Y. ANDO KODAI MATH. J. 12 (1989), 332-338

COHOMOLOGY OF A HOPF ALGEBRA OVER Z₂

Dedicated to Professor Kenichi Shiraiwa on his 60-th birthday

By Yutaka Ando

Introduction

Let $A = \mathbb{Z}_2[x_1, x_2, x_3]/(x_1^4, x_2^4, x_3^4)$ be a truncated polynomial algebra having a structure of a Hopf algebra over \mathbb{Z}_2 , the prime field of characteristic 2, with comultiplication

$$\begin{cases} \psi(x_1) = x_1 \otimes 1 + 1 \otimes x_1 \\ \psi(x_2) = x_2 \otimes 1 + 1 \otimes x_2 \\ \psi(x_3) = x_3 \otimes 1 + 1 \otimes x_3 + x_1 \otimes x_2 \end{cases}$$

This comultiplication comes from the multiplication for matrices

 $\begin{pmatrix} 1 & r_1 & r_3 \\ 0 & 1 & r_2 \\ 0 & 0 & 1 \end{pmatrix}$, and the Hopf algebra A is related to the Frobenius kernel U_2 of

the maximal nilpotent subgroup scheme U of GL_3 , defined over an algebraically closed field k of characteristic 2 (cf. W. Waterhouse [5]).

M. Tezuka constructed a DGA-algebra Λ over \mathbb{Z}_2 such that $\mathbb{Z}_2 \to A \otimes \Lambda$ is an a cyclic A-comodule resolution of \mathbb{Z}_2 (unpublished) after N. Shimada and A. Iwai [4], and A. Kono, M. Mimura and N. Shimada [3].

In this note we shall verify his result and calculate the cohomology $\operatorname{Ext}_{A*}(\mathbb{Z}_2, \mathbb{Z}_2)$ of the dual Hopf algebra A^* which is known to be isomorphic to the cohomology ring $\operatorname{Cotor}^A(\mathbb{Z}_2, \mathbb{Z}_2) = H^*(\Lambda)$ of the complex (Λ, d) .

The author wishes to thank Professor N. Shimada for suggesting the topic and Professor M. Mimura for his valuable suggestions and helps during the preparation of the manuscript.

1. Notations and Preliminaries

Let $L = \mathbb{Z}_2\{x_1, x_1^2, x_2, x_2^2, x_1x_2, x_3, x_3^2\}$ be the linear subspace of A spanned by indicated elements, and sL denote a graded vector space over \mathbb{Z}_2 such that

Received October 31, 1988.

$$(sL)_n = \begin{cases} L & \text{if } n=1 \\ 0 & \text{otherwise} \end{cases}$$

Then the suspension map $s: L \rightarrow sL$ is a vector space isomorphism. The images of the elements in L by the suspension s are denoted by

Let $\theta: A \xrightarrow{\pi} L \xrightarrow{s} sL$ be the composite map of the canonical projection π and the suspension s. Then θ is a linear map of degree 1.

Then we have $A \cong \text{Ker } \theta \oplus L$, where

Ker
$$\theta \cong \mathbb{Z}_{2}\{1, x_{1}x_{3}, x_{2}x_{3}, x_{1}^{3}, x_{2}^{3}, x_{3}^{3}, x_{1}x_{2}x_{3}, x_{1}x_{2}^{2}, x_{1}^{2}x_{2}, x_{1}x_{3}^{2}, x_{1}^{2}x_{3}, x_{2}x_{3}^{2}, x_{2}^{2}x_{3}, x_{3}^{3}, x_{1}x_{2}x_{3}, x_{1}x_{2}^{2}, x_{2}x_{3}^{3}, \cdots\}$$

Denote by T(sL) the tensor algebra on the graded vector space sL over Z_2 . Then

$$T(sL) \cong \mathbb{Z}_2 \oplus sL \oplus sL \otimes sL \oplus sL \otimes sL \otimes sL \oplus \cdots$$
.

2. Construction of a DGA-algebra Λ

We define a map $\theta \cup \theta : A \rightarrow T(sL)$ by the following composition;

$$\theta \cup \theta \colon A \xrightarrow{\psi} A \otimes A \xrightarrow{\theta \otimes \theta} sL \otimes sL \longrightarrow T(sL)$$

where all the tensor products are over Z_2 .

Define a DGA-algebra over Z_2

$$\Lambda = T(sL)/I$$

to be the quotient algebra of T(sL) by the two-sided ideal I generated by $\theta \cup \theta$ (Ker θ), the $\theta \cup \theta$ image of Ker θ .

The augmentation $\varepsilon: \Lambda \rightarrow \mathbb{Z}_2$ is naturally induced from that of T(sL).

The differential $\overline{d}: \Lambda \rightarrow \Lambda$ of degree 1 is defined as follows. Consider first s^{-1}

the natural section $\iota: sL \longrightarrow L \hookrightarrow A$ such that $\theta \cdot \iota = 1_{sL}$. Define $\tilde{d}: sL \longrightarrow sL \otimes sL$ by $\tilde{d} = (\theta \cup \theta) \cdot \iota$, and extend this onto T(sL) as a derivation which is denoted by \tilde{d} also. We can verify the following

LEMMA 2.1. (1) $\tilde{d}(I) \subset I$, (2) $\tilde{d} \cdot \tilde{d} \equiv 0 \pmod{I}$.

YUTAKA ANDO

Proof. As $\theta \cdot \iota = 1_{\mathfrak{sL}}$, we have $\theta \cdot (1 - \iota \theta) = 0$, and hence $(1 - \iota \theta)$ -image \subset Ker θ , it follows $(\theta \cup \theta)((1 - \iota \theta)$ -image) $\subset I$. Then we have

$$\tilde{d}\theta = ((\theta \cup \theta) \cdot \iota)\theta = \{(\theta \cup \theta) \cdot (1 - \iota\theta)\} - \theta \cup \theta \equiv \theta \cup \theta \pmod{I},$$

and hence

$$\tilde{d} \cdot (\theta \cup \theta) = \tilde{d} \theta \cup \theta + \theta \cup \tilde{d} \theta \equiv (\theta \cup \theta) \cup \theta + \theta \cup (\theta \cup \theta) = 0 \pmod{I}.$$

Therefore we have proved $\tilde{d}(I) = \tilde{d}(\theta \cup \theta(\operatorname{Ker} \theta)) \subset I$, and $\tilde{d} \cdot \tilde{d} \equiv 0 \pmod{I}$ at a time. q.e.d.

Thus the derivation \tilde{d} on T(sL) induces naturally a differential operator \bar{d} on Λ .

To investigate the products in Λ , we will list the basis elements of $\theta \cup \theta(\text{Ker } \theta) = I_{(2)}$, the part of tensor degree 2 of the ideal I.

$$(2.2) \qquad \theta \cup \theta(x_1^3) = [a_0, a_1] = a_0 \cdot a_1 + a_1 \cdot a_0, \\ \theta \cup \theta(x_2^3) = [b_0, b_1], \\ \theta \cup \theta(x_3^3) = [c_0, c_1], \\ \theta \cup \theta(x_1x_3) = [a_0, c_0] + a_1 \cdot b_0 + a_0 \cdot \alpha, \\ \theta \cup \theta(x_2x_3) = [b_0, c_0] + a_0 \cdot b_1 + \alpha \cdot b_0, \\ \theta \cup \theta(x_2x_3) = [a_1, c_0] + a_1 \cdot b_1 + \alpha^2, \\ \theta \cup \theta(x_1^2x_2) = [a_1, b_0], \\ \theta \cup \theta(x_1^2x_2) = [a_0, b_1], \\ \theta \cup \theta(x_1x_2^2) = [a_0, b_1], \\ \theta \cup \theta(x_2x_3^2) = [b_0, c_1], \\ \theta \cup \theta(x_2x_3^2) = [b_0, c_1], \\ \theta \cup \theta(x_2^2x_3) = [b_1, c_0], \\ \theta \cup \theta(x_1^2x_2^2) = [a_1, b_1], \\ \theta \cup \theta(x_1^2x_3^2) = [a_1, c_1], \\ \theta \cup \theta(x_2^2x_3^2) = [b_1, c_1], \\ \theta \cup \theta(x_1^3x_2) = [\alpha, a_1], \\ \theta \cup \theta(x_1x_3^3) = [\alpha, b_1], \\ \theta \cup \theta(x_1$$

$$\theta \cup \theta(x_1 x_2 x_3^2) = [\alpha, c_1],$$

 $\theta \cup \theta$ (any other monomial)=0.

Consequently we have seen that a_1 , b_1 and c_1 commute with all elements in Λ .

3. Twisted tesor product $A \otimes A$

In the preceding section, we defined the differential algebra (Λ, \bar{d}) over Z_2 . Let $\bar{\theta}$ be the composite map $A \to sL \subseteq T(sL) \xrightarrow{\text{projection}} \Lambda$, then we can get the relation $\bar{d} \cdot \bar{\theta} + \bar{\theta} \cup \bar{\theta} = 0$ as in the proof of Lemma 2.1. So we can construct the twisted tensor product $A \otimes_{\bar{\theta}} \Lambda$ with respect to $\bar{\theta}$ (cf. E. H. Brown [2]). That is, $A \otimes_{\bar{\theta}} \Lambda$ is an A-comodule with the differential operator

(3.1)
$$d(x \otimes \lambda) = x \otimes \bar{d}\lambda + (1 \otimes \theta \otimes 1)(\phi(x) \otimes \lambda)$$

By the definition, this complex $A \otimes_{\overline{\theta}} \Lambda$ is isomorphic to $A \otimes (T(s\overline{A})/I)$ where $T(s\overline{A})$ is the cobar construction (cf. J. F. Adams [1]), and we denote $A \otimes_{\overline{\theta}} \Lambda$ by $(A \otimes \Lambda, d)$.

For the simplicity, we denote $x \otimes 1$ by $x \ (x \in A)$, $1 \otimes \lambda$ by $\lambda \ (\lambda \in A)$, and $d | 1 \otimes A$ by d.

From (3.1) we have that

(3.2)

$$dx_{1}=a_{0}, \quad dx_{1}^{2}=a_{1}, \\
dx_{2}=b_{0}, \quad dx_{2}^{2}=b_{1}, \\
dx_{1}x_{2}=\alpha+x_{1}\cdot b_{0}+x_{2}\cdot a_{0}, \\
dx_{3}=c_{0}+x_{1}\cdot b_{0}, \\
dx_{3}^{2}=c_{1}+x_{1}^{2}\cdot b_{1}.$$

We know that the algebra Λ is generated by

$$\{a_0, a_1, b_0, b_1, \alpha, c_0, c_1\},\$$

the basis elements of sL, and

(3.3)

$$da_0 = \bar{d}a_0 = 0, \quad da_1 = \bar{d}a_1 = 0,$$

 $db_0 = \bar{d}b_0 = 0, \quad db_1 = \bar{d}b_1 = 0,$
 $d\alpha = \bar{d}\alpha = [a_0, b_0] = a_0 \cdot b_0 + b_0 \cdot a_0,$
 $dc_0 = \bar{d}c_0 = a_0 \cdot b_0, \quad dc_1 = \bar{d}c_1 = a_1 \cdot b_1.$

YUTAKA ANDO

4. Acyclicity of $A \otimes A$

We introduce the weight function w in $A \otimes \Lambda$ as follows.

Further we put $w(x \otimes \lambda) = w(x) + w(\lambda)$.

Define filtration $F_k = \{x \otimes \lambda | w(x \otimes \lambda) \leq k\}.$

Put $E_0(A \otimes A) = \sum_{k \ge 0} F_k / F_{k-1}$. Then we have from (3.2) and (3.3) that $d(F_k)$

 $\subset F_k$. So d induces differential operator d_0 in $E_0(A \otimes A)$.

PROPOSITION 4.2. (M. Tezuka) The twisted tensor product $A \otimes \Lambda$ is an acyclic injective A-comodule resolution of \mathbb{Z}_2 .

Proof. $E_0(A \otimes A)$ has the following decomposition.

$$E_{0}(A \otimes A) \cong \mathbb{Z}_{2}\{x_{1}, x_{2}, x_{1}x_{2}\} \otimes T(a_{0}, b_{0}, \alpha)$$
$$\otimes (\mathbb{Z}_{2}\{x_{1}^{2}\} \otimes \mathbb{Z}_{2}[a_{1}]) \otimes (\mathbb{Z}_{2}\{x_{2}^{2}\} \otimes \mathbb{Z}_{2}[b_{1}])$$
$$\otimes (\mathbb{Z}_{2}[x_{3}]/(x_{3}^{2})) \otimes \mathbb{Z}_{2}[c_{0}]$$
$$\otimes \mathbb{Z}_{2}\{x_{3}^{2}\} \otimes \mathbb{Z}_{2}[c_{1}],$$

where $\mathbb{Z}_{2}\{x_{i}, x_{j}\}$ means the vector space over \mathbb{Z}_{2} generated by x_{i} and x_{j} . By (3.2) and (3.3) we have the following (cf. J.F. Adams [1]);

$$\begin{split} \widetilde{H}^{*}(Z_{2}\{x_{1}, x_{2}, x_{1}x_{2}\} \otimes T(a_{0}, b_{0}, \alpha), d_{0}) = 0, \\ \widetilde{H}^{*}(Z_{2}\{x_{1}^{2}\} \otimes Z_{2}[a_{1}], d_{0}) = 0, \\ \widetilde{H}^{*}(Z_{2}\{x_{2}^{2}\} \otimes Z_{2}[b_{1}], d_{0}) = 0, \\ \widetilde{H}^{*}((Z_{2}[x_{3}]/(x_{3}^{2})) \otimes Z_{2}[c_{0}], d_{0}) = 0, \\ \widetilde{H}^{*}(Z_{2}\{x_{3}^{2}\} \otimes Z_{2}[c_{1}], d_{0}) = 0, \end{split}$$

where $\widetilde{H}^* = \sum_{i > 0} H^i$.

Thus we get the required result.

q.e.d.

By definition we have

COROLLARY 4.3. $H^*(\Lambda) = \operatorname{Ker} d / \operatorname{Im} d \cong \operatorname{Cotor}^A(\mathbb{Z}_2, \mathbb{Z}_2).$

Here we denoted the differential operator of Λ by d by abuse of notations.

5. Calculation

The purpose of this section is to determine $H^*(\Lambda)$. First of all we prepare the following

LEMMA 5.1. $dc_0^4 = a_1 b_1[[a_0, b_0], \alpha].$

Proof. Using (2.2), we can get

$$[a_0^2, c_0^2] = a_1[a_0, [b_0, \alpha]],$$

$$[b_0^2, c_0^2] = b_1[b_0, [a_0, \alpha]]$$

by a routine but tedious calculation. Substituting these to $dc_0^4 = (a_1b_0^2 + a_0^2b_1)c_0^2 + c_0^2(a_1b_0^2 + a_0^2b_1)$, we have the above result. q. e. d.

We have the filtration $F_k = \{\lambda \in \Lambda | w(\lambda) \le k\}$ using (4.1). To get the result we consider the spectral sequence $\{E_r(\Lambda), d_r\}$ associated with the filtration defined above with Z_2 coefficient where d_r is induced from d of Λ .

We know that a_1 and b_1 commute with all elements in Λ by (2.2). So we have

$$F_0 = F_0/F_{-1} = T(a_0, b_0, a_1, b_1, \alpha) \cong T(a_0, b_0, \alpha) \otimes \mathbb{Z}_2[a_1, b_1]$$

By (2.2) and (4.1), c_0 commutes with all elements in E_0 also. Then we get

$$E_{0} \cong T(a_{0}, b_{0}, \alpha) \otimes \mathbf{Z}_{2}[a_{1}, b_{1}] \otimes \mathbf{Z}_{2}[c_{0}] \otimes \mathbf{Z}_{2}[c_{1}].$$

By (3.3), a_0 , b_0 , a_1 and b_1 are permanent cycles, and $d_0\alpha = [a_0, b_0]$, $d_0c_0 = 0$, and $d_0c_1 = 0$.

Then we have

$$E_1 \cong \mathbb{Z}_2[a_0, b_0] \otimes \mathbb{Z}_2[a_1, b_1] \otimes \mathbb{Z}_2[c_0] \otimes \mathbb{Z}_2[c_1],$$

with $d_1c_0=a_0b_0$, $d_1c_0^2=0$, and $d_1c_1=0$. Subsequently

sequently

$$E_2 \cong \mathbb{Z}_2[a_0, a_1, b_0, b_1] \otimes \mathbb{Z}_2[c_1, c_0^2]/(a_0b_0)$$

with $d_2c_1 = a_1b_1$, $d_2c_1^2 = 0$, $d_2c_0^2 = a_1b_0^2 + a_0^2b_1$, and $d_2c_0^4 = 0$. Then we have

$$E_3 \cong \mathbb{Z}_2[a_0, a_1, b_0, b_1] \otimes \mathbb{Z}_2[c_1^2, c_0^4] / (a_0 b_0, a_1 b_1, a_1 b_0^2 + a_0^2 b_1),$$

with $d_3=0$.

Thus we get $E_4 \cong E_3$.

As $dc_1^2=0$, c_1^2 is a permanent cycle. By Lemma 5.1 we have $d_r c_0^4=0$

YUTAKA ANDO

 $(r \ge 3)$ which follows that c_0^4 survives forever, and we have

 $E_4 \cong E_5 \cong \cdots \cong E_\infty$.

As $dc_1 = a_1b_1$ and $d\alpha^2 = [[a_0, b_0], \alpha]$, Lemma 5.1 shows that $d(c_0^4 + c_1 d\alpha^2) = 0$. Consequently we have obtained the following

THEOREM 5.2. As an algebra over Z_2

 $\operatorname{Cotor}^{A}(\mathbb{Z}_{2}, \mathbb{Z}_{2}) \cong \mathbb{Z}_{2}[u_{1}, u_{2}, v_{1}, v_{2}, w_{1}, w_{2}]/(u_{1}v_{1}, u_{2}v_{2}, u_{1}^{2}v_{2}+u_{2}v_{1}^{2})$

where $u_1 = \{a_0\}$, $u_2 = \{a_1\}$, $v_1 = \{b_0\}$, $v_2 = \{b_1\}$, $w_1 = \{c_0^4 + c_1 d\alpha^2\}$, and $w_2 = \{c_1^2\}$ denote the respective cohomology classes of their representative cocycles.

References

- J.F. ADAMS, On the cobar construction, "Colloque de Topologie Algébrique", CBRM, Louvain, 1956, 81-87.
- [2] E.H. BROWN, Twisted tensor product I, Ann. of Math., 69 (1959), 223-246.
- [3] A. KONO, M. MIMURA AND N. SHIMADA, On the cohomology mod 2 of the classifying space of the 1-connected exceptional Lie group E_{7} , J. of Pure and Applied Alg., 8 (1976), 267-283.
- [4] N. SHIMADA AND A. IWAI, On the cohomology of some Hopf algebras, Nagoya Math. J., 30 (1967), 103-111.
- [5] W. WATERHOUSE, "Introduction to Affine Group Schemes", GTM 66, Springer, N.Y., 1979.

Department of Mathematics Tokyo University of Fisheries 4-5-7, Kohnan, Minato-ku, Tokyo, Japan