ON MEROMORPHIC FUNCTIONS WITH REGIONS FREE OF POLES AND ZEROS

By Hideharu Ueda

Introduction. In this note we improve one of the results of Edrei and Fuchs [2]. We shall adopt the terminology, notations and conventions of [2]. We shall write, for instance, [2, Lemma 5] to denote Lemma 5 of [2].

The aim of this investigation is to prove the following

Theorem. Let the s B-regular curves

$$
\begin{aligned}
L_{\jmath}: z=t e^{\imath \alpha_{\jmath}(t)} \quad\left(t \geqq t_{0}>0, \quad j=1,2, \cdots, s ;\right. \\
\left.\alpha_{1}(t)<\alpha_{2}(t)<\cdots<\alpha_{s}(t)<\alpha_{1}(t)+2 \pi=\alpha_{s+1}(t)\right)
\end{aligned}
$$

divide $|z| \geqq t_{0}$ into s sectors, each of which has opening $\geqq c>0$.
Suppose that all but a finite number of zeros and poles of the meromorphic function $f(z)$ lie on the curves L_{J}.

If some $\tau(\tau \neq 0, \tau \neq \infty)$ is a deficient value (in the sense of R. Nevanlinna) of the function $f(z)$, then the order λ of $f(z)$ does not exceed λ_{1}, where

$$
\lambda_{1}=\left\{\begin{array}{l}
\frac{e B(B+1)}{2 \sin \frac{c}{4}}-1 \quad\left(\sin \frac{c}{4}>\frac{2 B+1}{2(B+1)}\right), \\
\frac{e B\left(\sqrt{B^{2}+\sin ^{2} \frac{c}{4}}+\sin \frac{c}{4}\right)}{2 \sin \frac{c}{4}}-1 \quad\left(\sin \frac{c}{4} \leqq \frac{2 B+1}{2(B+1)}\right) .
\end{array}\right.
$$

Proof of Theorem.

1. [2, Theorem 2] implies that λ is finite. We prove Theorem by deducing from the assumption

$$
\begin{equation*}
(+\infty>) \lambda>\lambda_{1} \tag{1.1}
\end{equation*}
$$

the contradiction that $f(z)$ is a constant.
Choose a positive number ε such that $\lambda-\varepsilon>\lambda_{1}$. Using [1, Lemma 1] with $\phi(t)=T(t, f) / t^{\lambda-\varepsilon}$ and $\phi(t)=t^{2 \varepsilon}$, we find a sequence $\left\{r_{n}\right\}_{1}^{\infty}$ of values tending to infinity such that

Received October 17, 1988.

$$
\begin{equation*}
\frac{T(t, f)}{T\left(r_{n}, f\right)} \leqq\left(\frac{t}{r_{n}}\right)^{\lambda-\varepsilon} \quad\left(t_{0} \leqq t \leqq r_{n}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{T(t, f)}{T\left(r_{n}, f\right)} \leqq\left(\frac{t}{r_{n}}\right)^{\lambda+\varepsilon} \quad\left(t \geqq r_{n}\right) \tag{1.3}
\end{equation*}
$$

In view of (1.2), $\lim _{n \rightarrow \infty} \sup T\left(r_{n}, f\right) / r_{n}^{\lambda-\varepsilon}=+\infty$, so by relabelling suitably if necessary, we may assume that

$$
\begin{equation*}
\frac{T\left(r_{n}, f\right)}{r_{n}^{\lambda-\varepsilon}} \geqq 1 \quad(n=1,2,3, \cdots) \tag{1.4}
\end{equation*}
$$

Since τ is a deficient value of $f(z)$, there is at least one index $k=k(r)$ such that

$$
m\left(r, \frac{1}{f-\tau} ; J_{k}(r)\right)>\kappa T(r, f) \quad\left(r>t_{1}\left(\geqq t_{0}\right) ; \kappa=\frac{\delta(\tau, f)}{s+1}\right)
$$

When $r \rightarrow \infty$ through the values of the sequence $\left\{r_{n}\right\}_{1}^{\infty}$ satisfying (1.2)-(1.4), at least one value of $k(r)$ must be taken infinitely often. Without loss of generality we may assume it to be $k=1$. Thus by relabelling appropriately again if necessary, we may assume that

$$
\begin{equation*}
m\left(r_{n}, \frac{1}{f-\tau} ; J_{1}\left(r_{n}\right)\right)>\kappa T\left(r_{n}, f\right) \quad(n=1,2,3, \cdots) \tag{1.5}
\end{equation*}
$$

Now, we apply [2, Lemma C] to the function $(f-\tau)^{-1}$ with $R^{\prime}=2 r$ and $I(r)=I_{1}(r, 2 \delta)(0<\delta<c / 4)$. This yields

$$
m\left(r, \frac{1}{f-\tau} ; I_{1}(r, 2 \delta)\right) \leqq 22 T\left(2 r, \frac{1}{f-\tau}\right) 4 \delta\left(1+\log ^{+} \frac{1}{4 \delta}\right) .
$$

Using the first fundamental theorem and (1.3), we have

$$
m\left(r_{n}, \frac{1}{f-\tau} ; I_{1}\left(r_{n}, 2 \delta\right)\right) \leqq 90 \cdot 2^{\lambda+\mathrm{s}} T\left(r_{n}, f\right) \delta\left(1+\log ^{+} \frac{1}{4 \delta}\right)<\frac{\kappa}{2} T\left(r_{n}, f\right)
$$

provided $0<\delta<\delta_{1} \equiv \delta_{1}(\kappa, \lambda, \varepsilon)<c / 4, n \geqq n_{0}$. Hence, by (1.5)

$$
m\left(r_{n}, \frac{1}{f-\tau} ; J_{1}\left(r_{n}, 2 \delta\right)\right)>\frac{\kappa}{2} T\left(r_{n}, f\right) \quad\left(n \geqq n_{0}, 0<\delta<\delta_{1}\right) .
$$

Combining this and [2, Lemma B], we obtain

$$
\begin{array}{r}
m\left(r_{n}, f / f^{\prime}, J_{1}\left(r_{n}, 2 \delta\right)\right)>m\left(r_{n}, 1 /(f-\tau) ; J_{1}\left(r_{n}, 2 \delta\right)\right)-m\left(r_{n}, f^{\prime} / f\right) \tag{1.6}\\
-m\left(r_{n}, f^{\prime} /(f-\tau)\right)-O(1)>\frac{\kappa}{2} T\left(r_{n}, f\right)-O\left(\log r_{n}\right)>\frac{\kappa}{3} T\left(r_{n}, f\right) \\
\left(n \geqq n_{1}\left(\geqq n_{0}\right), 0<\delta<\delta_{1}\right) .
\end{array}
$$

2. By the definition of λ_{1} and the inequality $\lambda-\varepsilon>\lambda_{1}$, we are able to choose $\delta \in\left(0, \delta_{1}\right)$ so that if $\sin (c / 4)>(2 B+1) / 2(B+1)$, then

$$
\begin{equation*}
\lambda-\varepsilon>\frac{e B(B+1)}{2 \sin \left(\frac{c}{4}-\delta\right)}-1, \quad \sin \left(\frac{c}{4}-\delta\right) \geqq \frac{2 B+1}{2(B+1)}, \tag{2.1}
\end{equation*}
$$

and if $\sin (c / 4) \leqq(2 B+1) / 2(B+1)$, then

$$
\begin{equation*}
\lambda-\varepsilon>\frac{e B\left\{\sqrt{B^{2}+\sin ^{2}\left(\frac{c}{4}-\delta\right)}+\sin \left(\frac{c}{4}-\delta\right)\right\}}{2 \sin \left(\frac{c}{4}-\delta\right)}-1 \tag{2.1}
\end{equation*}
$$

From now on we assume that δ has been chosen in this way and we shall make no further changes in the choice of δ. Using [2, Lemma 4] with $H=1$, $q=0$, and $R^{\prime}=2 r$, we have

$$
\left|f^{\prime}(z) / f(z)\right|<A\{T(2 r, f)\}^{A} \quad(|z|=r)
$$

on $D_{1}=\left\{z=r e^{i \theta} ;\left(t_{1} \leqq\right) t_{2} \leqq r<+\infty, \alpha_{1}(r)+\delta \leqq \theta \leqq \alpha_{2}(r)-\delta\right\}$. Therefore, since $f(z)$ is of finite order, we can find a positive integer $h=h(\lambda)$ such that

$$
\begin{equation*}
\left|z^{-h} f^{\prime}(z) / f(z)\right|<1 \quad\left(z \in D_{1}\right) \tag{2.2}
\end{equation*}
$$

The function $g(z) \equiv z^{-h} f^{\prime}(z) / f(z)$ is regular in D_{1}. By (1.6)

$$
m\left(r_{n}, 1 / g ; J_{1}\left(r_{n}, 2 \delta\right)\right)>\frac{\kappa}{3} T\left(r_{n}, f\right) \quad\left(n \geqq n_{2}\left(\geqq n_{1}\right)\right) .
$$

It follows from this and [2, Lemma 5] with $\beta=1 / 40 B$ that

$$
\begin{equation*}
\log |g(z)|<-K T\left(r_{n}, f\right) \quad\left(z \in \Gamma_{n}, \quad n \geqq n_{3}\left(\geqq n_{2}\right)\right), \tag{2.3}
\end{equation*}
$$

where $\Gamma_{n}=\left\{z=r_{n} e^{i \theta} ; \theta \in J_{1}\left(r_{n}, 2 \delta\right)\right\}$ and $K=K(\kappa, B, \delta)$ is a positive constant. Since $\log |g(z)|$ is subharmonic on $D_{1}\left(r_{n}\right)=\left\{z=r e^{i \theta} ; t_{2} \leqq r \leqq r_{n}, \theta \in J_{1}(r, 2 \delta)\right\}$, from (2.2) and (2.3) we have

$$
\begin{equation*}
\log |g(z)|<-K \omega(z) T\left(r_{n}, f\right) \quad\left(z \in D_{1}\left(r_{n}\right), n \geqq n_{3}\right), \tag{2.4}
\end{equation*}
$$

where $\omega(z)$ is the harmonic measure of Γ_{n} with respect to $D_{1}\left(r_{n}\right)$ at the point z.
3. We denote by \mathcal{L}_{n} the B-regular path $z(t)=t e^{i\left(\alpha_{1}(t)+\frac{c}{2}\right)}\left(2 t_{2} \leqq t \leqq r_{n}\right)$, and by $s=s(z(t))$ the arc length of \mathcal{L}_{n} from $z\left(2 t_{2}\right)$ to $z(t)\left(2 t_{2} \leqq t \leqq r_{n}\right)$. Let $\rho(s)$ be the shortest distance from $\partial D_{1}\left(r_{n}\right) \backslash \Gamma_{n}$ to the point $z(t) \in \mathcal{L}_{n}$, and let $m(s)$ stand for the minimum of $\omega(z)$ in $\left\{z \in D_{1}\left(r_{n}\right) ;|z-z(t)| \leqq \rho(s) / e\right\}$.

If we take a point $z(t)\left(\neq z\left(2 t_{2}\right)\right)$ on \mathcal{L}_{n}, then for a sufficiently small $\Delta t>0$ we have

$$
m(s-\Delta s) \geqq m(s) \log \frac{\rho(s)}{\Delta r+\rho(s-\Delta s) / e}
$$

where $\Delta s=s(z(t))-s(z(t-\Delta t))(>0)$ and $\Delta r=|z(t)--z(t-\Delta t)|$. (For the proof, confer [3, p. 82].) Therefore

$$
\begin{aligned}
m(s-\Delta s)-m(s) & \geqq m(s) \log \frac{\rho(s) / e}{\Delta r+\rho(s-\Delta s) / e} \\
& =-m(s) \log \left\{1+\frac{\rho(s-\Delta s)-\rho(s)}{\rho(s)}+e \frac{\Delta r}{\rho(s)}\right\} \\
& \geqq-\frac{m(s)}{\rho(s)}\{\rho(s-\Delta s)-\rho(s)+e \Delta r\},
\end{aligned}
$$

thus

$$
\begin{equation*}
\frac{m(s-\Delta s)-m(s)}{-\Delta s} \leqq-\frac{m(s)}{\rho(s)}\left\{\frac{\rho(s-\Delta s)-\rho(s)}{-\Delta s}-e \frac{\Delta r}{\Delta s}\right\} . \tag{3.1}
\end{equation*}
$$

Clearly $\Delta s \rightarrow 0, \Delta r / \Delta s \rightarrow 1$ as $\Delta t \rightarrow+0$. Hence by taking the limit as $\Delta t \rightarrow+0$, (3.1) yields the upper bound

$$
\begin{equation*}
\frac{d m}{d s} \leqq-\frac{m(s)}{\rho(s)}\left(\frac{d \rho}{d s}-e\right) \quad \text { a.e. in } 0<s \leqq s\left(z\left(r_{n}\right)\right) \equiv s_{n} \tag{3.2}
\end{equation*}
$$

for the left upper derivative $\frac{d m}{d s}$, since $\rho(s)$ is absolutely continuous in $0 \leqq s \leqq s_{n}$. If we divide the both sides of (3.2) by $m(s)$, and then integrate between $s=s(z(t))$ and s_{n}, we obtain

$$
\begin{aligned}
& \log \frac{m\left(s_{n}\right)}{m(s)} \leqq-\log \frac{\rho\left(s_{n}\right)}{\rho(s)}+e \int_{s(z(t))}^{s_{n}} \frac{d s}{\rho(s)}, \quad \text { i. e. } \\
& m(s) \geqq \frac{\rho\left(s_{n}\right)}{\rho(s)} m\left(s_{n}\right) \exp \left\{-e \int_{s(z(t))}^{s_{n}} \frac{d s}{\rho(s)}\right\} .
\end{aligned}
$$

Here we can use [3, Theorem 1 , (2.6), p. 74] to show $m\left(s_{n}\right) \geqq(2 / \pi) \tan ^{-1}(1 / \pi)$ $>1 / 2 \pi$. Consequently, we have

$$
\begin{equation*}
\omega(z(t)) \geqq m(s)>\frac{1}{2 \pi} \frac{\rho\left(s_{n}\right)}{\rho(s)} \exp \left\{-e \int_{s(z(t))}^{s_{n}} \frac{d s}{\rho(s)}\right\} \quad\left(2 t_{2}<t \leqq r_{n}\right) . \tag{3.3}
\end{equation*}
$$

4. Let $L: z=t e^{2 \alpha(t)}\left(t \geqq t_{0}\right)$ be the parametric equation of a B-regular curve.

In this section we show that the point $t e^{\imath(\alpha(t)+\gamma)}(0<|\gamma| \leqq \pi)$ is at a distance
(4.1) $\quad d \geqq t \cdot l(B, \gamma) \equiv\left\{\begin{array}{l}\frac{2 t\left|\sin \frac{\gamma}{2}\right|}{B+1}\left(\left|\sin \frac{\gamma}{2}\right| \geqq \frac{2 B+1}{2(B+1)}\right) \\ \frac{2 t\left|\sin \frac{\gamma}{2}\right|\left\{\sqrt{B^{2}+\sin ^{2} \frac{\gamma}{2}}-\left|\sin \frac{\gamma}{2}\right|\right\}}{B^{2}} \quad\left(\left|\sin \frac{\gamma}{2}\right|<\frac{2 B+1}{2(B+1)}\right)\end{array}\right.$
from L.
4.1. Proof of $d \geqq 2 t\left|\sin \frac{\gamma}{2}\right| /(B+1)(\equiv \rho)$: If this estimate were not true, it would be possible to find $u\left(\geqq t_{0}\right)$ and $t\left(\geqq t_{0}\right)$ such that

$$
\begin{equation*}
\left|t e^{2(\alpha(t)+\gamma)}-u e^{2 \alpha(u)}\right|<\rho . \tag{4.2}
\end{equation*}
$$

In particular, this implies

$$
\begin{equation*}
|t-u|<\rho . \tag{4.3}
\end{equation*}
$$

By the triangle inequality, the definition of B-regular curve, (4.2) and (4.3)

$$
\begin{aligned}
2 t\left|\sin \frac{\gamma}{2}\right|-\rho & <\left|t e^{2 \alpha(t)}-t e^{2(\alpha(t)+\gamma)}\right|-\left|t e^{\imath(\alpha(t)+\gamma)}-u e^{\imath \alpha(u)}\right| \\
& \leqq\left|t e^{\imath \alpha(t)}-u e^{2 \alpha(u)}\right| \leqq B|t-u|<B \rho .
\end{aligned}
$$

Hence we have $\rho>2 t\left|\sin \frac{\gamma}{2}\right| /(B+1)=\rho$, a contradiction.
4.2. Proof of $d \geqq 2 t\left|\sin \frac{\gamma}{2}\right|\left\{\sqrt{B^{2}+\sin ^{2} \frac{\gamma}{2}}-\left|\sin \frac{\gamma}{2}\right|\right\} / B^{2}:$ In the case $B=1$ this estimate follows from

$$
d \geqq\left\{\begin{array}{ll}
t|\sin \gamma| & (0<|\gamma| \leqq \pi / 2) \\
t & (\pi / 2<|\gamma| \leqq \pi)
\end{array}\right\} \geqq 2 t\left|\sin \frac{\gamma}{2}\right|\left\{\sqrt{1+\sin ^{2} \frac{\gamma}{2}}-\left|\sin \frac{\gamma}{2}\right|\right\}
$$

Consider next the case $B>1$. Choose $U: u e^{\imath \alpha(u)}$ so that

$$
\begin{equation*}
\left|t e^{2(\alpha(t)+r)}-u e^{2 \alpha(u)}\right|=d \tag{4.4}
\end{equation*}
$$

If we put $T: t e^{2 \alpha(t)}$ and $T_{\gamma}: t e^{\imath(\alpha(t)+\gamma)}$, then we have

$$
\begin{align*}
T U^{2}= & T_{\gamma} U^{2}+ \tag{4.5}\\
= & T_{r} T^{2}-2 T_{\gamma} U \cdot T_{\gamma} T \cos \angle T T_{\gamma} U \\
= & d^{2}+4 t^{2} \sin ^{2} \frac{\gamma}{2}-2\{[u \cos \alpha(u)-t \cos (\alpha(t)+\gamma)] \\
& \quad \times[t \cos \alpha(t)-t \cos (\alpha(t)+\gamma)]+[u \sin \alpha(u)-t \sin (\alpha(t)+\gamma)] \\
& \quad \times[t \sin \alpha(t)-t \sin (\alpha(t)+\gamma)]\} \\
= & d^{2}+4 t^{2} \sin ^{2} \frac{\gamma}{2}-2\left\{t^{2}(1-\cos \gamma)+2 t u \sin \frac{\gamma}{2} \sin \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right)\right\} \\
= & d^{2}-4 t u \sin \frac{\gamma}{2} \sin \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right) .
\end{align*}
$$

By the definition of B-regular curve, (4.4) and (4.5)

$$
d^{2}-4 t u \sin \frac{\gamma}{2} \sin \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right) \leqq B^{2}(t-u)^{2}=B^{2}\left\{d^{2}-4 t u \sin ^{2}\left(\frac{\alpha(t)+\gamma-\alpha(u)}{2}\right)\right\} .
$$

Hence

$$
\begin{aligned}
&\left(B^{2}-1\right) d^{2} \geqq 4 t u\left\{B^{2} \sin ^{2}\left(\frac{\alpha(t)+\gamma-\alpha(u)}{2}\right)-\sin \frac{\gamma}{2} \sin \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right)\right\} \\
&=4 t u\left\{\frac{B^{2}}{2}-\frac{B^{2}}{2} \cos \frac{\gamma}{2} \cos \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right)\right. \\
&\left.+\left(\frac{B^{2}}{2}-1\right) \sin \frac{\gamma}{2} \sin \left(\alpha(t)-\alpha(u)+\frac{\gamma}{2}\right)\right\} \\
& \geqq 4 t u\left\{\frac{B^{2}}{2}-\sqrt{\left.\frac{B^{4}}{4}-\left(B^{2}-1\right) \sin ^{2} \frac{\gamma}{2}\right\}}\right. \\
& \geqq 4 t u \frac{B^{2}-1}{B^{2}} \sin ^{2} \frac{\gamma}{2}
\end{aligned}
$$

and thus

$$
\begin{equation*}
d^{2} \geqq \frac{4 t u}{B^{2}} \sin ^{2} \frac{\gamma}{2} \tag{4.6}
\end{equation*}
$$

since $B>1$. Also from (4.4)

$$
\begin{equation*}
u \geqq t-d \tag{4.7}
\end{equation*}
$$

Combining (4.6) and (4.7), we have

$$
d^{2} \geqq \frac{4 t(t-d)}{B^{2}} \sin ^{2} \frac{\gamma}{2}
$$

and consequently

$$
d \geqq \frac{2 t\left|\sin \frac{\gamma}{2}\right|\left\{\sqrt{B^{2}+\sin ^{2} \frac{\gamma}{2}}-\left|\sin \frac{\gamma}{2}\right|\right\}}{B^{2}}
$$

5. From (4.1) we easily deduce that for $t \in\left[K_{1} t_{2}, r_{n}\right]\left(K_{1}=K_{1}(B, c, \delta)\right.$, $\left.n \geqq n_{4}\left(\geqq n_{3}\right)\right)$

$$
\begin{equation*}
\rho(s(z(t))) \geqq t \cdot l\left(B, \frac{c}{2}-2 \delta\right) \tag{5.1}
\end{equation*}
$$

From (5.1) and the fact that $\rho(s(z(t)) \leqq t$ we have

$$
\begin{equation*}
\frac{\rho\left(s_{n}\right)}{\rho(s(z(u)))} \geqq l\left(B, \frac{c}{2}-2 \delta\right)\left(\frac{r_{n}}{u}\right) \quad\left(u \in\left[K_{1} t_{2}, r_{n}\right], n \geqq n_{4}\right) \tag{5.2}
\end{equation*}
$$

Also (5.1) and the fact that \mathcal{L}_{n} is B-regular imply

$$
\begin{align*}
\int_{s(z(u))}^{s_{n}} \frac{d s}{\rho(s)} \leqq \int_{u}^{r_{n}} \frac{B}{\rho(s(z(t)))} d t \leqq \frac{B}{l\left(B, \frac{c}{2}-2 \delta\right)} \log \left(\frac{r_{n}}{u}\right) \tag{5.3}\\
\quad\left(u \in\left[K_{1} t_{2}, r_{n}\right\rfloor, n \geqq n_{4}\right)
\end{align*}
$$

Substituting (5.2) and (5.3) into (3.3), we obtain

$$
\begin{equation*}
\omega(z(u))>\frac{l\left(B, \frac{c}{2}-2 \delta\right)}{2 \pi}\left(\frac{u}{r_{n}}\right)^{\frac{e B}{l\left(B, \frac{c}{2}-2 \bar{\delta}\right)}-1} \quad\left(u \in\left[K_{1} t_{2}, r_{n}\right], n \geqq n_{4}\right) . \tag{5.4}
\end{equation*}
$$

Hence from (2.4), (5.4) and (1.4) we deduce that for $u \in\left[K_{1} t_{2}, r_{n}\right]\left(n \geqq n_{4}\right)$

$$
\begin{gather*}
\log \left|\frac{f^{\prime}(z(u))}{f(z(u))}\right|<h \log u-\frac{K \cdot l\left(B, \frac{c}{2}-2 \delta\right)}{2 \pi} T\left(r_{n}, f\right)\left(\frac{u}{r_{n}}\right)^{\frac{e B}{1\left(B, \frac{c}{2}-2 \dot{\delta}\right)}}-1 \tag{5.5}\\
\quad<h \log r_{n}-\frac{K \cdot l\left(B, \frac{c}{2}-2 \delta\right)}{2 \pi} u^{\frac{e B}{1\left(B, \frac{c}{2}-2 \delta\right)}}{ }^{-1} r_{n}{ }^{\lambda-\epsilon-\left(\frac{e B}{l\left(B, \frac{c}{2}-2 \bar{\delta}\right)^{-1}}\right) .}
\end{gather*}
$$

As $n \rightarrow \infty$, the right hand side of (5.5) tends to $-\infty$, by (2.1) or (2.1)'. Therefore

$$
\frac{f^{\prime}(z(u))}{f(z(u))}=0
$$

for every $z(u)=u e^{i\left(\alpha_{1}(u)+\frac{c}{2}\right)}\left(u>K_{1} t_{2}\right)$. Thus $f^{\prime}(z) / f(z)$ vanishes identically, which is only possible if $f(z)$ is a constant. This contradicts (1.1) and hence completes the proof of Theorem.

References

[1] Edrei, A. and Fuchs, W.H. J., The deficiencies of meromorphic functions of order less than one, Duke Math. J. 2? (1960), 233-249.
[2] Edrei, A. and Fuchs, W.H. J., On meromorphic functions with regions free of poles and zeros, Acta Math. 108 (1962), 113-145.
[3] Nevanlinna, R., Analytic functions, Springer-Verlag (1970).

> Department of Mathematics
> Daido Institute of Technology
> Daido-cho, Minami-ku, Nagoya, Japan

