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DUPIN HYPERSURFACES WITH SIX
PRINCIPAL CURVATURES

By REIKO MIYAOKA

In this paper, we give a necessary and sufficient condition for a compact
embedded Dupin hypersurface with six principal curvatures to be Lie equivalent
to an isoparametric hypersurface. The argument goes almost parallel with the
case of four principal curvatures [1], and we assume all the results contained
there, as well as its notations.

Now we state our result.

THEOREM. Let M be a compact embedded Dupin hypersurface in a space
form M(c). If M has six principal curvatures 2,>2,> -+ >2A, at each point of
M, then M is the Lie-geometric image of an isoparametric hypersurface in a
sphere if and only if the following are satisfied -

(i) Al funcitons
(Ai—2e)A;—21)
(A=) A—4%)

are constant on M, where i, 7, k, I={1, 2, ---, 6} are mutually distinct numbers.
(ii) For each As-leaf L, there are As-leaf L} and As-leaf L% such that LML+ @
and LiNLi+@ for all gL', where L% and Lj denote A,-leaf and As-leaf at g,
respectively.

W:ju :=[4, l; s Ar, Al=

By an elementary calculation, we obtain

LEMMA. Let S be the symmetric group of degree 6. Then all ¥, ;1)’s are
constant if and only if

(1), wv(l)a(z)a(s)a(ny wa(l)a(z)a(s)o(s): wd(l)v(2)0(3)0(6)
are constant on M for some o<,

Therefore, we can replace (i) by (i)’ in the statement of the theorem. This
lemma is implied without calculation if we note that the curvature spheres
correspond to projective points on the projective line obtained by the Legendre
map, and that for fixed three points on the line, the fourth point is determined
by the cross ratio (Remark 4.8 [17).
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For the proof of the theorem, necessity (i) is already shown in Corollary of
[1], and (ii) will be proved in Proposition 5. To prove sufficiency, we briefly

follow §5-9 of [1], adding some remarks.

This time, we denote six principal curvatures by 2A>pg>v>p>0>7, and the
corresponding orthonormal frame by (e, ey, ¢, -, €4, ¢;), Where the indices
range so that {e,}=the principal distribution with respect to 4, and so forth.
Actually, each distribution is of dimension m:nT_l, by the same argument as
in [2]. Under the assumption (i) or (i), every point of M is a critical point
of all ¥’s. So we get

LEMMA 1 (cf. Lemma 5.3 in [1]). At every point of M, we have
A?f—Atq'i . ?ff'—Agr . A?f—AZu _ A?f—Agz

p—v p—p p—a p—r
_ Agi_Ag'r . A;,‘Zi_Agu _ Agi—Ag.r
T v—p = yv—o = vt
Ag’r'—Azu Agr—Agx AZu—AgI
= = = (I'——‘-Ra).
o—0 o—7 o—T

We define Ry, R,, R, R,, R, similarly by the corresponding ratios.

Proof. For instance, eq(log[4, p; #¢, v1)=0 implies
A.%f_Agr Agi_Agr

= (=: R),
p—p yv—p
and eq(log[4, ¢; g, v]1)=0 implies
Aa _-Agu Ag’i—AZu ’
I = (=: R).

y—a v—o

Expressing the numerators by R (R’) and denominators, R=R’ is easily shown.
q.e.d.

LEMMA 2 (cf. Lemma 5.4 of [1]). At a fixed point p of M, we obtain
A,€0(n+1, 2) such that

Ags(p)=A3(p) for all a, B, 1 such that a[BIU[r], B&r].

Proof. If we put b=0 in (4.7) of [1], (x4, ¥a)=(0, dR,) is a solution of the
simultaneous equation

A3,(0)=A4(p)=A5(p)=A%u(p)=A2:(D).
Then A, is obtained in the same way as the proof of Lemma 5.4. q.e.d.

Now, by Remark 5.5 of [1], we can find A,=0(n+1, 2) so that at the
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image point of p by A,;°A,, the normal geodesic becomes “common”.
Denoting the image of M under A,-A, by the same letter, we get

LEMMA 3 (cf. Proposition 6.1 of [1]). The normal geodesic v at p cuts M
at twelve points py=p, ps, -+, p12. Moreover, 7 is the common normal geodesic at
every point p;, and all leaves at p;’s are connected as in Figure 1.

Proof. Let p,=p, L§m7={P|, Do}, LENT={DP1, bs}, LyNr={p1, Pg,\L’;ﬂT
={p1, Ds}, LiNr=[p:, pw} and LENr={p:, p:.}. Then there exist p,&p.p.NM,
A~ A A~

DsEPsDNM, piEpspsN\M, poE peproNM and puef’ﬁzmM; since M devides

S” into two disk bundles over two focal submanifolds consisting of the first

focal points of M in both directions (see the proof of Proposition 6.1 in [17).
We denote homology cycles of M at p< M obtained by Thorbergsson [3] by

Lepl, [eplEH(M ; Z)),

[e4*], [e51€EHn(M ; Zy),
Ley?], [em1€Him(M ;5 Z,),
Leg#t], [ey 1€ Hin(M 5 Zs),
Legpe], e " 1€ Hom(M ; Z,).

Moreover, we denote by B#* the ball such that 9B?*=S?=the hypersphere
centered at the focal point f? with radius cot=*A(p;), where n(p;) (=the unit
normal vector to M at p,) is the inner (outer, resp.) normal to B#* (B, resp.).
B#*, By*, B¢*, B5* and B:i* are similarly defined.

Supposing LiNL{=¢@, we may transform M conformally so that f3 and f}
are antipodal (see Figure 2). Let xer\@ be the point sufficiently near to f3
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such that d, is a Morse function. We will lead a contradiction by showing
that d, should have thirteen critical points. The minimum point of d, is in
Bs-, and p, and p, are critical points of d, with index m, which correspond to
cycles ¢§ and cf, respectively. Next, we have B{fN\Bj + @, since the inter-
section number S(c%#%, ¢3)+0, where c¥**C B} and c¢§CB;~. This means
that the critical point with index 2m corresponding to ¢¢5 should lie in
{peM|d (p)<d.(p1»)}. In the same way, we can show that B{-N\B¥+@ and
that the critical point with index 2m corresponding to c¢#* should lie in
{peM|d.(P)Sd(p1s)+2cot™*A(p12)}. Next, we have B{NBEZ+@, because
S(cts#2, ¢7)+0, where c%**C B¢ and i BS;. Therefore, with BiyNBs # @,
we know that the critical point with index 3m corresponding to ¢£° should lie
in {peM|d.(p)<d.(p)}. In the same way, By N\B4 +@ and B4 NBi+Q
show that, the critical point with index 3m corresponding to ci*? should lie in
{PEM|d.(p) < da(Pro)+2c0t™"A(p1e)}.  Note that do(pro)+2cot™A(P10) < d(p),
since (Bf)°N\M=@. So all seven critical points above lic in {pEM|d.(p)<d.(ps)}.

On the other hand, d.. should have the minimum point p,, critical points
with index m corresponding to cfand ciin {pEM|d_(P)Sd_(p)+2cot (—z(p,))},
critical points of index 2m corresponding to ¢#% and ¢¥* in {p=M|d_.(p)<d_.(ps)
+2cot™'(—7(pe))}. Thus these five critical points lie in {p=M|d.(p)>d.(ps)}.
Now, since p, is another critical point of d,, d, should have thirteen critical
points on 7, a contradiction.

Thus we get LiN\Li=p,, and similarly LiNLéi=ps, LiN\Li=p,, Li\Li,=p,
and L{,N\L{=p,,. Further argument using tautness shows that these twelve
points are connected each other by certain leaves as in Figure 1. q.e.d.

LEMMA 4. By a Lie transformation A;0(n+1, 2), we can transform M so
that py, ps, -+, b2 are the vertices of a regular dodecagon.
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Proof. The conformal transformation which takes L? and L? to the anti-
podal position is easily found. Now, preserving this relation, we can find a
Lie transformation such that z(p,)=7(p.) (see § 7 of [1]). Then the constantness
of cross ratios shows that all principal curvatures at p, and p, coincide.
Moreover, preserving this relation, we can find another Lie transformation such
that 7(ps)=1(pe) (see Prop. 8.1 of [1], especially the footnote given in its proof).
Thus each of g, v, 7 takes the same value at p, and p,, and so do 2, p
and ¢ by the assumption. Therefore we get Figure 3 where 6,=cot 'A(p,),

Fig. 3.

0=—cot 'z(p,) and O;=cot™'A(p;). Let z, be the complex number corresponding
(A—v)(A—7)

5 . Then we have b
A= p—v) v

to p; where we may assume z;=1. Put =

Lemma 6.8 of [1],
W(Pz):[zl, Z11; 29, 23]

w(plo):[zsy 273 25, Z211] .
Since z,=—z,=—1, z,=—2z; and z,,=—2z;, T(p,)=T () implies

1+Z325:0
i.e.
200,4-0,)+{r—2(0,+05)}=x.

Thus we obtain
01 == 03 .

Therefore, we get through a parallel transformation that

01=02=03=1—”2. q.e.d.
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PROPOSITION 5. A Lie image of an isoparametric hypersurface satisfies (ii).

Proof. Since the relation (ii) is preserved by Lie transformations, we show
that an isoparametric hypersurface N satisfies (ii). Note that at any point
piE N, the intersection of the normal geodesic 7 at p, and N makes a regular
dodecagon as in Figure 4 after a suitable parallel transformation. We will show
that for any ¢=L%, L¢NLi+@. In fact, it is an easy consequence of
S(ct?, ¢40o7)#0 and p(g)=p(p,). Other cases follow similarly. q.e.d.

Now, consider sufficiency. Under the cogdition (i), we could transform the
original hypersurface M to a hypersurface M satisfying the relation in Figure 4
at the image point of some fixed point of M. Now, when M satisfies (ii), for
a A-leaf L?, denote by L the v-leaf satisfying LENLy# @, g L*. LS is defined

P2 Pl

P, Py,

Py

P Py

Fig. 4.

similarly. Then by the same argument as in the proof of Lemma 9.2 of [1],
we can show L¥=LYand L=L¢ Thus it is easy to see that TL{=TL:=TLg,
where “=" means “be parallel to” with respect to the connection of S™ (see the
proof of Proposition 9.3 of [1]). Note that these facts hold also for L%, L2, L3
L{ and L%. Now, we show:

LEMMA 6. The parallel families of tangent spaces of leaves are {T L}, T L,
TLy, TLy, TL3 TL¥, {TL;, TL# TL¢ TL¢ TL# TL3}, {TL TLS TL:
TLy, TL3, TL%}, {TL;, TL¢, TL¢ TLS TL¢, TL,}, {TL: TLS, TL: TL3,
TLS, TL}4Y and {TLs, TLY, TLE, TL%, TLY, TL%}.
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Proof. Put TLi=U, TL¢=V, TLy=W, TL¢=X, TLi=Y, TLi=2Z,
TLi=U,, TLt=V,, TL:=W,, TL=X,, TLs=Y,, TL:=Z,, TL{=V,, TLi=Z,,
TLt=V, and TLi=Z,. From above fact, it follows that TL;=TLJ=U,
TLi=TL;=W, TL}=TL:=Y, TL;=TL:=U,, TL{=TL}=W, and TLy=TL}
=Y,. Thus, we have

Ul@v:a@Zs:U@V@Zy

UI@V1®Z1=U®VZ®ZZ ’

since TyM=T M and T, M=T,M. Noting that U, 1 Z at p,, and U, 1 Z; at p,,
we get
U,cUdV)NUDV2),

but since L¢/NL{=@, we have VNV,={0}, i.e. U,=U. By the same argument
at p, and p;, we get W,=W and Y,=Y.

Now, consider the hexagon with vertices pi, pa, Ds, Ds, Do, D1z- At each
vertex, just note y, p, r-leaves. Then the total tangent space of these three
leaves is equal to VO X@PZ at each vertex. So by an easy argument as above,
using that p-leaves never intersect each other, we get TL¢=TL{=V, TLi=
TL¢=X and TL{=TL¢=7Z.

Clatm. On Li, p and p are constant and their leaves are totally geodesic.

Since TL{=TL¢=Z, the normal geodesic at g L7 cuts M as in Figure 5 in
which the definition of ¢, and ¢, is given. Then, S(c#°°, c})+0 implies

wg)= Ii_;r, and S(c#, ¢4°7)#0 implies y(q,)gi—g. Thus we have y(q1)=%,
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from which follows ciNcf?Po*CBi*NBY =q so that g=L# and Lg=L% is
totally geodesic by Remark 6.2 of [1]. In the same way, S(cg*?, ¢57)#0 and
57
'1—2y

Now, we get from the assumption (i) that all principal curvatures are
constant on LI. Or, more strongly:

S(egg, cx#*)#0 imply p(gz)=cot and Lg=L¢g, is totally geodesic.

Claim. All leaves through a point of L{ is totally geodesic.

This is because, we have A55=0 for a#[B], where f=f, », x on Lf, then
Lemma 1 implies all 455=0 on Lf for any a¢[f].
Thus we must have TL{=TL{=TLi=Z, and similarly, TL;=TL{=TL#
=V, TL{=TL{=TLij,=X (see Remark 6.2 of [1]). This proves Lemma 6.
q.e.d.
Proof of sufficiency. Similar to the proof of Theorem II in [1].
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