ON MEROMORPHIC FUNCTIONS WITH REGIONS FREE OF POLES AND ZEROS

By Hideharu Ueda

Introduction. In this note we improve one of the results of Edrei and Fuchs [2]. We shall adopt the terminology, notations and conventions of [2]. We shall write, for instance, [2, Lemma 5] to denote Lemma 5 of [2].

The aim of this investigation is to prove the following

THEOREM. Let the s B-regular curves

$$L_{j}$$
: $z=te^{i\alpha_{j}(t)}$ $(t \ge t_{0} > 0, j=1, 2, \dots, s;$
 $\alpha_{1}(t) < \alpha_{2}(t) < \dots < \alpha_{s}(t) < \alpha_{1}(t) + 2\pi = \alpha_{s+1}(t))$

divide $|z| \ge t_0$ into s sectors, each of which has opening $\ge c > 0$.

Suppose that all but a finite number of zeros and poles of the meromorphic function f(z) lie on the curves L_z .

If some τ ($\tau \neq 0$, $\tau \neq \infty$) is a deficient value (in the sense of R. Nevanlinna) of the function f(z), then the order λ of f(z) does not exceed λ_1 , where

$$\lambda_{1} \! = \! \begin{cases} \frac{eB(B+1)}{2\sin\frac{c}{4}} \! - \! 1 & \left(\sin\frac{c}{4} \! > \! \frac{2B+1}{2(B+1)}\right), \\ \\ \frac{eB\left(\sqrt{B^{2} \! + \! \sin^{2}\!\frac{c}{4}} \! + \! \sin\frac{c}{4}\right)}{2\sin\frac{c}{4}} \! - \! 1 & \left(\sin\frac{c}{4} \! \leq \! \frac{2B+1}{2(B+1)}\right). \end{cases}$$

Proof of Theorem.

1. [2, Theorem 2] implies that λ is finite. We prove Theorem by deducing from the assumption

$$(1.1) \qquad (+\infty)\lambda > \lambda_1$$

the contradiction that f(z) is a constant.

Choose a positive number ε such that $\lambda - \varepsilon > \lambda_1$. Using [1, Lemma 1] with $\phi(t) = T(t, f)/t^{\lambda - \varepsilon}$ and $\psi(t) = t^{2\varepsilon}$, we find a sequence $\{r_n\}_1^{\infty}$ of values tending to infinity such that

Received October 17, 1988.

(1.2)
$$\frac{T(t, f)}{T(r_n, f)} \leq \left(\frac{t}{r_n}\right)^{\lambda - \varepsilon} \quad (t_0 \leq t \leq r_n)$$

and

$$\frac{T(t, f)}{T(r_n, f)} \leq \left(\frac{t}{r_n}\right)^{\lambda + \varepsilon} \quad (t \geq r_n).$$

In view of (1.2), $\limsup_{n\to\infty} T(r_n, f)/r_n^{\lambda-\epsilon} = +\infty$, so by relabelling suitably if necessary, we may assume that

$$(1.4) \frac{T(r_n, f)}{r_n^{1-\varepsilon}} \ge 1 (n=1, 2, 3, \cdots).$$

Since τ is a deficient value of f(z), there is at least one index k=k(r) such that

$$m\left(r,\frac{1}{f-\tau};J_k(r)\right)>\kappa T(r,f) \left(r>t_1(\geq t_0);\kappa=\frac{\delta(\tau,f)}{s+1}\right).$$

When $r\to\infty$ through the values of the sequence $\{r_n\}_1^\infty$ satisfying (1.2)-(1.4), at least one value of k(r) must be taken infinitely often. Without loss of generality we may assume it to be k=1. Thus by relabelling appropriately again if necessary, we may assume that

(1.5)
$$m(r_n, \frac{1}{f-\tau}; J_1(r_n)) > \kappa T(r_n, f) \quad (n=1, 2, 3, \cdots).$$

Now, we apply [2, Lemma C] to the function $(f-\tau)^{-1}$ with R'=2r and $I(r)=I_1(r,2\delta)$ $(0<\delta< c/4)$. This yields

$$m(r, \frac{1}{f-\tau}; I_1(r, 2\delta)) \leq 22T(2r, \frac{1}{f-\tau})4\delta(1+\log^{+}\frac{1}{4\delta}).$$

Using the first fundamental theorem and (1.3), we have

$$m\left(r_n, \frac{1}{f-\tau}; I_1(r_n, 2\delta)\right) \leq 90 \cdot 2^{\lambda+\varepsilon} T(r_n, f) \delta\left(1 + \log^+ \frac{1}{4\delta}\right) < \frac{\kappa}{2} T(r_n, f)$$

provided $0 < \delta < \delta_1 \equiv \delta_1(\kappa, \lambda, \varepsilon) < c/4, n \ge n_0$. Hence, by (1.5)

$$m\left(r_n, \frac{1}{f-\tau}; J_1(r_n, 2\delta)\right) > \frac{\kappa}{2} T(r_n, f) \quad (n \ge n_0, 0 < \delta < \delta_1).$$

Combining this and [2, Lemma B], we obtain

(1.6)
$$m(r_n, f/f', J_1(r_n, 2\delta)) > m(r_n, 1/(f-\tau); J_1(r_n, 2\delta)) - m(r_n, f'/f)$$

$$-m(r_n, f'/(f-\tau)) - O(1) > \frac{\kappa}{2} T(r_n, f) - O(\log r_n) > \frac{\kappa}{3} T(r_n, f)$$

$$(n \ge n_1 (\ge n_0), 0 < \delta < \delta_1).$$

2. By the definition of λ_1 and the inequality $\lambda - \varepsilon > \lambda_1$, we are able to choose $\delta \in (0, \delta_1)$ so that if $\sin(c/4) > (2B+1)/2(B+1)$, then

$$(2.1) \hspace{1cm} \lambda - \varepsilon > \frac{eB(B+1)}{2\sin\left(\frac{c}{4} - \delta\right)} - 1, \hspace{0.2cm} \sin\left(\frac{c}{4} - \delta\right) \ge \frac{2B+1}{2(B+1)},$$

and if $\sin(c/4) \le (2B+1)/2(B+1)$, then

(2.1)'
$$\lambda - \varepsilon > \frac{eB\left\{\sqrt{B^2 + \sin^2\left(\frac{c}{4} - \delta\right)} + \sin\left(\frac{c}{4} - \delta\right)\right\}}{2\sin\left(\frac{c}{4} - \delta\right)} - 1.$$

From now on we assume that δ has been chosen in this way and we shall make no further changes in the choice of δ . Using [2, Lemma 4] with H=1, q=0, and R'=2r, we have

$$|f'(z)/f(z)| < A\{T(2r, f)\}^A \quad (|z|=r)$$

on $D_1 = \{z = re^{i\theta}; (t_1 \le) t_2 \le r < +\infty, \alpha_1(r) + \delta \le \theta \le \alpha_2(r) - \delta\}$. Therefore, since f(z) is of finite order, we can find a positive integer $h = h(\lambda)$ such that

$$|z^{-h}f'(z)/f(z)| < 1 \quad (z \in D_1).$$

The function $g(z) \equiv z^{-h} f'(z)/f(z)$ is regular in D_1 . By (1.6)

$$m(r_n, 1/g; J_1(r_n, 2\delta)) > \frac{\kappa}{3} T(r_n, f) \quad (n \ge n_2(\ge n_1)).$$

It follows from this and [2, Lemma 5] with $\beta=1/40B$ that

(2.3)
$$\log|g(z)| < -KT(r_n, f) \quad (z \in \Gamma_n, n \ge n_3(\ge n_2)),$$

where $\Gamma_n = \{z = r_n e^{i\theta} ; \theta \in J_1(r_n, 2\delta)\}$ and $K = K(\kappa, B, \delta)$ is a positive constant. Since $\log |g(z)|$ is subharmonic on $D_1(r_n) = \{z = re^{i\theta} ; t_2 \le r \le r_n, \theta \in J_1(r, 2\delta)\}$, from (2.2) and (2.3) we have

(2.4)
$$\log|g(z)| < -K\omega(z)T(r_n, f) \quad (z \in D_1(r_n), n \ge n_3),$$

where $\omega(z)$ is the harmonic measure of Γ_n with respect to $D_1(r_n)$ at the point z.

3. We denote by \mathcal{L}_n the *B*-regular path $z(t)=te^{i\left(\alpha_1(t)+\frac{c}{2}\right)}$ $(2t_2 \le t \le r_n)$, and by s=s(z(t)) the arc length of \mathcal{L}_n from $z(2t_2)$ to z(t) $(2t_2 \le t \le r_n)$. Let $\rho(s)$ be the shortest distance from $\partial D_1(r_n)\backslash \Gamma_n$ to the point $z(t)\in \mathcal{L}_n$, and let m(s) stand for the minimum of $\omega(z)$ in $\{z\in D_1(r_n); |z-z(t)| \le \rho(s)/e\}$.

If we take a point z(t) $(\neq z(2t_2))$ on \mathcal{L}_n , then for a sufficiently small $\Delta t > 0$ we have

$$m(s-\Delta s) \ge m(s) \log \frac{\rho(s)}{\Delta r + \rho(s-\Delta s)/e}$$

where $\Delta s = s(z(t)) - s(z(t - \Delta t))$ (>0) and $\Delta r = |z(t) - z(t - \Delta t)|$. (For the proof, confer [3, p. 82].) Therefore

$$m(s-\Delta s)-m(s) \ge m(s) \log \frac{\rho(s)/e}{\Delta r + \rho(s-\Delta s)/e}$$

$$= -m(s) \log \left\{ 1 + \frac{\rho(s-\Delta s) - \rho(s)}{\rho(s)} + e^{-\frac{\Delta r}{\rho(s)}} \right\}$$

$$\ge -\frac{m(s)}{\rho(s)} \left\{ \rho(s-\Delta s) - \rho(s) + e^{\Delta r} \right\},$$

thus

$$(3.1) \qquad \frac{m(s-\Delta s)-m(s)}{-\Delta s} \leq -\frac{m(s)}{\rho(s)} \left\{ \frac{\rho(s-\Delta s)-\rho(s)}{-\Delta s} - e\frac{\Delta r}{\Delta s} \right\}.$$

Clearly $\Delta s \rightarrow 0$, $\Delta r/\Delta s \rightarrow 1$ as $\Delta t \rightarrow +0$. Hence by taking the limit as $\Delta t \rightarrow +0$, (3.1) yields the upper bound

(3.2)
$$\frac{dm}{ds} \le -\frac{m(s)}{\rho(s)} \left(\frac{d\rho}{ds} - e \right) \text{ a. e. in } 0 < s \le s(z(r_n)) \equiv s_n$$

for the left upper derivative $\frac{dm}{ds}$, since $\rho(s)$ is absolutely continuous in $0 \le s \le s_n$.

If we divide the both sides of (3.2) by m(s), and then integrate between s=s(z(t)) and s_n , we obtain

$$\log \frac{m(s_n)}{m(s)} \le -\log \frac{\rho(s_n)}{\rho(s)} + e^{\int_{s(z(t))}^{s_n} \frac{ds}{\rho(s)}}, \quad \text{i. e.}$$

$$m(s) \ge \frac{\rho(s_n)}{\rho(s)} m(s_n) \exp\left\{-e^{\int_{s(z(t))}^{s_n} \frac{ds}{\rho(s)}}\right\}.$$

Here we can use [3, Theorem 1, (2.6), p. 74] to show $m(s_n) \ge (2/\pi) \tan^{-1}(1/\pi) > 1/2\pi$. Consequently, we have

$$(3.3) \qquad \omega(z(t)) \ge m(s) > \frac{1}{2\pi} \frac{\rho(s_n)}{\rho(s)} \exp\left\{-e^{\int_{s(z(t))}^{s_n} \frac{ds}{\rho(s)}}\right\} \quad (2t_2 < t \le r_n).$$

4. Let $L: z=te^{i\alpha(t)}$ $(t \ge t_0)$ be the parametric equation of a *B*-regular curve. In this section we show that the point $te^{i(\alpha(t)+\gamma)}$ $(0<|\gamma|\le\pi)$ is at a distance

$$(4.1) \quad d \ge t \cdot l(B, \gamma) = \begin{cases} \frac{2t \left| \sin \frac{\gamma}{2} \right|}{B+1} & \left(\left| \sin \frac{\gamma}{2} \right| \ge \frac{2B+1}{2(B+1)} \right) \\ \frac{2t \left| \sin \frac{\gamma}{2} \right| \left\{ \sqrt{B^2 + \sin^2 \frac{\gamma}{2}} - \left| \sin \frac{\gamma}{2} \right| \right\}}{B^2} & \left(\left| \sin \frac{\gamma}{2} \right| < \frac{2B+1}{2(B+1)} \right) \end{cases}$$

from L.

4.1. Proof of $d \ge 2t \left| \sin \frac{\gamma}{2} \right| / (B+1)$ ($\equiv \rho$): If this estimate were not true, it would be possible to find u ($\ge t_0$) and t ($\ge t_0$) such that

$$|te^{i(\alpha(t)+\gamma)}-ue^{i\alpha(u)}|<\rho.$$

In particular, this implies

$$(4.3) |t-u| < \rho.$$

By the triangle inequality, the definition of B-regular curve, (4.2) and (4.3)

$$\begin{aligned} 2t \left| \sin \frac{\gamma}{2} \right| - \rho < |te^{i\alpha(t)} - te^{i(\alpha(t) + \gamma)}| - |te^{i(\alpha(t) + \gamma)} - ue^{i\alpha(u)}| \\ & \leq |te^{i\alpha(t)} - ue^{i\alpha(u)}| \leq B|t - u| < B\rho. \end{aligned}$$

Hence we have $\rho > 2t \left| \sin \frac{\gamma}{2} \right| / (B+1) = \rho$, a contradiction.

4.2. Proof of $d \ge 2t \left| \sin \frac{\gamma}{2} \right| \left\{ \sqrt{B^2 + \sin^2 \frac{\gamma}{2}} - \left| \sin \frac{\gamma}{2} \right| \right\} / B^2$: In the case B = 1 this estimate follows from

$$d\!\ge\! \left\{ \begin{matrix} t \!\mid\! \sin\gamma \!\mid & (0 \!<\! |\gamma| \!\leq\! \pi/2) \\ t & (\pi/2 \!<\! |\gamma| \!\leq\! \pi) \end{matrix} \right\} \!\ge\! 2t \! \left| \sin\frac{\gamma}{2} \right| \! \left\{ \sqrt{1 \!+\! \sin^2\!\frac{\gamma}{2}} - \left| \sin\frac{\gamma}{2} \right| \right\}.$$

Consider next the case B>1. Choose $U:ue^{i\alpha(u)}$ so that

$$|te^{i(\alpha(t)+\gamma)}-ue^{i\alpha(u)}|=d.$$

If we put $T: te^{i\alpha(t)}$ and $T_r: te^{i(\alpha(t)+\gamma)}$, then we have

$$(4.5) \qquad TU^{2} = T_{\gamma}U^{2} + T_{\gamma}T^{2} - 2T_{\gamma}U \cdot T_{\gamma}T\cos \angle TT_{\gamma}U$$

$$= d^{2} + 4t^{2}\sin^{2}\frac{\gamma}{2} - 2\{\left[u\cos\alpha(u) - t\cos(\alpha(t) + \gamma)\right]$$

$$\times \left[t\cos\alpha(t) - t\cos(\alpha(t) + \gamma)\right] + \left[u\sin\alpha(u) - t\sin(\alpha(t) + \gamma)\right]$$

$$\times \left[t\sin\alpha(t) - t\sin(\alpha(t) + \gamma)\right]\}$$

$$= d^{2} + 4t^{2}\sin^{2}\frac{\gamma}{2} - 2\left\{t^{2}(1 - \cos\gamma) + 2tu\sin\frac{\gamma}{2}\sin\left(\alpha(t) - \alpha(u) + \frac{\gamma}{2}\right)\right\}$$

$$= d^{2} - 4tu\sin\frac{\gamma}{2}\sin\left(\alpha(t) - \alpha(u) + \frac{\gamma}{2}\right).$$

By the definition of B-regular curve, (4.4) and (4.5)

$$d^2-4tu\sin\frac{\gamma}{2}\sin\left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right)\leq B^2(t-u)^2=B^2\left\{d^2-4tu\sin^2\left(\frac{\alpha(t)+\gamma-\alpha(u)}{2}\right)\right\}.$$

Hence

$$\begin{split} (B^2-1)d^2 & \geqq 4tu \Big\{ B^2 \sin^2 \! \Big(\frac{\alpha(t)\!+\!\gamma\!-\!\alpha(u)}{2} \Big) \! - \! \sin\frac{\gamma}{2} \sin \! \Big(\alpha(t)\!-\!\alpha(u)\!+\!\frac{\gamma}{2} \Big) \Big\} \\ & = \! 4tu \Big\{ \frac{B^2}{2} - \frac{B^2}{2} \cos\frac{\gamma}{2} \cos \! \Big(\alpha(t)\!-\!\alpha(u)\!+\!\frac{\gamma}{2} \Big) \\ & \quad + \! \Big(\frac{B^2}{2} \!-\! 1 \Big) \! \sin\frac{\gamma}{2} \sin \! \Big(\alpha(t)\!-\!\alpha(u)\!+\!\frac{\gamma}{2} \Big) \Big\} \\ & \geqq \! 4tu \Big\{ \frac{B^2}{2} - \! \sqrt{\frac{B^4}{4} \!-\! (B^2\!-\! 1) \sin^2\frac{\gamma}{2}} \Big\} \\ & \geqq \! 4tu \frac{B^2\!-\! 1}{B^2} \sin^2\frac{\gamma}{2} \,, \end{split}$$

and thus

$$(4.6) d^2 \ge \frac{4tu}{B^2} \sin^2 \frac{\gamma}{2}$$

since B>1. Also from (4.4)

$$(4.7) u \ge t - d.$$

Combining (4.6) and (4.7), we have

$$d^2 \ge \frac{4t(t-d)}{B^2} \sin^2 \frac{\gamma}{2},$$

and consequently

$$d \ge \frac{2t \left| \sin \frac{\gamma}{2} \right| \left\{ \sqrt{B^2 + \sin^2 \frac{\gamma}{2}} - \left| \sin \frac{\gamma}{2} \right| \right\}}{B^2}.$$

5. From (4.1) we easily deduce that for $t \in [K_1t_2, r_n]$ $(K_1 = K_1(B, c, \delta), n \ge n_4 (\ge n_3))$

(5.1)
$$\rho(s(z(t))) \ge t \cdot l\left(B, \frac{c}{2} - 2\delta\right).$$

From (5.1) and the fact that $\rho(s(z(t)) \leq t$ we have

$$(5.2) \qquad \frac{\rho(s_n)}{\rho(s(z(u)))} \ge l\left(B, \frac{c}{2} - 2\delta\right) \left(\frac{r_n}{u}\right) \quad (u \in [K_1 t_2, r_n], \ n \ge n_4).$$

Also (5.1) and the fact that \mathcal{L}_n is B-regular imply

(5.3)
$$\int_{s(z(u))}^{s_n} \frac{ds}{\rho(s)} \leq \int_{u}^{r_n} \frac{B}{\rho(s(z(t)))} dt \leq \frac{B}{l\left(B, \frac{c}{2} - 2\delta\right)} \log\left(\frac{r_n}{u}\right)$$

$$(u \in \lceil K_1 t_2, r_n \rceil, n \geq n_4).$$

Substituting (5.2) and (5.3) into (3.3), we obtain

$$(5.4) \qquad \omega(z(u)) > \frac{l\left(B, \frac{c}{2} - 2\delta\right)}{2\pi} \left(\frac{u}{r_n}\right)^{\frac{e_B}{l\left(B, \frac{c}{2} - 2\delta\right)} - 1} \quad (u \in [K_1t_2, r_n], \ n \geq n_4).$$

Hence from (2.4), (5.4) and (1.4) we deduce that for $u \in [K_1 t_2, r_n]$ $(n \ge n_4)$

(5.5)
$$\log \left| \frac{f'(z(u))}{f(z(u))} \right| < h \log u - \frac{K \cdot l\left(B, \frac{c}{2} - 2\delta\right)}{2\pi} T(r_n, f) \left(\frac{u}{r_n}\right)^{\frac{eB}{l\left(B, \frac{c}{2} - 2\delta\right)} - 1}$$

$$< h \log r_n - \frac{K \cdot l\left(B, \frac{c}{2} - 2\delta\right)}{2\pi} u^{\frac{eB}{l\left(B, \frac{c}{2} - 2\delta\right)} - 1} r_n^{\lambda - \varepsilon - \left(\frac{eB}{l\left(B, \frac{c}{2} - 2\delta\right)} - 1\right)}.$$

As $n\to\infty$, the right hand side of (5.5) tends to $-\infty$, by (2.1) or (2.1). Therefore

$$\frac{f'(z(u))}{f(z(u))} = 0$$

for every $z(u)=ue^{i\left(\alpha_1(u)+\frac{c}{2}\right)}$ $(u>K_1t_2)$. Thus f'(z)/f(z) vanishes identically, which is only possible if f(z) is a constant. This contradicts (1.1) and hence completes the proof of Theorem.

REFERENCES

- [1] EDREI, A. AND FUCHS, W.H.J., The deficiencies of meromorphic functions of order less than one, Duke Math. J. 27 (1960), 233-249.
- [2] EDREI, A. AND FUCHS, W.H.J., On meromorphic functions with regions free of poles and zeros, Acta Math. 108 (1962), 113-145.
- [3] NEVANLINNA, R., Analytic functions, Springer-Verlag (1970).

DEPARTMENT OF MATHEMATICS
DAIDO INSTITUTE OF TECHNOLOGY
DAIDO-CHO, MINAMI-KU, NAGOYA, JAPAN