COHOMOLOGY OF A HOPF ALGEBRA OVER \boldsymbol{Z}_{2}

Dedicated to Professor Kenichi Shiraiwa on his 60 -th birthday

By Yutaka Ando

Introduction

Let $A=\boldsymbol{Z}_{2}\left[x_{1}, x_{2}, x_{3}\right] /\left(x_{1}{ }^{4}, x_{2}{ }^{4}, x_{3}{ }^{4}\right)$ be a truncated polynomial algebra having a structure of a Hopf algebra over \boldsymbol{Z}_{2}, the prime field of characteristic 2, with comultiplication

$$
\left\{\begin{array}{l}
\psi\left(x_{1}\right)=x_{1} \otimes 1+1 \otimes x_{1} \\
\psi\left(x_{2}\right)=x_{2} \otimes 1+1 \otimes x_{2} \\
\psi\left(x_{3}\right)=x_{3} \otimes 1+1 \otimes x_{3}+x_{1} \otimes x_{2}
\end{array}\right.
$$

This comultiplication comes from the multiplication for matrices $\left\{\left(\begin{array}{lll}1 & r_{1} & r_{3} \\ 0 & 1 & r_{2} \\ 0 & 0 & 1\end{array}\right)\right\}$, and the Hopf algebra A is related to the Frobenius kernel U_{2} of the maximal nilpotent subgroup scheme U of $G L_{3}$, defined over an algebraically closed field k of characteristic 2 (cf. W. Waterhouse [5]).
M. Tezuka constructed a DGA-algebra Λ over \boldsymbol{Z}_{2} such that $\boldsymbol{Z}_{2} \rightarrow A \otimes \Lambda$ is an a cyclic A-comodule resolution of \boldsymbol{Z}_{2} (unpublished) after N . Shimada and A. Iwai [4], and A. Kono, M. Mimura and N. Shimada [3].

In this note we shall verify his result and calculate the cohomology $\operatorname{Ext}_{A^{*}}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$ of the dual Hopf algebra A^{*} which is known to be isomorphic to the cohomology ring $\operatorname{Cotor}^{A}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)=H^{*}(\Lambda)$ of the complex (Λ, d).

The author wishes to thank Professor N. Shimada for suggesting the topic and Professor M. Mimura for his valuable suggestions and helps during the preparation of the manuscript.

1. Notations and Preliminaries

Let $L=\boldsymbol{Z}_{2}\left\{x_{1}, x_{1}{ }^{2}, x_{2}, x_{2}{ }^{2}, x_{1} x_{2}, x_{3}, x_{3}{ }^{2}\right\}$ be the linear subspace of A spanned by indicated elements, and $s L$ denote a graded vector space over \boldsymbol{Z}_{2} such that

[^0]\[

(s L)_{n}= $$
\begin{cases}L & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$
\]

Then the suspension map $s: L \rightarrow s L$ is a vector space isomorphism. The images of the elements in L by the suspension s are denoted by

Let $\theta: A \xrightarrow{\pi} L \xrightarrow{s} s L$ be the composite map of the canonical projection π and the suspension s. Then θ is a linear map of degree 1 .

Then we have $A \cong \operatorname{Ker} \theta \oplus L$, where

$$
\begin{array}{r}
\operatorname{Ker} \theta \cong \boldsymbol{Z}_{2}\left\{1, x_{1} x_{3}, x_{2} x_{3}, x_{1}{ }^{3}, x_{2}{ }^{3}, x_{3}{ }^{3}, x_{1} x_{2} x_{3}, x_{1} x_{2}{ }^{2}, x_{1}{ }^{2} x_{2},\right. \\
\\
\left.x_{1} x_{3}{ }^{2}, x_{1}{ }^{2} x_{3}, x_{2} x_{3}{ }^{2}, x_{2}{ }^{2} x_{3}, x_{1}{ }^{3} x_{2}, x_{1}{ }^{2} x_{2}{ }^{2}, x_{2} x_{3}{ }^{3}, \cdots\right\}
\end{array}
$$

Denote by $T(s L)$ the tensor algebra on the graded vector space $s L$ over \boldsymbol{Z}_{2}. Then

$$
T(s L) \cong \boldsymbol{Z}_{2} \oplus s L \oplus s L \otimes s L \oplus s L \otimes s L \otimes s L \oplus \cdots
$$

2. Construction of a DGA-algebra Λ

We define a map $\theta \cup \theta: A \rightarrow T(s L)$ by the following composition;

$$
\theta \cup \theta: A \xrightarrow{\psi} A \otimes A \xrightarrow{\theta \otimes \theta} s L \otimes s L \subset T(s L)
$$

where all the tensor products are over \boldsymbol{Z}_{2}.
Define a DGA-algebra over \boldsymbol{Z}_{2}

$$
\Lambda=T(s L) / I
$$

to be the quotient algebra of $T(s L)$ by the two-sided ideal I generated by $\theta \cup \theta(\operatorname{Ker} \theta)$, the $\theta \cup \theta$ image of $\operatorname{Ker} \theta$.

The augmentation $\varepsilon: \Lambda \rightarrow \boldsymbol{Z}_{2}$ is naturally induced from that of $T(s L)$.
The differential $\bar{d}: \Lambda \rightarrow \Lambda$ of degree 1 is defined as follows. Consider first the natural section $\iota: s L \xrightarrow{s^{-1}} L \hookrightarrow A$ such that $\theta \cdot \iota=1_{s L}$. Define $\tilde{d}: s L \rightarrow s L \otimes s L$ by $\tilde{d}=(\theta \cup \theta) \cdot \ell$, and extend this onto $T(s L)$ as a derivation which is denoted by \tilde{d} also. We can verify the following

Lemma 2.1. (1) $\tilde{d}(I) \subset I$,
(2) $\tilde{d} \cdot \tilde{d} \equiv 0(\bmod I)$.

Proof. As $\theta \cdot \iota=1_{s L}$, we have $\theta \cdot(1-\iota \theta)=0$, and hence $(1-\iota \theta)$-image $\subset \operatorname{Ker} \theta$, it follows $(\theta \cup \theta)((1-\iota \theta)$-image $) \subset I$. Then we have

$$
d \theta=((\theta \cup \theta) \cdot \iota) \theta=\{(\theta \cup \theta) \cdot(1-\iota \theta)\}-\theta \cup \theta \equiv \theta \cup \theta(\bmod I),
$$

and hence

$$
\tilde{d} \cdot(\theta \cup \theta)=\tilde{d} \theta \cup \theta+\theta \cup \tilde{d} \theta \equiv(\theta \cup \theta) \cup \theta+\theta \cup(\theta \cup \theta)=0 \quad(\bmod I) .
$$

Therefore we have proved $\tilde{d}(I)=\tilde{d}(\theta \cup \theta(\operatorname{Ker} \theta)) \subset I$, and $\tilde{d} \cdot \tilde{d} \equiv 0(\bmod I)$ at a time.

Thus the derivation d on $T(s L)$ induces naturally a differential operator \bar{d} on 1 .

To investigate the products in Λ, we will list the basis elements of $\theta \cup \theta(\operatorname{Ker} \theta)=I_{(2)}$, the part of tensor degree 2 of the ideal I.

$$
\begin{align*}
& \theta \cup \theta\left(x_{1}{ }^{3}\right)=\left[a_{0}, a_{1}\right]=a_{0} \cdot a_{1}+a_{1} \cdot a_{0}, \tag{2.2}\\
& \theta \cup \theta\left(x_{2}{ }^{3}\right)=\left[b_{0}, b_{1}\right], \\
& \theta \cup \theta\left(x_{3}{ }^{3}\right)=\left[c_{0}, c_{1}\right], \\
& \theta \cup \theta\left(x_{1} x_{3}\right)=\left[a_{0}, c_{0}\right]+a_{1} \cdot b_{0}+a_{0} \cdot \alpha, \\
& \theta \cup \theta\left(x_{2} x_{3}\right)=\left[b_{0}, c_{0}\right]+a_{0} \cdot b_{1}+\alpha \cdot b_{0}, \\
& \theta \cup \theta\left(x_{1} x_{2} x_{3}\right)=\left[\alpha, c_{0}\right]+a_{1} \cdot b_{1}+\alpha^{2}, \\
& \theta \cup \theta\left(x_{1}{ }^{2} x_{2}\right)=\left[a_{1}, b_{0}\right], \\
& \theta \cup \theta\left(x_{1}{ }^{2} x_{3}\right)=\left[a_{1}, c_{0}\right], \\
& \theta \cup \theta\left(x_{1} x_{2}{ }^{2}\right)=\left[a_{0}, b_{1}\right], \\
& \theta \cup \theta\left(x_{1} x_{3}{ }^{2}\right)=\left[a_{0}, c_{1}\right], \\
& \theta \cup \theta\left(x_{2} x_{3}{ }^{2}\right)=\left[b_{0}, c_{1}\right], \\
& \theta \cup \theta\left(x_{2}{ }^{2} x_{3}\right)=\left[b_{1}, c_{0}\right], \\
& \theta \cup \theta\left(x_{1}{ }^{2} x_{2}{ }^{2}\right)=\left[a_{1}, b_{1}\right], \\
& \theta \cup \theta\left(x_{1}{ }^{2} x_{3}{ }^{2}\right)=\left[a_{1}, c_{1}\right], \\
& \theta \cup \theta\left(x_{2}{ }^{2} x_{3}{ }^{2}\right)=\left[b_{1}, c_{1}\right], \\
& \theta \cup \theta\left(x_{1}{ }^{3} x_{2}\right)=\left[\alpha, a_{1}\right], \\
& \theta \cup \theta\left(x_{1} x_{2}{ }^{3}\right)=\left[\alpha, b_{1}\right],
\end{align*}
$$

$$
\begin{aligned}
& \theta \cup \theta\left(x_{1} x_{2} x_{3}{ }^{2}\right)=\left[\alpha, c_{1}\right], \\
& \theta \cup \theta(\text { any other monomial })=0 .
\end{aligned}
$$

Consequently we have seen that a_{1}, b_{1} and c_{1} commute with all elements in Λ.

3. Twisted tesor product $A \otimes \Lambda$

In the preceding section, we defined the differential algebra (Λ, \bar{d}) over \boldsymbol{Z}_{2}. Let $\bar{\theta}$ be the composite $\operatorname{map} A \xrightarrow{\theta} s L \hookrightarrow T(s L) \xrightarrow{\text { projection }} \Lambda$, then we can get the relation $\bar{d} \cdot \bar{\theta}+\bar{\theta} \cup \bar{\theta}=0$ as in the proof of Lemma 2.1. So we can construct the twisted tensor product $A \otimes_{\bar{\theta}} \Lambda$ with respect to $\bar{\theta}$ (cf. E. H. Brown [2]). That is, $A \otimes_{\bar{\theta}} \Lambda$ is an A-comodule with the differential operator

$$
\begin{equation*}
d(x \otimes \lambda)=x \otimes \bar{d} \lambda+(1 \otimes \theta \otimes 1)(\psi(x) \otimes \lambda) . \tag{3.1}
\end{equation*}
$$

By the definition, this complex $A \otimes_{\bar{\theta}} \Lambda$ is isomorphic to $A \otimes(T(s \bar{A}) / I)$ where $T(s \bar{A})$ is the cobar construction (cf. J. F. Adams [1]), and we denote $A \otimes_{\bar{\theta}} \Lambda$ by $(A \otimes A, d)$.

For the simplicity, we denote $x \otimes 1$ by $x(x \in A), 1 \otimes \lambda$ by $\lambda(\lambda \in \Lambda)$, and $d \mid 1 \otimes \Lambda$ by d.

From (3.1) we have that

$$
\begin{align*}
& d x_{1}=a_{0}, \quad d x_{1}{ }^{2}=a_{1}, \tag{3.2}\\
& d x_{2}=b_{0}, \quad d x_{2}{ }^{2}=b_{1}, \\
& d x_{1} x_{2}=\alpha+x_{1} \cdot b_{0}+x_{2} \cdot a_{0}, \\
& d x_{3}=c_{0}+x_{1} \cdot b_{0}, \\
& d x_{3}{ }^{2}=c_{1}+x_{1}{ }^{2} \cdot b_{1} .
\end{align*}
$$

We know that the algebra Λ is generated by

$$
\left\{a_{0}, a_{1}, b_{0}, b_{1}, \alpha, c_{0}, c_{1}\right\}
$$

the basis elements of $s L$, and

$$
\begin{align*}
& d a_{0}=\bar{d} a_{0}=0, \quad d a_{1}=\bar{d} a_{1}=0, \tag{3.3}\\
& d b_{0}=\bar{d} b_{0}=0, \quad d b_{1}=\bar{d} b_{1}=0, \\
& d \alpha=\bar{d} \alpha=\left[a_{0}, b_{0}\right]=a_{0} \cdot b_{0}+b_{0} \cdot a_{0}, \\
& d c_{0}=\bar{d} c_{0}=a_{0} \cdot b_{0}, \quad d c_{1}=\bar{d} c_{1}=a_{1} \cdot b_{1} .
\end{align*}
$$

4. Acyclicity of $A \otimes \Lambda$

We introduce the weight function w in $A \otimes \Lambda$ as follows.

A	x_{1}	$x_{1}{ }^{2}$	x_{2}	$x_{2}{ }^{2}$	$x_{1} x_{2}$	x_{3}	$x_{3}{ }^{2}$	$x_{1}{ }^{2} x_{2}{ }^{3} x_{3}{ }^{k}$
Λ	a_{0}	a_{1}	b_{0}	b_{1}	α	c_{0}	c_{1}	0
w	0	0	0	0	0	1	2	k

Further we put $w(x \otimes \lambda)=w(x)+w(\lambda)$.
Define filtration $F_{k}=\{x \otimes \lambda \mid w(x \otimes \lambda) \leqq k\}$.
Put $E_{0}(A \otimes \Lambda)=\sum_{k \geq 0} F_{k} / F_{k-1}$. Then we have from (3.2) and (3.3) that $d\left(F_{k}\right)$ $\subset F_{k}$. So d induces differential operator d_{0} in $E_{0}(A \otimes \Lambda)$.

Proposition 4.2. (M. Tezuka) The twisted tensor product $A \otimes \Lambda$ is an acyclic injective A-comodule resolution of \boldsymbol{Z}_{2}.

Proof. $E_{0}(A \otimes \Lambda)$ has the following decomposition.

$$
\begin{aligned}
E_{0}(A \otimes \Lambda) \cong & \boldsymbol{Z}_{2}\left\{x_{1}, x_{2}, x_{1} x_{2}\right\} \otimes T\left(a_{0}, b_{0}, \alpha\right) \\
& \otimes\left(\boldsymbol{Z}_{2}\left\{x_{1}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[a_{1}\right]\right) \otimes\left(\boldsymbol{Z}_{2}\left\{x_{2}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[b_{1}\right]\right) \\
& \otimes\left(\boldsymbol{Z}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{2}\right)\right) \otimes \boldsymbol{Z}_{2}\left[c_{0}\right] \\
& \otimes \boldsymbol{Z}_{2}\left\{x_{3}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[c_{1}\right],
\end{aligned}
$$

where $\boldsymbol{Z}_{2}\left\{x_{i}, x_{j}\right\}$ means the vector space over \boldsymbol{Z}_{2} generated by x_{i} and x_{j}.
By (3.2) and (3.3) we have the following (cf. J.F. Adams [1]);

$$
\begin{aligned}
& \tilde{H}^{*}\left(\boldsymbol{Z}_{2}\left\{x_{1}, x_{2}, x_{1} x_{2}\right\} \otimes T\left(a_{0}, b_{0}, \alpha\right), d_{0}\right)=0, \\
& \widetilde{H}^{*}\left(\boldsymbol{Z}_{2}\left\{x_{1}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[a_{1}\right], d_{0}\right)=0, \\
& \widetilde{H}^{*}\left(\boldsymbol{Z}_{2}\left\{x_{2}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[b_{1}\right], d_{0}\right)=0, \\
& \widetilde{H}^{*}\left(\left(\boldsymbol{Z}_{2}\left[x_{3}\right] /\left(x_{3}{ }^{2}\right)\right) \otimes \boldsymbol{Z}_{2}\left[c_{0}\right], d_{0}\right)=0, \\
& \widetilde{H}^{*}\left(\boldsymbol{Z}_{2}\left\{x_{3}{ }^{2}\right\} \otimes \boldsymbol{Z}_{2}\left[c_{1}\right], d_{0}\right)=0,
\end{aligned}
$$

where $\widetilde{H}^{*}=\sum_{i>0} H^{i}$.
Thus we get the required result.
q. e. d.

By definition we have
Corollary 4.3. $H^{*}(\Lambda)=\operatorname{Ker} d / \operatorname{Im} d \cong \operatorname{Cotor}^{A}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right)$.

Here we denoted the differential operator of Λ by d by abuse of notations.

5. Calculation

The purpose of this section is to determine $H^{*}(\Lambda)$.
First of all we prepare the following
LEMMA 5.1. $d c_{0}{ }^{4}=a_{1} b_{1}\left[\left[a_{0}, b_{0}\right], \alpha\right]$.
Proof. Using (2.2), we can get

$$
\begin{aligned}
& {\left[a_{0}{ }^{2}, c_{0}{ }^{2}\right]=a_{1}\left[a_{0},\left[b_{0}, \alpha\right]\right],} \\
& {\left[b_{0}{ }^{2}, c_{0}{ }^{2}\right]=b_{1}\left[b_{0},\left[a_{0}, \alpha\right]\right]}
\end{aligned}
$$

by a routine but tedious calculation. Substituting these to $d c_{0}{ }^{4}=\left(a_{1} b_{0}{ }^{2}+a_{0}{ }^{2} b_{1}\right) c_{0}{ }^{2}$ $+c_{0}{ }^{2}\left(a_{1} b_{0}{ }^{2}+a_{0}{ }^{2} b_{1}\right)$, we have the above result.
q.e.d.

We have the filtration $F_{k}=\{\lambda \in \Lambda \mid w(\lambda) \leqq k\}$ using (4.1). To get the result we consider the spectral sequence $\left\{E_{r}(\Lambda), d_{r}\right\}$ associated with the filtration defined above with \boldsymbol{Z}_{2} coefficient where d_{r} is induced from d of Λ.

We know that a_{1} and b_{1} commute with all elements in Λ by (2.2). So we have

$$
F_{0}=F_{0} / F_{-1}=T\left(a_{0}, b_{0}, a_{1}, b_{1}, \alpha\right) \cong T\left(a_{0}, b_{0}, \alpha\right) \otimes \boldsymbol{Z}_{2}\left[a_{1}, b_{1}\right] .
$$

By (2.2) and (4.1), c_{0} commutes with all elements in E_{0} also. Then we get

$$
E_{0} \cong T\left(a_{0}, b_{0}, \alpha\right) \otimes \boldsymbol{Z}_{2}\left[a_{1}, b_{1}\right] \otimes \boldsymbol{Z}_{2}\left[c_{0}\right] \otimes \boldsymbol{Z}_{2}\left[c_{1}\right] .
$$

By (3.3), a_{0}, b_{0}, a_{1} and b_{1} are permanent cycles, and $d_{0} \alpha=\left[a_{0}, b_{0}\right], d_{0} c_{0}=0$, and $d_{0} c_{1}=0$.

Then we have

$$
E_{1} \cong \boldsymbol{Z}_{2}\left[a_{0}, b_{0}\right] \otimes \boldsymbol{Z}_{2}\left[a_{1}, b_{1}\right] \otimes \boldsymbol{Z}_{2}\left[c_{0}\right] \otimes \boldsymbol{Z}_{2}\left[c_{1}\right],
$$

with $d_{1} c_{0}=a_{0} b_{0}, d_{1} c_{0}{ }^{2}=0$, and $d_{1} c_{1}=0$.
Subsequently

$$
E_{2} \cong \boldsymbol{Z}_{2}\left[a_{0}, a_{1}, b_{0}, b_{1}\right] \otimes \boldsymbol{Z}_{2}\left[c_{1}, c_{0}^{2}\right] /\left(a_{0} b_{0}\right),
$$

with $d_{2} c_{1}=a_{1} b_{1}, d_{2} c_{1}{ }^{2}=0, d_{2} c_{0}{ }^{2}=a_{1} b_{0}{ }^{2}+a_{0}{ }^{2} b_{1}$, and $d_{2} c_{0}{ }^{4}=0$.
Then we have

$$
E_{3} \cong \boldsymbol{Z}_{2}\left[a_{0}, a_{1}, b_{0}, b_{1}\right] \otimes \boldsymbol{Z}_{2}\left[c_{1}{ }^{2}, c_{0}{ }^{4}\right] /\left(a_{0} b_{0}, a_{1} b_{1}, a_{1} b_{0}{ }^{2}+a_{0}{ }^{2} b_{1}\right),
$$

with $d_{3}=0$.
Thus we get $E_{4} \cong E_{3}$.
As $d c_{1}{ }^{2}=0, c_{1}{ }^{2}$ is a permanent cycle. By Lemma 5.1 we have $d_{r} c_{0}{ }^{4}=0$
($r \geqq 3$) which follows that $c_{0}{ }^{4}$ survives forever, and we have

$$
E_{4} \cong E_{5} \cong \cdots \cong E_{\infty} .
$$

As $d c_{1}=a_{1} b_{1}$ and $d \alpha^{2}=\left[\left[a_{0}, b_{0}\right], \alpha\right]$, Lemma 5.1 shows that $d\left(c_{0}{ }^{4}+c_{1} d \alpha^{2}\right)=0$. Consequently we have obtained the following

Theorem 5.2. As an algebra over \boldsymbol{Z}_{2}

$$
\operatorname{Cotor}^{A}\left(\boldsymbol{Z}_{2}, \boldsymbol{Z}_{2}\right) \cong \boldsymbol{Z}_{2}\left[u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}\right] /\left(u_{1} v_{1}, u_{2} v_{2}, u_{1}^{2} v_{2}+u_{2} v_{1}^{2}\right)
$$

where $u_{1}=\left\{a_{0}\right\}, u_{2}=\left\{a_{1}\right\}, v_{1}=\left\{b_{0}\right\}, v_{2}=\left\{b_{1}\right\}, w_{1}=\left\{c_{0}{ }^{4}+c_{1} d \alpha^{2}\right\}$, and $w_{2}=\left\{c_{1}{ }^{2}\right\}$ denote the respective cohomology classes of their representative cocycles.

References

[1] J.F. Adams, On the cobar construction, "Colloque de Topologie Algébrique", CBRM, Louvain, 1956, 81-87.
[2] E.H. Brown, Twisted tensor product I, Ann. of Math., 69 (1959), 223-246.
[3] A. Kono, M. Mimura and N. Shimada, On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_{7}, J. of Pure and Applied Alg., 8 (1976), 267-283.
[4] N. Shimada and A. Iwai, On the cohomology of some Hopf algebras, Nagoya Math. J., 30 (1967), 103-111.
[5] W. Waterhouse, "Introduction to Affine Group Schemes", GTM 66, Springer, N. Y., 1979.

[^0]: Received October 31, 1988.

