A REMARK ON ELLIPTIC UNITS

By Akira Aiba

§ 0. Introduction

Let p be a prime number such that $p \equiv 3 \bmod 4$ and $p>3$. Put $K=\boldsymbol{Q}(\sqrt{ }-p)$ and let H be the absolute class field of K. In [5], Gross defined units u_{σ} $(\sigma \in \operatorname{Gal}(H / K))$ in a class field of $H T$ of a $C M$-field T containing K. He gave a question about a property of these units. In this paper, following Robert [8], we give the explicit method to calculate u_{σ}. In particular when $p=23$ we calculate them concretely to show that Gross' question is correct.

I would like to thank Prof. T. Kanno for encouragement and suggestion.

§ 1.

First we define the notations and recall the problem of Gross [5]. Let p be a prime number such that $p \equiv 3 \bmod 4$ and $p>3$. Let $K=\boldsymbol{Q}(\sqrt{-p})$ with the integer ring $O=O(K)$. Let H be the absolute class field of K with the integer ring $O(H)$. Let I_{K} (resp. I_{H}) be the idele group of K (resp. H). Let E be an elliptic curve defined over H with complex multiplication by O. We fix a Weierstrass model for $E, y^{2}=4 x^{3}-g_{2} x=g_{3}$ where $g_{2}, g_{3} \in O$. Let j_{E} be the absolute invariant of E
i.e.

$$
j_{E}=\frac{1728 g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}} .
$$

Let v be a finite place of H where E has good reduction. Let H_{v} be the completion at v, and let k_{v} be the residue field of H_{v}. Let \tilde{E}_{v} be the reduction of E at v. The reduction of endomorphisms gives an injection:

$$
\theta_{v}: K \simeq \operatorname{End}_{H}(E) \otimes \boldsymbol{Q} \longrightarrow \operatorname{End}_{k_{v}}\left(E_{v}\right) \otimes \boldsymbol{Q}
$$

whose image contains the Frobenius endomorphism π_{v}. Let α_{v} be the unique element of K with $\theta_{v}\left(\alpha_{v}\right)=\pi_{v}$.

Let χ_{E} be the Grössen character of E. This is a continuous homomorphism of I_{H} to the multiplicative group K^{\times}, which is the uniquely characterized by the following conditions:

1) If $a=(\alpha)$ is a principal idele, $\chi_{E}(a)=N_{H / K}(\alpha)$.
2) If $a=\left(a_{v}\right)$ is an idele with $a_{v}=1$ at all infinite places of H and at those places where E has bad reduction,

$$
\chi_{E}(a)=\Pi \alpha_{v}^{v\left(a_{v}\right)}
$$

where the product is taken over the places of H at which E has good reduction.
Let h be the class number of K. It is known that the absolute invariant is H-isomorphism invariant and there are just h absolute invariants of elliptic curves whose endomorphism rings are isomorphic to O. We denote this set of absolute invariants by J. The character χ_{E} is H-isogeny invariant.

We say a curve E over H with complex multiplication by O is a Q-curve if it is isogenous over H to all of its Galois conjugates $E^{\tau}(\tau \in \operatorname{Aut}(H))$.

Recall the \boldsymbol{Q}-curve $A=A(p)$ which was studied in [2][4][5].
Let χ_{p} be the unique continuous homomorphism of I_{H} to K which satisfies

1) If $a=(\alpha)$ is a principal idele, $\chi_{p}(a)=N_{H / K}(\alpha)$.
2) If $a=\left(a_{v}\right)$ is an idele with $a_{v}=1$ for all $v \mid \infty, p$ and \mathfrak{p}_{v} is prime at v, then

$$
\chi_{p}(a)=\prod_{v \mid \infty, p} \alpha_{v}^{v\left(a_{v}\right)}
$$

where ε is the composition of the natural isomorphism from $(O / \sqrt{-p} O)^{\times}$ to $(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$and quadratic residue homomorphism from $(\boldsymbol{Z} / p \boldsymbol{Z})^{\times}$to $\{ \pm 1\}$, and α_{v} is the element of O such that $N_{H / K} \mathfrak{p}_{v}=\left(\alpha_{v}\right)$ and $\varepsilon\left(\alpha_{v}\right)=1$. (In this case this determines α_{v} uniquely.)
There exists an elliptic curve with complex multiplication by O defined over $F=\boldsymbol{Q}(j)(j \in J)$ with the absolute value j, the Grössen character χ_{p} and the minimal discriminant $\left(-p^{3}\right)$ over F. It is determined uniquely up to F-isomorphism and we denote this curve by $A=A(p)$. (In fact $A(p)$ is F-isomorphic to the following elliptic curve.

$$
y^{2}=x^{3}+\frac{m p}{2^{4} \cdot 3} x-\frac{n p^{2}}{2^{5} \cdot 3^{3}}
$$

where $m^{3}=j_{A(p)}$

$$
n^{2}=\frac{j-1728}{-p} \quad \operatorname{sign} n=\left(\frac{2}{p}\right) \quad \text { (c.f. Gross [5]) }
$$

Let $B=B(p)=\operatorname{Res}_{H / K} A(p)=\prod_{\sigma \in \mathrm{Gal}(H / K)} A(p)^{\sigma}$ be the Weil restriction of $A(p)$ which is an abelian variety of dimension h. Then $T=\operatorname{End}_{K}(B) \otimes \boldsymbol{Q}$ is $C M$-field of degree $2 h$ and

Here we can define the Grössen character of $B, \chi_{B}, \quad \chi_{B}: I_{K} \rightarrow T^{\times}$: continuous homomorphism
s.t. 1) If $a=(\alpha)$ is a principal idele, $\chi_{B}(a)=\alpha$
2) If $a=\left(a_{v}\right)$ is an idele with $a_{v}=1$ when $v \mid \infty$ or B is bad reduction at v, then

$$
\chi_{B}(a)=\Pi \alpha_{v}^{v\left(a_{v}\right)}
$$

where the product is taken over the places of K at which B has good reduction and α_{v} is the inverse image of the Frobenius endomorphism as in the elliptic case.
From now on in this section, we write $\mathfrak{a}, \mathfrak{b}$ for integral ideals of K which are prime to p and write α for an integer of K which is prime to p.

By the definition of χ_{B}, we get an integer $\chi_{B}(\mathfrak{a})$ of T. If we write $O(T)$ for the integer ring of T, a principal ideal $\chi_{B}(\mathfrak{a}) O(T)$ is $\mathfrak{a} O(T)$ and the following identities hold:
(1) $\chi_{B}(\alpha)=\alpha$
(2) $\chi_{B}(\mathfrak{a} \mathfrak{b})=\chi_{B}(\mathfrak{a}) \chi_{B}(\mathfrak{b})$.

The restriction $f=\left.\chi_{B}(\mathfrak{a})\right|_{A}$ is an isogeny from A to $A^{\sigma_{\mathfrak{a}}}$, where $\sigma_{\mathfrak{a}}$ is $(\mathfrak{a}, H / K)$. Let f_{a} be an element of H s.t. $f^{*}\left(\boldsymbol{\omega}^{\sigma_{a}}\right)=f_{a} \boldsymbol{\omega}$, where f^{*} is the pull back of f. Then the principal idele $f_{\mathrm{a}} O(H)$ is $\mathfrak{a} O(H)$ and the following identities hold:
(1) $f_{(\alpha)}=\alpha$
(2) $f_{a b}=f_{\mathfrak{a}} f_{\mathfrak{b}}$.

By the above we get units $u_{a} \stackrel{\text { def }}{=} \chi_{B}(\mathfrak{a}) / f_{a}$ of $H T$ and $u_{a b}=u_{a} u_{b}^{\sigma_{a}}$.
Since u_{a} depends only on the ideal class of \mathfrak{a}, we denote $u_{\sigma a}=u_{a}$. Let $U_{H T}$ be the unit group of $H T$. By the above

is 1-cocycle. Gross gave the following two questions.
$Q 1$ Is the cocycle u a coboundary? i. e. $u \in B^{1}\left(\operatorname{Gal}(H T / T), U_{H T}\right)$?
$Q 2$ Does the summation of $u(\sigma)$ over $\operatorname{Gal}(H T / T)$ belong to $U_{H T}$?
i.e.

$$
\sum_{\left.\sigma \in \mathrm{Gal}_{(H T} / T\right)} u(\sigma) \in U_{H T} \text { ? }
$$

§2. The explicit algorithm for u

For a prime p we have h different $A(p)$ (so do $\left\{u_{\sigma}\right\}$) followed by the choice of j, where h is the class number of $K=\boldsymbol{Q}(\sqrt{-p})$. But from the definition they are conjugate and we may only examine the case when $j \in \boldsymbol{R}$, and we may suppose the coefficients of the defining equation of $A(p)$ are integers.

From now on $j \in \boldsymbol{R}$

$$
A(p): y^{2}=4 x^{3}-g_{2} x-g_{3} \quad g_{2}, g_{3} \in O \quad \omega=d x / y
$$

It is easy to calculate $\chi_{B}(\mathfrak{a})$ from the definition of χ_{B} and χ_{p}. We give the algorithm for f_{a}, followed by Robert [8].

First we give a few notations.

$$
\begin{aligned}
& L=\left\{\int_{\gamma} \omega \mid \gamma \in H_{1}(A(\boldsymbol{C}), \boldsymbol{Z})\right\} \quad L_{\sigma}=\left\{\int_{\gamma} \omega^{\sigma} \mid \gamma \in H_{1}\left(A^{\sigma}(\boldsymbol{C}), \boldsymbol{Z}\right)\right\} \quad(\boldsymbol{\sigma} \in \operatorname{Gal}(H / K)) \\
& G_{2}(\mathcal{L})=\lim _{\substack{s \rightarrow 0 \\
s>0}} \sum_{\lambda \in \mathcal{L}-(0)} \frac{1}{\lambda^{2} \cdot|\lambda|^{2 s}} \quad G_{k}(\mathcal{L})=\sum_{\lambda \in \mathcal{L}-(0)\}} \frac{1}{\lambda^{k}} \quad(k>2)
\end{aligned}
$$

($\mathcal{L}:$ a lattice)
Then $G_{k}(L) \in H(k \geqq 2)$

$$
\mathscr{P}(z, \mathcal{L})=\frac{1}{z^{2}}+\sum_{\lambda \in \mathcal{L}-(0)}\left\{\frac{1}{(z-\lambda)^{2}}-\frac{1}{\lambda^{2}}\right\}: \text { the Weierstrass } \mathscr{P} \text {-function }
$$

Then

$$
\begin{array}{cl}
\mathscr{P}(z, \mathcal{L})=\frac{1}{z^{2}}+\sum_{k \geq 1}(2 k+1) G_{2 k+2}(\mathcal{L}) z^{2 k} & \left(0<|z|<\operatorname{Min}_{\omega \in \mathcal{L}-(0)}|\omega|\right) \\
& (\mathcal{L}: \text { a lattice }) \\
\mathscr{P}_{a, L}=\sum_{0 \neq \lambda \in a^{-1} L_{L} L} \mathscr{P}(\lambda, L) \in H
\end{array}
$$

We use the q-expansions and the integral conditions to calculate u explicitely as follows.

1. the determination of $G_{2}(L)$
2. approximate value of $G_{2}(L)$
(1) $\left(\frac{w_{1}}{2 \pi}\right)^{2} G_{2}\left(\mathfrak{a}^{-1}\right)=\frac{1}{12}\left(1-24 \sum_{n \geq 1} \frac{n q^{n}}{1-q^{n}} \frac{3}{\pi \operatorname{Im}\left(w_{2} / w_{1}\right)}\right)$,
(2) $\left(\frac{w_{1}}{2 \pi}\right)^{2} G_{4}\left(\mathfrak{a}^{-1}\right)=\frac{1}{720}\left(1+240 \sum_{n \geqq 1} \frac{n^{3} q^{n}}{1-q^{n}}\right)$,
(3) $\left(\frac{w_{1}}{2 \pi}\right)^{2} G_{6}\left(\mathfrak{a}^{-1}\right)=\frac{1}{30240}\left(1-504 \sum_{n \geqq 1} \frac{n^{5} q^{n}}{1-q^{n}}\right)$,
where \mathfrak{a} is an integral ideal of K s.t. $\mathfrak{a}^{-1}=\left(w_{1}, w_{2}\right) \operatorname{Im}\left(w_{1} / w_{2}\right)>0$ $q=\exp \left(2 \pi i\left(w_{2} / w_{1}\right)\right)$.
From the complex multiplication theory, their exists

$$
\rho(\mathfrak{a})=\rho(\mathfrak{a}, L) \in \boldsymbol{C} \quad \text { s. t. } L_{\sigma_{\mathfrak{a}}}=\rho(\mathfrak{a}) \mathfrak{a}^{-1}
$$

(4) $\rho(\mathfrak{a})^{2}=\frac{140}{60} \cdot \frac{g_{2}}{g_{3}} \cdot \frac{G_{6}\left(\mathfrak{a}^{-1}\right)}{G_{4}\left(\mathfrak{a}^{-1}\right)}$,
(5) $\quad G_{2}(L)^{\sigma_{\mathfrak{a}}}=G_{2}\left(L_{\sigma_{\mathrm{a}}}\right)=\rho(\mathfrak{a})^{-2} G_{2}\left(\mathfrak{a}^{-1}\right)$.
2. the integral condition of $G_{2}(L)$
(6) $2 \sqrt{ }=p G_{2}(L) \in O(H)$.

In general it is difficult to determine the integer ring when the degree is high, but in this case when j is real we can do it slightly more easily.
(7) $2 p G_{2}(L) \in O(F)$: the integer ring of $F=\boldsymbol{Q}(j)$.
2. the determination of $\mathscr{P}_{a, L}$

1. approximate value of $\left(\mathscr{P}_{a, L}\right)^{\sigma_{b}}$
(8) $\left(\frac{w_{3}}{2 \pi i}\right) \mathscr{P}(z, \mathfrak{b})=\frac{1}{12} \sum_{m \in Z} \frac{q^{m} q_{z}}{\left(1-q^{m} q_{z}\right)^{2}}-2 \sum_{n=1}^{\infty} \frac{n q^{n}}{1-q^{n}}$
where \mathfrak{b} is an integral ideal s.t. $\mathfrak{b}=\left(w_{3}, w_{4}\right) \operatorname{Im}\left(w_{3} / w_{4}\right)>0$

$$
q=\exp \left(2 \pi i\left(w_{4} / w_{3}\right)\right) \quad q_{z}=\exp \left(2 \pi i\left(z / w_{3}\right)\right)
$$

(9) $\left(\mathcal{P}_{a, L}\right)^{\sigma_{\mathfrak{b}}}=\mathscr{P}_{a, L \sigma_{b}}=\rho(\mathfrak{b})^{-2}$,
2. the integral condition of $\mathscr{P}_{\mathrm{a}, L}$
(10) $2 \mathscr{P}_{a, L} \in O(H)$

Especially when $\mathrm{Na}=2$
(11) $4 \mathscr{P}_{a, L}^{3}-g_{2} \mathscr{P}_{a, L}-g_{3}=0$
3.1. the determination of $G_{2}\left(\mathfrak{a}^{-1} L\right)$
(12) $\quad G_{2}\left(\mathfrak{a}^{-1} L\right)-N a G_{2}(L)=\mathscr{P}_{\mathfrak{a}, L}$

From 1, 2 and (12) we can determine $G_{2}\left(\mathfrak{a}^{-1} L\right)$
2. the determination of f_{a}
(13) $\quad G_{2}\left(\mathfrak{a}^{-1} L\right)=f_{a}^{2} G_{2}(L)$

From 1 and (13) we can determine f_{a}.
Proof of (1)~(13)
(1) (3), (8) See Lang [7] Chap. 4 and Kubert and Lang [6] Chap. 10
(12) Define

$$
\sigma(z, L)=z \prod_{\lambda \in L-(0)}\left(1-\frac{z}{\lambda}\right) \exp \left(\frac{z}{\lambda}+\frac{1}{2}\left(\frac{z}{\lambda}\right)^{2}\right): \text { the Weierstrass } \sigma \text {-function. }
$$

Then

$$
\mathscr{P}(z, L)=-\frac{\partial^{2}}{\partial z^{2}} \log \sigma(z, L)
$$

Define

$$
\theta(z, L)=\Delta(L) \sigma^{12}(z, L) \exp \left(-6 G_{2}(L) z^{2}\right)
$$

where $\Delta(L)=(2 \pi)^{12}\left(\left(60 G_{4}(L)\right)^{3}-27\left(140 G_{6}(L)\right)^{2}\right)$.
Then

$$
\begin{aligned}
z \frac{\partial}{\partial z} \log \theta(z, L) & =-12 G_{2}(L) z^{2}+12 \frac{\sigma^{\prime}(z, L)}{\sigma(z, L)} z \\
& =12\left(1-\sum_{\substack{k>0 \\
z \backslash k}} G_{k}(L) z^{k}\right)
\end{aligned}
$$

Let \mathfrak{a} be an integral ideal of K.
Define

$$
\theta(z, L ; \mathfrak{a})=\theta(z, L)^{N a} / \theta\left(z, a^{-1} L\right)
$$

Then

$$
z \frac{\partial}{\partial z} \log (z, L ; \mathfrak{a})=12\left(N a-1+\sum_{\substack{k>0 \\ 2>k}}\left(G_{k}\left(\mathfrak{a}^{-1} L\right)-N a G_{k}(L)\right) z^{k}\right)
$$

On the other hand, $\theta(z, L ; \mathfrak{q})$ is an elliptic function $w . r$. to L and an even function. Comparing zeros, poles and the first coefficient of power series expansion at $z=0$, we get the next equation:

$$
\theta(z, L ; \mathfrak{a})=\frac{\Delta(L)}{\Delta\left(\mathfrak{a}^{-1} L\right)} \prod_{\lambda \in a^{-1} L / L-(0)} \frac{\Delta(L)}{(\mathscr{P}(z, L)-\mathcal{P}(\lambda, L))^{6}}
$$

We compare two expression of z^{2}-coefficient of $z(\partial / \partial z) \log \theta(z, L ; \mathfrak{a})$ and we get the result.
(5), (9) From the definition and (12).
(4) From the homogeneity of G_{4} and G_{6},

$$
\rho(\mathfrak{a})^{2}=\left(\frac{G_{6}\left(\mathfrak{a}^{-1}\right)}{G_{6}(L)}\right)\left(\frac{G_{4}\left(\mathfrak{a}^{-1}\right)}{G_{4}(L)}\right)^{-1}=\frac{140}{60} \cdot \frac{g_{2}}{g_{3}} \cdot \frac{G_{6}\left(\mathfrak{a}^{-1}\right)}{G_{4}\left(\mathfrak{a}^{-1}\right)}
$$

(6) In (12) we take $\mathfrak{a}=(\alpha) . \quad \alpha \in O$

$$
O \ni 2 \mathscr{P}_{a, L}=2\left(G_{2}\left(\mathfrak{a}^{-1} L\right)-N a G_{2}(L)\right)=\alpha(\alpha-\bar{\alpha}) G_{2}(L)
$$

Since the greatest common ideal of $\alpha(\alpha-\bar{\alpha})$ is $(\sqrt{-p}), 2 \sqrt{-p} G_{2}(L) \in O$
(7) Since $H=\boldsymbol{Q}(j, \sqrt{-p})$,

$$
2 \sqrt{-p} G_{2}(L)=x_{0}+x_{1} \sqrt{-p}+x_{2} j+x_{3} j \sqrt{-p}+x_{4} j^{2}+x_{5} j^{2} \sqrt{-p} \quad x_{i} \in \boldsymbol{Q}
$$

Since j is real, $G_{2}(L)$ is also real and

$$
2 \sqrt{-p} G_{2}(L)=x_{1} \sqrt{-p}+x_{3} j \sqrt{-p}+x_{5} j^{2} \sqrt{-p}
$$

From (6)

$$
\begin{aligned}
& O(F) \ni N_{H / K}\left(2 \sqrt{-p} G_{2}(L)\right)=p\left(x_{1}+x_{3} j+x_{5} j^{2}\right)^{2} \\
& O(F) \ni p\left(x_{1}+x_{3} j+x_{5} j^{2}\right)=2 p G_{2}(L)
\end{aligned}
$$

(10) See Cassels [3]
(11) From

$$
A(p): y^{2}=4 x^{3}-g_{2} x-g_{3}
$$

(13) From $f_{\mathfrak{a}} L=\mathfrak{a} L$ and (5).

§ 3. Calculation example when $p=23$.

If the class number of $K=\boldsymbol{Q}(\sqrt{-p})$ is 1 , then $u_{\sigma}=1$ and $Q 1$ and $Q 2$ are trivially correct. There doesn't exist K of the class number 2 under the assumption of p. Under the condition that the class number of K is $3, p=23$ is minimal. In this case we calculate u_{σ} concretely by the method of $\S 2$, and show that $Q 1$ and $Q 2$ are correct.

Let $p=23$ and $K=\boldsymbol{Q}(\sqrt{-23})$, then we have the absolute class field $H=K(\alpha)$ for $\alpha \in \boldsymbol{R}$ such that $\alpha^{3}-\alpha-1=0$.

Set

$$
\begin{aligned}
& O=\boldsymbol{Z}+((1+\sqrt{-23}) / 2) \boldsymbol{Z} \\
& \mathfrak{a}=2 \boldsymbol{Z}+((1+\sqrt{-23}) / 2) \boldsymbol{Z}
\end{aligned}
$$

and

$$
\tilde{\mathfrak{a}}=2 \boldsymbol{Z}+((1-\sqrt{-23}) / 2) \boldsymbol{Z}
$$

Then $\operatorname{Gal}(H / K)=\left\{\sigma_{0}, \sigma_{\mathfrak{a}}, \sigma_{\bar{a}}\right\}$ and since $N a=N \tilde{\mathfrak{a}}=2$, in this case we can use (11). And

$$
\begin{aligned}
& j=-\alpha^{12} 5^{3}(2 \alpha-1)^{3}(3 \alpha+2)^{3} \\
& A(23): y^{2}=4 x^{3}-2^{2} 3^{3} c_{4} x-2^{3} 3^{3} c_{6} \\
& \text { where } c_{4}=5 \cdot 23^{2} \alpha^{4}(2 \alpha-1)(3 \alpha+2) \\
& c_{6}=\frac{7 \cdot 23^{2} \alpha^{8}\left(4 \alpha^{2}+2 \alpha-3\right)(3 \alpha+1)}{2 \alpha+3} .
\end{aligned}
$$

As for the numerical value above, see Berwick [1] or Gross [4]. From the
algorithm of $\S 2$

$$
\begin{aligned}
& G_{2}(L)=33 \alpha^{2}+30 \alpha+9 \\
& \mathscr{P}_{\mathrm{a}, L}=-\frac{3}{2}\left(13 \alpha^{2}+38 \alpha+45-3\left(\alpha^{2}-2 \alpha+1\right) \sqrt{-23}\right) \\
& f_{\mathrm{a}}=-\frac{1}{2} \alpha^{2}+\frac{1}{2} \alpha-\frac{1}{2}-\frac{7}{46} \alpha^{2} \sqrt{-23}-\frac{1}{46} \alpha \sqrt{-23}-\frac{3}{46} \sqrt{-23}
\end{aligned}
$$

And from the definition of χ_{B}

$$
\chi_{B}(\mathfrak{a})=\left(\frac{3-\sqrt{-23}}{2}\right)^{1 / 3} \quad \text { (Fix a cubic root of unity.) }
$$

Therefore

$$
\begin{aligned}
& u_{\sigma_{O}}=1 \\
& u_{\sigma_{\mathfrak{a}}}=\left(\frac{1}{2} \alpha^{2}-\frac{1}{4} \alpha-\frac{3}{4}-\frac{1}{46} \alpha^{2} \sqrt{-23}+\frac{3}{92} \alpha \sqrt{-23}+\frac{9}{92} \sqrt{-23}\right)\left(\frac{3-\sqrt{-23}}{2}\right)^{1 / 3} \\
& u_{\sigma_{\mathfrak{a}}}=\bar{u}_{\sigma_{\mathfrak{a}}}
\end{aligned}
$$

To see that $u_{\sigma_{O}}+u_{\sigma_{\mathfrak{a}}}+u_{\sigma_{\mathfrak{a}}}$ is unit, we examine

$$
\begin{aligned}
& \frac{1}{u_{\sigma_{O}}+u_{\sigma_{\mathfrak{a}}}+u_{\sigma \bar{a}}} \\
& =\left(-\alpha^{2}+1\right)+\frac{1}{92}\left(23 \alpha+12 \alpha^{2} \sqrt{-23}+5 \alpha \sqrt{-23}-8 \sqrt{-23}\right)\left(\frac{3-\sqrt{-23}}{2}\right)^{1 / 3} \\
& \quad+\frac{1}{92}\left(23 \alpha-12 \alpha^{2} \sqrt{-23}-5 \alpha \sqrt{-23}+8 \sqrt{-23}\right)\left(\frac{3-\sqrt{-23}}{2}\right)^{1 / 3}
\end{aligned}
$$

is an integer.
To do so, we may examine that the elementary symmetric polynomials of the conjugates of $1 / \sum u_{\sigma}$ over T. They all are in T^{+}(the maximal real subfield of $T)$. Since $\left[T^{+}: \boldsymbol{Q}\right]=3$, the integer ring of T^{+}is determined by Tornheim [9], for example. In this case the integer ring of T^{+}is $\boldsymbol{Z}\left[\chi_{B}(\mathfrak{a})+\chi_{B}(\mathfrak{a})^{-1}\right]$ and they all are integers and $Q 1,2$ are correct.

Thus we have
Proposition. Let $K=\boldsymbol{Q}(\sqrt{-23})$ and let H be the absolute class field of K. Let $A(23)$ be the \boldsymbol{Q}-curve as in $\S 1$. Let $B=\prod_{\sigma \in \operatorname{Gal}(H / K)} A(23)^{\sigma}$ be the Weil restriction of $A(23)$. Let $T=\operatorname{End}_{K}(B) \otimes \boldsymbol{Q}$. Let $U_{H T}$ be the unit group of $H T$. Let u be the 1-cocycle of $\operatorname{Gal}(H T / T)$ to $U_{H T}$ as in $\S 1$.

Then u is contained in $B^{1}\left(\operatorname{Gal}(H T / T), U_{H T}\right)$ and $\sum_{\sigma \in \operatorname{Gal}(H T / T)} u(\sigma)$ is contained in $U_{H T}$.

References

[1] W.E. H. Berwick, Modular invariants expressible in terms of quadratic and cubic irrationalities, Proc. London Math. Soc. (1927), 53-69.
[2] J. P. Buhler and B. Gross, Arithmetic on elliptic curves with complex multiplication, Invent. Math. (1985), 11-29.
[3] J. W.S. Cassels, A note on the division values of $\mathscr{P}(u)$, Proc. Cambridge Philos. Soc. (1949), 167-172.
[4] B. Gross, Arithmatic on elliptic curves with complex multiplication, SLN 776 (1980).
[5] B. Gross, Minimal models for elliptic curves with complex multiplication, Composito Math. (1982), 155-164.
[6] D.S. Kubert and S. Lang, Modular units, Springer (1981).
[7] S. Lang, Elliptic functions, Addison Weisley (1973).
[8] G. Robert, Nombre de Hurwitz et unités elliptiques, Ann. Sci. E.N.S. (1978), 297-389.
[9] L. Tornheim, Minimal basis and inessential discriminant divisors for a cubic field, Pacific Journal of Math. (1955), 623-631.

Department of Mathematics
Ibaraki University
Bunkyoh, Mito
Ibaraki, Japan

