A REMARK ABOUT THE TANIYAMA-WEIL CONJECTURE FOR AN ELLIPTIC CURVE DEFINED BY
 AN EQUATION $y^{2}=x^{3}+D^{2} x+D^{3}$

By Tatsuo Hisamatsu

For an elliptic curve over Q the conjecture of Taniyama-Weil is stated as follows. (As for notations and terminologies, see [1] or [2].)

Conjecture (Taniyama-Weil) Let E be an elliptic curve over Q. Let N be its conductor, and let

$$
L(E ; s)=\sum_{n=1}^{\infty} a(n) n^{-s}, \quad\left(\operatorname{Re}(s)>\frac{3}{2}\right)
$$

be its L-function. Then the function

$$
f_{E}(z)=\sum_{n=1}^{\infty} a(n) e(n z), \quad\left(e(z)=e^{2 \pi \imath z}\right)
$$

of z in the upper half plane, is a cusp form of weight 2 for the congruence subgroup $\Gamma_{0}(N)$ of the modular group $S L(2, Z)$, which is an eigenfunction for the Hecke operators $T(p)$ (p prime number).

Let D be a nonzero integer and let $E(D)$ be an elliptic curve defined by an equation

$$
y^{2}=x^{3}+D^{2} x+D^{3} .
$$

In this paper, we give a remark about the Taniyama-Weil conjecture for the elliptic curve $E(D)$.

Theorem. The following are equivalent.
(a) The conjecture is true for all $E(D)$.
(b) The conjecture is true for $E(-1)$.

We shall divide the proof in the four steps.

1. For a prime number p, we denote by $E(D)_{(p)}$ the reduction of $E(D)$ at p and put

$$
a_{D}(p)=1+p-\operatorname{Card} E(D)_{(p)}\left(F_{p}\right) .
$$

[^0]Notation. For an integer a and a non-zero integer b, we denote $\left(\frac{a}{b}\right)$ the "quadratic residue symbol" which is characterized by the following properties.
(i) $\left(\frac{a}{b}\right)=0$ if $(a, b) \neq 1$ or b is even.
(ii) If b is an odd prime, $\left(\frac{a}{b}\right)$ coincides with the ordinary quadratic residue symbol.
(iii) $\left(\frac{a}{-1}\right)=\operatorname{sign}(a)$ or 0 according as $a \neq 0$ or $a=0$.

Then we have
(iv) If $b>0$, the map $a \mapsto\left(\frac{a}{b}\right)$ defines a character modulo b.
(v) If $a \neq 0$, the map $b \mapsto\left(\frac{a}{b}\right)$ defines a character.

Proposition 1. For any prime number p, we have

$$
\begin{equation*}
a_{D}(p)=\left(\frac{a}{b}\right) a_{1}(p) . \tag{1}
\end{equation*}
$$

Proof. First, assume that $E(D)$ has good reduction at p, namely p does't divide the discriminant Δ_{D} of $E(D)$, where $\Delta_{D}=-2^{4} 31 D^{6}=-496 D^{6}$. We denote by $A_{D}(p)$ the coefficient of x^{p-1} in $\left(x^{3}+D^{2} x+D^{3}\right)^{(p-1) / 2}$. Simple calculations show

$$
A_{D}(p)=\left(\sum_{n \in Z, \frac{p_{-1}}{4} \leq n \leqq \frac{p_{-1}}{3}} \frac{\frac{p-1}{2}!}{\left(2 n-\frac{p-1}{2}\right)!(p-1-3 n)!n!}\right) D^{\frac{p_{-1}}{2}} .
$$

Moreover, as in the proof of Theorem 4.1 in [2], we have $a_{D}(p) \equiv-A_{D}(p)$ $(\bmod p)$. This result and the Riemann hypothesis for $E(D)_{(p)}$, saying $\left|a_{D}(p)\right|$ $\leqq 2 \sqrt{p}$, imply $a_{D}(p)=\left(\frac{D}{p}\right) a_{1}(p)$ for $p \geqq 17$.

We show that (1) is also true for $p<17$.
If $p=3$ and $3 \nmid D$, then $A_{D}(3)=0$, so that $a_{D}(3)=-3,0$ or 3 . Since a congruence equation $x^{3}+D^{2} x+D^{3} \equiv 0(\bmod 3)$ has a solution $x=D, \operatorname{Card} E(D)_{(3)}\left(F_{3}\right)$ must be an even integer. Thus $a_{D}(3)=0$.

If $p=5$ and $5 \nless D$, then $A_{D}(5)=2 D^{2}$. For D such as $\left(\frac{D}{5}\right)=1$ (resp. $\left(\frac{D}{5}\right)$ $=-1)$, we have $2 D^{2} \equiv 2(\bmod .5)\left(\operatorname{resp} .2 D^{2} \equiv-2(\bmod 5)\right)$. Thus $a_{D}(5)=-3$ or 2 (resp. $a_{D}(5)=-2$ or 3). Since the following three polynomials

$$
x^{3}+D^{2} x+D^{3} \equiv\left\{\begin{array}{l}
x^{3}+x+1\left(\left(\frac{D}{5}\right)=1\right) \\
x^{3}-x-2(D \equiv 2(\bmod 5)) \\
x^{3}-x+2(D \equiv 3(\bmod 5))
\end{array}\right.
$$

have no roots modulo $5, \operatorname{Card} E(D)_{(5)}\left(F_{5}\right)$ must be odd, thus $a_{D}(5)=\left(\frac{D}{5}\right) \cdot(-3)$.
If $p=7$ and $7 \nmid D$, then $A_{D}(7)=3 D^{3}$. As above,

$$
x^{3}+D^{2} x+D^{3} \equiv \begin{cases}x^{3}+x+\left(\frac{D}{7}\right) & (D \equiv 1,6(\bmod 7)) \\ x^{3}+4 x+\left(\frac{D}{7}\right) & (D \equiv 2,5(\bmod 7)) \\ x^{3}+2 x+\left(\frac{D}{7}\right) & (D \equiv 3,4(\bmod 7))\end{cases}
$$

have no roots modulo 7, $\operatorname{Card} E(D)_{(7)}\left(F_{7}\right)$ must be odd. Thus $a_{D}(7)=\left(\frac{D}{7}\right) \cdot 3$.
If $p=11$ and $11 \times D$, we have $A_{D}(11)=20 D^{5}$ and $\left|a_{D}(11)\right| \leqq 2 \sqrt{11}<2 \cdot 4=8$. Thus $a_{D}(11)=\left(\frac{D}{11}\right) \cdot(-2)$.

Finally, if $p=13$ and $13 \times D$, we have $A_{D}(13)=35 D^{6}$ and $\left|a_{D}(13)\right| \leqq 2 \sqrt{13}<8$. Thus $a_{D}(13)=\left(\frac{D}{13}\right) \cdot(-4)$.

Therefore (1) is true for $p<17$.
Next, assume that $E(D)$ has bad reduction at p, namely $p \mid \Delta_{D}$. If $p \mid 2 \cdot D$, then $E(D)$ has additive reduction at p and $a_{D}(p)=0$. On the other hand, if $p=31$ and $31 \times D$, then $E(D)$ has multiplicative reduction at 31 and $a_{D}(31)=1$ or -1 according as $\left(\frac{D}{31}\right)=-1$ or 1 , respectively. (cf. [2; Prop. 5.1].)

Finally, we have (1) for all prime numbers.
2. Suppose N_{D} is the conductor of $E(D)$. This quantity can be explicitly computed by using the algorithm of Tate ([4]). The result is as follows.
(2)

	$31 \times D$	$31 \mid D$
$2 \times D$ $D \equiv 1(\bmod 4)$	$2^{4} 31 D_{0}^{2}$	$2^{4} D_{0}^{2}$
$2 \times D$ $D \equiv-1(\bmod 4)$	$2^{3} 31 D_{0}^{2}$	$2^{3} D_{0}^{2}$
$2 \mid D$	$2^{4} 31 D_{0}^{2}$	$2^{4} D_{0}^{2}$

where

$$
\begin{equation*}
D_{0}=\operatorname{sign}(D) \prod_{\substack{p \text { prime number } \\ \text { ord } p(D)=1(\bmod 2)}} p . \tag{3}
\end{equation*}
$$

3. We define a function $\Psi_{D}: Z \rightarrow\{1,0,-1\}$ by

$$
\Psi_{D}(0)=0, \quad \Psi_{D}(a)=\left(\frac{-D}{a}\right) \quad(a \neq 0)
$$

Proposition 2.
(i) If $D \equiv 1(\bmod 4)$, then Ψ_{D} is a primitive character $\bmod 2^{2} D_{0}$.
(ii) If $D \equiv-1(\bmod 4)$, then Ψ_{D} is a primitive character $\bmod 2 D_{0}$.
(iii) If $2 \mid D$, then Ψ_{D} is a primitive character $\bmod 2^{2} D_{0}$.

Proof. We have $\Psi_{D}=\Psi_{D_{0}}$ by (3) and we can see the equivalence of $D \equiv \pm 1$ $(\bmod 4)$ and $D_{0} \equiv \pm 1(\bmod 4)$. Therefore, it is enough to prove the proposition in the case of $D=D_{0}$, namely, square-free D.

Assume that a and $2 D$ are relatively prime. First we prove

$$
\begin{equation*}
\Psi_{D}(a+4|D|)=\Psi_{D}(a) \tag{4}
\end{equation*}
$$

By the definition of Ψ_{D}, we have

$$
\begin{equation*}
\Psi_{D}=\Psi_{\text {sign }(D)} \prod_{p \text { prime number }}^{p \mid D}<\Psi_{-p} \tag{5}
\end{equation*}
$$

For each factor in the right hand side of (5), we check (4) in the cases

$$
\left\{\begin{array}{rr}
\text { i) } & a+4|D|>0 \text { and } a>0 . \\
\text { ii) } & a+4|D|>0 \\
\text { iii) } & a+4|D|<0 \quad \text { and } a<0 .
\end{array} \text { (so } a<0 . \quad \begin{cases}\text { 1) } & D>0 . \\
2) & D<0 .\end{cases}\right.
$$

Assume D is odd.
$\Psi_{\text {sign }(D)}(a+4|D|)$; In the case 2$), \Psi_{\text {sign }(D)}=\Psi_{-1}$ is a trivial character, thus

$$
\Psi_{\mathrm{sign}(D)}(a+4|D|)=\Psi_{\mathrm{slgn}(D)}(a)
$$

is always true. In the case i$)-1$),

$$
\Psi_{\mathrm{slgn}(D)}(a+4|D|)=\left(\frac{-1}{a+4|D|}\right)=(-1)^{\frac{a-1}{2}}=\left(\frac{-1}{a}\right)=\Psi_{\mathrm{sign}(D)}(a),
$$

in the case ii)-1),

$$
\begin{aligned}
\Psi_{\mathrm{s} \operatorname{lgn}(D)}(a+4|D|) & =\left(\frac{-1}{a+4|D|}\right)=(-1)^{\frac{a-1}{2}}=-(-1)^{\frac{-a-1}{2}}=-\Psi_{\mathrm{sign}(D)}(-a) \\
& =\Psi_{\mathrm{sign}(D)}(-1) \Psi_{\mathrm{s} \mathrm{gn}(D)}(-a) \\
& =\Psi_{\mathrm{s} \mathrm{gn}(D)}(a)
\end{aligned}
$$

in the case iii)-1),

$$
\begin{aligned}
\Psi_{\mathrm{s} \operatorname{lgn}(D)}(a+4|D|) & =\Psi_{\mathrm{sign}(D)}(-1) \Psi_{\mathrm{sign}(D)}(-a-4|D|) \\
& =\Psi_{\mathrm{sign}(D)}(-1) \Psi_{\mathrm{sign}(D)}(-a) \\
& =\Psi_{\mathrm{sign}(D)}(a)
\end{aligned}
$$

So we have

$$
\Psi_{\mathrm{s} \mathrm{gn}(D)}(a+4|D|)=\Psi_{\mathrm{s} \mathrm{gnn}(D)}(a)
$$

for all cases.
$\Psi_{-p}(a+4|D|)$; In the case i$)$,

$$
\Psi_{-p}(a+4|D|)=\left(\frac{p}{a+4|D|}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{a-1}{2}}\left(\frac{a}{p}\right)=\left(\frac{p}{a}\right)=\Psi_{-p}(a)
$$

by the quadratic reciprocity law. Similarly, in the case ii),

$$
\begin{aligned}
\Psi_{-p}(a+4|D|) & =\left(\frac{p}{a+4|D|}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{a-1}{2}}\left(\frac{a}{p}\right)=(-1)^{\frac{p-1}{2} \cdot \frac{-a-1}{2}}\left(\frac{-a}{p}\right)=\left(\frac{p}{-a}\right) \\
& =\Psi_{-p}(-a)=\Psi_{-p}(-1) \Psi_{-p}(a) \\
& =\Psi_{-p}(a),
\end{aligned}
$$

and in the case iii),

$$
\Psi_{-p}(a+4|D|)=\Psi_{-p}(-1) \Psi_{-p}(-a-4|D|)=\Psi_{-p}(-a)=\Psi_{-p}(a) .
$$

By these results and by (5), we have (4) if D is odd. Similar computations show

$$
\begin{equation*}
\Psi_{D}(a+2|D|)=\left[\Psi_{D}(-1) \prod_{\substack{\text { prime number } \\ p \backslash D}}(-1)^{\frac{p-1}{2}}\right] \Psi_{D}(a) \tag{6}
\end{equation*}
$$

If we put

$$
t=\operatorname{Card}\{p \mid \text { prime number, } p \mid D \text { and } p \equiv-1(\bmod 4)\},
$$

then whether t is even or odd is as follows.

	$D \equiv 1(\bmod 4)$	$D \equiv-1(\bmod 4)$
$D>0$	even	odd
$D<0$	odd	even

By (6) and (7),

$$
\Psi_{D}(a+2|D|)=\Psi_{D}(a)
$$

if and only if $D \equiv-1(\bmod 4)$. Thus we have (i) and (ii).
Assume D is even. As for about Ψ_{-2}, in the case (i),

$$
\Psi_{-2}(a+4|D|)=\left(\frac{2}{a+4|D|}\right)=(-1)^{\frac{(a+4|D|)^{2-1}}{8}}=(-1)^{\frac{a^{2}-1}{8}}=\left(\frac{2}{a}\right)=\Psi_{-2}(a),
$$

in the case ii),

$$
\Psi_{-2}(a+4|D|)=(-1)^{\frac{a^{2}-1}{8}}=\left(\frac{2}{-a}\right)=\Psi_{-2}(-a)=\Psi_{-2}(a),
$$

and in the case iii),

$$
\Psi_{-2}(a+4|D|)=\Psi_{-2}(-a-4|D|)=\Psi_{-2}(-a)=\Psi_{-2}(a)
$$

From these results, we know that

$$
\Psi_{D}(a+4|D|)=\Psi_{D}(a)
$$

is also true for even D. The similar calculations show

$$
\Psi_{D}(a+2|D|)=-\Psi_{D}(a)
$$

Thus Ψ_{D} is a primitive character $\bmod 2^{2} D_{0}$. Finally we have (iii).
This completes the proof.
By Proposition 1 and the definition of Ψ_{D}, for any positive integer n, we have

$$
\begin{equation*}
a_{D}(n)=\Psi_{D}(n) a_{-1}(n) . \tag{8}
\end{equation*}
$$

4. Proof of Theorem. Assume that the Conjecture is true for $E(-1)$. We apply the following fact from [1].

Theorem. Let N be a positive integer, s be a divisor of N and m be an integer and we put

$$
N^{\prime}=l . c . m .\left(N, m^{2}, m s\right) .
$$

Let Ψ, χ be a primitive Dirichret character $\bmod m, \bmod s$, respectively. For

$$
\begin{equation*}
f(z)=\sum_{n=1}^{\infty} a(n) e(n z) \in S_{k}(N, \chi) \quad(\text { Fourier expansion of } f \text { at } i \infty) \text {, } \tag{9}
\end{equation*}
$$

we define

$$
f_{\Psi}(z)=\sum_{n=1}^{\infty} \Psi(n) a(n) e(n z) .
$$

Then $f_{\psi}(z) \in S_{k}\left(N^{\prime}, \Psi^{2} \chi\right)$.
[1; Prop. 3. 64].
If we put $N=N_{-1}=2^{3} 31=248, \Psi=\Psi_{D}$ and $\chi=1$ (trivial character), then N^{\prime} coincides with N_{D}. So $f_{E(D)}$ belongs to $S_{k}\left(\Gamma_{0}\left(N_{D}\right)\right)$.

For an positive integer m, denote by $T(m)$ the m-th Hecke operator. The operation of $T(m)$ on $f(z)$ of (9) in the case $\chi=1$ is

$$
(T(m) f)(z)=\sum_{n=1}^{\infty} a(n, T(m) f) e(n z), a\left(n, T(m) f=\sum_{d \left\lvert\, \begin{array}{c}
(m, n) \\
d>0 \\
\hline
\end{array}\right.} d^{k-1} a\left(\frac{n p}{d^{2}}\right) .\right.
$$

From the hypothesis for $f_{E(-1)}$, for each prime number p,

$$
T(p) f_{E(-1)}=a_{-1}(p) f_{E(-1)}
$$

holds, so that

$$
a\left(n, T(p) f_{E(D)}\right)=\sum_{\substack{d \mid(p, n) \\ d>0}} d a\left(\frac{n p}{d^{2}}, f_{E(D)}\right)=\sum_{\substack{d \mid(p, n) \\ d>0}} d \Psi_{D}\left(\frac{n p}{d^{2}}\right) a_{-1}\left(\frac{n p}{d^{2}}\right)
$$

If $p \nless n$, then

$$
=\Psi_{D}(n p) a_{-1}(n p)=a_{D}(p) a_{D}(n)
$$

Otherwise, if $p \mid n$, then by using the expression $n=m p^{k}((p, m)=1)$,

$$
\begin{aligned}
& =\Psi_{D}\left(m p^{k+1}\right) a_{-1}\left(m p^{k+1}\right)+p \Psi_{D}\left(m p^{k-1}\right) a_{-1}\left(m p^{k-1}\right) \\
& =a_{D}(m) \Psi_{D}\left(p^{k+1}\right)\left[a_{-1}\left(p^{k+1}\right)+p a_{-1}\left(p^{k-1}\right)\right] \\
& =a_{D}(m) \Psi_{D}\left(p^{k+1}\right) \cdot a_{-1}\left(p^{k}\right) a_{-1}(p) \\
& =a_{D}(p) a_{D}(n)
\end{aligned}
$$

Therefore we have

$$
T(p) f_{E(D)}=a_{D}(p) f_{E(D)}
$$

This implies that the Conjecture is true for $E(D)$ also.

References

[1] Shimura, G., Introduction to the Arithmetic Theory of Automorphic Functions. Publ. Math. Soc. Japan 11, Iwanami Shoten Publishers and Princeton Univ. Press (1971).
[2] Silverman, J., The Arithmetic of Elliptic Curves, Springer-Verleg 1985.
[3] Tate, J., The arithmetic of elliptic curves. Invent. Math. 23 (1974), 179-206.
[4] Tate, J., Algorithm for determining the type of a singular fiber in an elliptic pencil. Modular Functions of One Variable IV Lecture Notes in Math. 476, Springer-Verlag, 1975, 33-52.

Department of Mathematics
Tokyo Institute of Technology

[^0]: Received November, 7, 1988.

