A REMARK ABOUT THE TANIYAMA-WEIL CONJECTURE FOR AN ELLIPTIC CURVE DEFINED BY AN EQUATION $y^2 = x^3 + D^2x + D^3$

BY TATSUO HISAMATSU

For an elliptic curve over Q the conjecture of Taniyama-Weil is stated as follows. (As for notations and terminologies, see [1] or [2].)

CONJECTURE (Taniyama-Weil) Let E be an elliptic curve over Q. Let N be its conductor, and let

$$L(E; s) = \sum_{n=1}^{\infty} a(n)n^{-s}, \quad (Re(s) > \frac{3}{2})$$

be its L-function. Then the function

$$f_E(z) = \sum_{n=1}^{\infty} a(n)e(nz), \quad (e(z) = e^{2\pi i z})$$

of z in the upper half plane, is a cusp form of weight 2 for the congruence subgroup $\Gamma_0(N)$ of the modular group SL(2, Z), which is an eigenfunction for the Hecke operators T(p) (p prime number).

Let D be a nonzero integer and let E(D) be an elliptic curve defined by an equation

$$y^2 = x^3 + D^2 x + D^3$$
.

In this paper, we give a remark about the Taniyama-Weil conjecture for the elliptic curve E(D).

THEOREM. The following are equivalent.

- (a) The conjecture is true for all E(D).
- (b) The conjecture is true for E(-1).

We shall divide the proof in the four steps.

1. For a prime number p, we denote by $E(D)_{(p)}$ the reduction of E(D) at p and put

$$a_D(p) = 1 + p - \operatorname{Card} E(D)_{(p)}(F_p).$$

Received November, 7, 1988.

TATSUO HISAMATSU

Notation. For an integer a and a non-zero integer b, we denote $\left(\frac{a}{b}\right)$ the "quadratic residue symbol" which is characterized by the following properties.

(i) $\left(\frac{a}{b}\right) = 0$ if $(a, b) \neq 1$ or b is even.

(ii) If b is an odd prime, $\left(\frac{a}{b}\right)$ coincides with the ordinary quadratic residue symbol.

(iii)
$$\left(\frac{a}{-1}\right) = \operatorname{sign}(a)$$
 or 0 according as $a \neq 0$ or $a = 0$.

Then we have

(iv) If b>0, the map $a\mapsto \left(\frac{a}{b}\right)$ defines a character modulo b. (v) If $a\neq 0$, the map $b\mapsto \left(\frac{a}{b}\right)$ defines a character.

PROPOSITION 1. For any prime number p, we have

(1)
$$a_D(p) = \left(\frac{a}{b}\right) a_1(p).$$

Proof. First, assume that E(D) has good reduction at p, namely p does't divide the discriminant Δ_D of E(D), where $\Delta_D = -2^4 31 D^6 = -496 D^6$. We denote by $A_D(p)$ the coefficient of x^{p-1} in $(x^3 + D^2x + D^3)^{(p-1)/2}$. Simple calculations show

$$A_{D}(p) = \left(\sum_{n \in \mathbb{Z}, \frac{p-1}{4} \leq n \leq \frac{p-1}{3}} \frac{\frac{p-1}{2}!}{(2n - \frac{p-1}{2})!(p-1 - 3n)!n!}\right) D^{\frac{p-1}{2}}.$$

Moreover, as in the proof of Theorem 4.1 in [2], we have $a_D(p) \equiv -A_D(p)$ (mod p). This result and the Riemann hypothesis for $E(D)_{(p)}$, saying $|a_D(p)| \leq 2\sqrt{p}$, imply $a_D(p) = \left(\frac{D}{p}\right) a_1(p)$ for $p \geq 17$.

We show that (1) is also true for p < 17.

If p=3 and $3 \nmid D$, then $A_D(3)=0$, so that $a_D(3)=-3$, 0 or 3. Since a congruence equation $x^3+D^2x+D^3\equiv 0 \pmod{3}$ has a solution x=D, Card $E(D)_{(3)}(F_3)$ must be an even integer. Thus $a_D(3)=0$.

If p=5 and $5 \not\mid D$, then $A_D(5)=2D^2$. For D such as $\left(\frac{D}{5}\right)=1$ (resp. $\left(\frac{D}{5}\right)=-1$), we have $2D^2\equiv 2 \pmod{5}$ (resp. $2D^2\equiv -2 \pmod{5}$). Thus $a_D(5)=-3$ or 2 (resp. $a_D(5)=-2$ or 3). Since the following three polynomials

$$x^{3}+D^{2}x+D^{3} \equiv \begin{cases} x^{3}+x+1\left(\left(\frac{D}{5}\right)=1\right), \\ x^{3}-x-2 \ (D\equiv 2 \ (\text{mod } 5)) \\ x^{3}-x+2 \ (D\equiv 3 \ (\text{mod } 5)) \end{cases}$$

have no roots modulo 5, $\operatorname{Card} E(D)_{(5)}(F_5)$ must be odd, thus $a_D(5) = \left(\frac{D}{5}\right) \cdot (-3)$. If p=7 and $7 \notin D$, then $A_D(7) = 3D^3$. As above,

$$x^{3}+D^{2}x+D^{3} \equiv \begin{cases} x^{3}+x+\left(\frac{D}{7}\right) & (D\equiv 1, 6 \pmod{7}), \\ x^{3}+4x+\left(\frac{D}{7}\right) & (D\equiv 2, 5 \pmod{7}), \\ x^{3}+2x+\left(\frac{D}{7}\right) & (D\equiv 3, 4 \pmod{7}) \end{cases}$$

have no roots modulo 7, Card $E(D)_{(7)}(F_7)$ must be odd. Thus $a_D(7) = \left(\frac{D}{7}\right) \cdot 3$.

If p=11 and $11 \notin D$, we have $A_D(11)=20D^5$ and $|a_D(11)| \le 2\sqrt{11} < 2 \cdot 4 = 8$. Thus $a_D(11)=\left(\frac{D}{11}\right) \cdot (-2)$.

Finally, if p=13 and $13 \nmid D$, we have $A_D(13)=35D^6$ and $|a_D(13)| \le 2\sqrt{13} < 8$. Thus $a_D(13)=\left(\frac{D}{13}\right) \cdot (-4)$.

Therefore (1) is true for p < 17.

Next, assume that E(D) has bad reduction at p, namely $p \mid \Delta_D$. If $p \mid 2 \cdot D$, then E(D) has additive reduction at p and $a_D(p)=0$. On the other hand, if p=31 and $31 \not\mid D$, then E(D) has multiplicative reduction at 31 and $a_D(31)=1$ or -1 according as $\left(\frac{D}{31}\right)=-1$ or 1, respectively. (cf. [2; Prop. 5.1].)

Finally, we have (1) for all prime numbers.

2. Suppose N_D is the conductor of E(D). This quantity can be explicitly computed by using the algorithm of Tate ([4]). The result is as follows.

	31 ∦ D	31 D
$\begin{array}{c} 2 \not\downarrow D \\ D \equiv 1 \pmod{4} \end{array}$	$2^{4}31D_{0}^{2}$	$2^4 D_0^2$
$\begin{array}{c} 2 \not\mid D \\ D \equiv -1 \pmod{4} \end{array}$	$2^3 31 D_0^2$	$2^{3}D_{0}^{2}$
2 D	$2^{4}31D_{0}^{2}$	$2^4 D_0^2$

(2)

where

$$D_0 = \operatorname{sign}(D) \prod_{\substack{p \text{ prime number} \\ \operatorname{ord}_p(D) \equiv 1 \pmod{2}}} p.$$

TATSUO HISAMATSU

3. We define a function $\Psi_D: Z \rightarrow \{1, 0, -1\}$ by

$$\Psi_D(0)=0$$
, $\Psi_D(a)=\left(\frac{-D}{a}\right)$ $(a\neq 0)$.

PROPOSITION 2.

- (i) If $D\equiv 1 \pmod{4}$, then Ψ_D is a primitive character $\mod{2^2D_0}$.
- (ii) If $D \equiv -1 \pmod{4}$, then Ψ_D is a primitive character $\mod{2D_0}$.

(iii) If 2|D, then Ψ_D is a primitive character mod 2^2D_0 .

Proof. We have $\Psi_D = \Psi_{D_0}$ by (3) and we can see the equivalence of $D \equiv \pm 1 \pmod{4}$ and $D_0 \equiv \pm 1 \pmod{4}$. Therefore, it is enough to prove the proposition in the case of $D = D_0$, namely, square-free D.

Assume that a and 2D are relatively prime. First we prove

$$(4) \qquad \qquad \Psi_D(a+4|D|) = \Psi_D(a).$$

By the definition of Ψ_D , we have

(5)
$$\Psi_D = \Psi_{\operatorname{sign}(D)} \prod_{\substack{p \text{ prime number} \\ p \mid D}} \Psi_{-p}.$$

For each factor in the right hand side of (5), we check (4) in the cases

$$\begin{cases} i) & a+4|D|>0 \text{ and } a>0.\\ ii) & a+4|D|>0 \text{ and } a<0.\\ iii) & a+4|D|<0 \text{ (so } a<0). \end{cases} \begin{cases} 1) & D>0.\\ 2) & D<0. \end{cases}$$

Assume D is odd.

 $\Psi_{sign(D)}(a+4|D|)$; In the case 2), $\Psi_{sign(D)}=\Psi_{-1}$ is a trivial character, thus

$$\Psi_{\mathfrak{slgn}(D)}(a+4|D|) = \Psi_{\mathfrak{slgn}(D)}(a)$$

is always true. In the case i)-1),

$$\Psi_{\text{sign}(D)}(a+4|D|) = \left(\frac{-1}{a+4|D|}\right) = (-1)^{\frac{a-1}{2}} = \left(\frac{-1}{a}\right) = \Psi_{\text{sign}(D)}(a),$$

in the case ii)-1),

$$\begin{split} \Psi_{\text{sign}(D)}(a+4|D|) &= \left(\frac{-1}{a+4|D|}\right) = (-1)^{\frac{a-1}{2}} = -(-1)^{\frac{-a-1}{2}} = -\Psi_{\text{sign}(D)}(-a) \\ &= \Psi_{\text{sign}(D)}(-1)\Psi_{\text{sign}(D)}(-a) \\ &= \Psi_{\text{sign}(D)}(a), \end{split}$$

in the case iii)-1),

$$\begin{split} \Psi_{\mathrm{sign}(D)}(a+4|D|) &= \Psi_{\mathrm{sign}(D)}(-1)\Psi_{\mathrm{sign}(D)}(-a-4|D|) \\ &= \Psi_{\mathrm{sign}(D)}(-1)\Psi_{\mathrm{sign}(D)}(-a) \\ &= \Psi_{\mathrm{sign}(D)}(a). \end{split}$$

So we have

$$\Psi_{sign(D)}(a+4|D|) = \Psi_{sign(D)}(a)$$

for all cases.

 $\Psi_{-p}(a+4|D|)$; In the case i),

$$\Psi_{-p}(a+4|D|) = \left(\frac{p}{a+4|D|}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{a-1}{2}} \left(\frac{a}{p}\right) = \left(\frac{p}{a}\right) = \Psi_{-p}(a)$$

by the quadratic reciprocity law. Similarly, in the case ii),

$$\begin{split} \Psi_{-p}(a+4|D|) &= \left(\frac{p}{a+4|D|}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{a-1}{2}} \left(\frac{a}{p}\right) = (-1)^{\frac{p-1}{2} \cdot \frac{-a-1}{2}} \left(\frac{-a}{p}\right) = \left(\frac{p}{-a}\right) \\ &= \Psi_{-p}(-a) = \Psi_{-p}(-1) \Psi_{-p}(a) \\ &= \Psi_{-p}(a), \end{split}$$

and in the case iii),

$$\Psi_{-p}(a+4|D|) = \Psi_{-p}(-1)\Psi_{-p}(-a-4|D|) = \Psi_{-p}(-a) = \Psi_{-p}(a)$$

By these results and by (5), we have (4) if D is odd. Similar computations show

(6)
$$\Psi_{D}(a+2|D|) = \left[\Psi_{D}(-1) \prod_{\substack{p \text{ prime number}\\ p \mid D}} (-1)^{\frac{p-1}{2}}\right] \Psi_{D}(a).$$

If we put

$$t = \operatorname{Card} \{p | \text{ prime number, } p | D \text{ and } p \equiv -1 \pmod{4} \},\$$

then whether t is even or odd is as follows.

		$D{\equiv}1 \pmod{4}$	$D \equiv -1 \pmod{4}$
(7)	D>0	even	odd
	<i>D</i> <0	odd	even

By (6) and (7),

$$\Psi_D(a+2|D|) = \Psi_D(a)$$

if and only if $D \equiv -1 \pmod{4}$. Thus we have (i) and (ii). Assume D is even. As for about Ψ_{-2} , in the case (i),

$$\Psi_{-2}(a+4|D|) = \left(\frac{2}{a+4|D|}\right) = (-1)^{\frac{(a+4|D|)^2-1}{8}} = (-1)^{\frac{a^2-1}{8}} = \left(\frac{2}{a}\right) = \Psi_{-2}(a),$$

in the case ii),

$$\Psi_{-2}(a+4|D|)=(-1)^{\frac{a^2-1}{8}}=(\frac{2}{-a})=\Psi_{-2}(-a)=\Psi_{-2}(a),$$

and in the case iii),

$$\Psi_{-2}(a+4|D|) = \Psi_{-2}(-a-4|D|) = \Psi_{-2}(-a) = \Psi_{-2}(a).$$

TATSUO HISAMATSU

From these results, we know that

$$\Psi_D(a+4|D|) = \Psi_D(a)$$

is also true for even D. The similar calculations show

$$\Psi_D(a+2|D|) = -\Psi_D(a).$$

Thus Ψ_D is a primitive character mod 2^2D_0 . Finally we have (iii). This completes the proof.

By Proposition 1 and the definition of Ψ_D , for any positive integer *n*, we have

(8)
$$a_D(n) = \Psi_D(n) a_{-1}(n).$$

4. Proof of Theorem. Assume that the Conjecture is true for E(-1). We apply the following fact from [1].

THEOREM. Let N be a positive integer, s be a divisor of N and m be an integer and we put

$$N' = l. c. m. (N, m^2, ms).$$

Let Ψ , χ be a primitive Dirichret character mod m, mod s, respectively. For

(9)
$$f(z) = \sum_{n=1}^{\infty} a(n)e(nz) \in S_k(N, \chi) \quad (Fourier expansion of f at i\infty),$$

we define

$$f_{\Psi}(z) = \sum_{n=1}^{\infty} \Psi(n) a(n) e(nz).$$

Then $f_{\Psi}(z) \in S_k(N', \Psi^2 \chi)$.

[1; Prop. 3. 64].

If we put $N=N_{-1}=2^{3}31=248$, $\Psi=\Psi_{D}$ and $\chi=1$ (trivial character), then N' coincides with N_{D} . So $f_{E(D)}$ belongs to $S_{k}(\Gamma_{0}(N_{D}))$.

For an positive integer m, denote by T(m) the m-th Hecke operator. The operation of T(m) on f(z) of (9) in the case $\chi=1$ is

$$(T(m)f)(z) = \sum_{n=1}^{\infty} a(n, T(m)f)e(nz), \ a(n, T(m)f) = \sum_{\substack{d \mid (m, n) \\ d \geq 0}} d^{k-1}a\Big(\frac{np}{d^2}\Big).$$

From the hypothesis for $f_{E(-1)}$, for each prime number p,

$$T(p)f_{E(-1)} = a_{-1}(p)f_{E(-1)}$$

holds, so that

$$a(n, T(p)f_{E(D)}) = \sum_{\substack{d \mid \{p,n\} \\ d \geq 0}} da\left(\frac{np}{d^2}, f_{E(D)}\right) = \sum_{\substack{d \mid \{p,n\} \\ d \geq 0}} d\Psi_D\left(\frac{np}{d^2}\right) a_{-1}\left(\frac{np}{d^2}\right),$$

If $p \nmid n$, then

 $= \Psi_D(np)a_{-1}(np) = a_D(p)a_D(n).$

Otherwise, if $p \mid n$, then by using the expression $n=mp^{k}$ ((p, m)=1),

$$= \Psi_{D}(mp^{k+1})a_{-1}(mp^{k+1}) + p\Psi_{D}(mp^{k-1})a_{-1}(mp^{k-1})$$

= $a_{D}(m)\Psi_{D}(p^{k+1})[a_{-1}(p^{k+1}) + pa_{-1}(p^{k-1})]$
= $a_{D}(m)\Psi_{D}(p^{k+1}) \cdot a_{-1}(p^{k})a_{-1}(p)$
= $a_{D}(p)a_{D}(n)$.

Therefore we have

$$T(p)f_{E(D)} = a_D(p)f_{E(D)}.$$

This implies that the Conjecture is true for E(D) also.

References

- SHIMURA, G., Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan 11, Iwanami Shoten Publishers and Princeton Univ. Press (1971).
- [2] SILVERMAN, J., The Arithmetic of Elliptic Curves, Springer-Verleg 1985.
- [3] TATE, J., The arithmetic of elliptic curves. Invent. Math. 23 (1974), 179-206.
- [4] TATE, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. Modular Functions of One Variable IV Lecture Notes in Math. 476, Springer-Verlag, 1975, 33-52.

Department of Mathematics Tokyo Institute of Technology