28 m^{3}+18 m^{2}-47 m-30\right) \\
= & 16 m^{5}+64 m^{4}+40 m^{3}-76 m^{2}-83 m-30, \\
\tilde{a}_{2}= & -3(m-1) a_{2}+(m+2) d_{1} \\
= & -3 m(m-1)\left(8 m^{2}+16 m+3\right)+m(m+2)\left(8 m^{3}+44 m^{2}-38 m-9\right) \\
= & m\left(8 m^{4}+36 m^{3}+26 m^{2}-46 m-9\right),
\end{aligned}
$$

i.e.

$$
\tilde{L}_{2}(t)=\tilde{a}_{0}-\tilde{a}_{1} t+\tilde{a}_{2} t^{2},
$$

$$
\left\{\begin{array}{l}
\tilde{a}_{0}=2(m-1)(m+1)^{2}\left(4 m^{2}+10 m+5\right) \\
\tilde{a}_{1}=16 m^{5}+64 m^{4}+40 m^{3}-76 m^{2}-83 m-30 \\
\tilde{a}_{2}=m\left(8 m^{4}+36 m^{3}+26 m^{2}-46 m-9\right)
\end{array}\right.
$$

We see easily $\tilde{a}_{0}>0$ for $m>1$ and $\tilde{a}_{2}>0$ for $m \geqq 1$.
Now, we compute the discriminant $D(m)$ of the quadratic polynomial $\widetilde{L}_{2}(t)$ as follows.

$$
\begin{aligned}
&-D(m)= 4 \tilde{a}_{0} \tilde{a}_{2}-\tilde{a}_{1} \tilde{a}_{1} \\
&= 8 m(m-1)(m+1)^{2}\left(4 m^{2}+10 m+5\right)\left(8 m^{4}+36 m^{3}+26 m^{2}-46 m-9\right) \\
&-\left(16 m^{5}+64 m^{4}+40 m^{3}-76 m^{2}-83 m-30\right)^{2}, \\
&(m-1)(m+1)^{2}\left(4 m^{2}+10 m+5\right)\left(8 m^{4}+36 m^{3}+26 m^{2}-46 m-9\right) \\
&=\left(m^{2}-1\right)(m+1)\left(32 m^{6}+224 m^{5}+504 m^{4}+256 m^{3}-366 m^{2}-320 m-45\right) \\
&=\left(m^{2}-1\right)\left(32 m^{7}+256 m^{6}+728 m^{5}+760 m^{4}-110 m^{3}-686 m^{2}-365 m-45\right) \\
&= 32 m^{9}+256 m^{8}+696 m^{7}+504 m^{6}-838 m^{5}-1446 m^{4} \\
&-255 m^{3}+641 m^{2}+365 m+45, \\
&\left(16 m^{5}+64 m^{4}+40 m^{3}-76 m^{2}-83 m-30\right)^{2} \\
&= 256 m^{10}+2048 m^{9}+5376 m^{8}+2688 m^{7}-10784 m^{6} \\
&-17664 m^{5}-4704 m^{4}+10216 m^{3}+11449 m^{2}+4980 m+900,
\end{aligned}
$$

and hence

$$
\begin{align*}
-D(m)= & 192 m^{8}+1344 m^{7}+4080 m^{6}+6096 m^{5}  \tag{53}\\
& +2664 m^{4}-5088 m^{3}-8529 m^{2}-4620 m-900
\end{align*}
$$

We see that $-D(m)$ is $\nearrow$ in $1<m<\infty$, since

$$
\begin{aligned}
-D^{\prime}(m)= & 1536 m^{7}+9408 m^{6}+24480 m^{5}+30480 m^{4} \\
& +10656 m^{3}-15264 m^{2}-17058 m-4620 \\
\geqq & 61296 m^{2}-17058 m-4620 \\
\geqq & 39618 \quad \text { for } m \geqq 1
\end{aligned}
$$

We have

$$
-D(m)=\left\{\begin{array}{lr}
-4761 & \text { at } m=1 \\
-532.668055 & 1.08 \\
163.7176446 & 1.09
\end{array}\right.
$$

and hence we obtain

$$
\begin{array}{ll}
D(m)>0 & \text { for } 1 \leqq m<1.08 \cdots,  \tag{54}\\
D(m)<0 & \text { for } m>1.08 \cdots,
\end{array}
$$

which implies

$$
\begin{equation*}
\widetilde{L}_{2}(t)>0 \quad \text { for }-\infty<t<\infty \quad \text { with } m>1.08 \cdots, \tag{55}
\end{equation*}
$$

Thus, we obtain from (51) and (55)

$$
\boldsymbol{\sigma}(t)=\varphi_{1}(t) L_{1}(t)+\varphi_{2}(t) L_{2}(t)>0 \quad \text { for } \alpha(m) \leqq t<1 \quad \text { with } m>1.17 \cdots .
$$

Q.E.D.

Combining Lemma 5 and Lemma 6, we obtain our Main Theorem.

## References

[1] T. Otsuki, A certain property of geodesics of the family of Riemanian manifolds $O_{n}^{2}(X)$, Kodai Math. J. 12 (1989), 346-391.
[2] T. Otsuki, Certain inequalities related with a non-linear differential equation (III), TRU Mathematics 24 (1988), 103-134.

Department of Mathematics
Science Universiuy of Tokyo
Wakamiya-cho 26, Shinjuku-ku
Tokyo, Japan 162

