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SUBMANIFOLDS OF QUATERNION PROJECTIVE SPACE

WITH BOUNDED SECOND FUNDAMENTAL FORM

BY PARTICK COULTON AND HILLEL GAUCHMAN

Abstract. Let h be the second fundamental form of a compact submanifold M of the
quaternion projective space HPn(Y). For any unit vector u^TM, set δ(u) = \\h(u,u)\\2.
We determine all compact totally complex submanifolds of HP71 (I) (resp. all compact

totally real minimal submanifolds of HPn(l)) satisfying condition δ(u)^-j- (resp.

δ(u)^—) for all unit vectors

1. Introduction.

Let M be a smooth m-dimensional Riemannian manifold isometrically
immersed in an (m+jfr)-dimensional Riemannian manifold M. Let h denote the
second fundamental form of this immersion. For each I G M , /ι is a bilinear
mapping from TMxxTMx into TMi, where TMX is the tangent space of M
at x and TMi is the normal space. We denote by S(x) the square of the
length of h at I G M . By Gauss' equation we have S(x)=m(m—1)—p(x),
whenever M is immersed as a minimal submanifold of Sm+P(l) with scalar
curvature p(x) at x in M. Therefore S(x) is an intrinsic invariant of M.

In 1968, J. Simons [12] discovered for the class of compact minimal
m-dimensional submanifolds of the unit (m+£)-sphere that the totally geodesic
submanifolds are isolated in the following sense: If S(x)<n/(2—l/p) for all
X G M , then S(x)=0 on M, and thus M is totally geodesic. In [1], S. S. Chern,
M. do Carmo, and S. Kobayashi determined all minimal submanifolds of the
unit sphere satisfying S(x)=n/(2—l/p). Later similar results were obtained
for various types of minimal submanifolds of the complex projective spaces
and the quaternion projective spaces.

Let T: UM-+M and UMX denote the unit tangent bundle of M along with
its fibre over x ε M We set δ{u)=\\h(u, u)\\2 for u^UM: Observe that δ(u)
is not an intrinsic invariant of the submanifold M. However, like S(x), δ(u)
can be considered as a natural measure of the degree to which an immersion
fails to be totally geodesic.

In [10], and [11], A. Ros proved that if M is a compact Kaehler submani-
fold of CPn(l) and if δ(w)<l/4, for any u^UM, then M is totally geodesic in
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CPn(l). Ros also gives a complete list of Kaehler submanifolds in CP n ( l )
which satisfy the condition

{ ( ) } /
u(ΞUM

One of the authors obtained results ([4], [5]) similar to the results of Ros for
minimal submanifolds of a sphere and for totally real minimal submanifolds of
CPn(l). In the present paper we obtain analogous results for totally complex
and totally real minimal submanifolds of quaternion projective space HPn(l).

Recall the standard totally complex imbeddings [3] :

τ: CPn(l)—>HPn{l),

along with the following standard imbeddings [8] :

φλ: C P w ( l / 2 ) — > C P * ( 1 ) , where k=m(m+3)/2

φ2: CPm-s(l)xCPs(l)—>CP*(1), k=m+s(m-s)

φzi Qm — > C P m + 1 ( l ) , m ^ 3 and Q is the standard complex quadric.

/2) — > CP*(1), k=m(m+10)/8

φ5: SO(10)/£7(5) — > CP15(1)

φ6: £ 6 /Spin(10)xT—>CP 2 6 (1).

We define the imbeddings of φi=τ°$i, which we call the Nakagawa-Takagi
imbeddings or the NT imbeddings.

THEOREM 1. Let M be a compact totally complex submanifold of real
dimension 2m, immersed in the quaternion projective space HPn(l). If δ(u)<l/4:
for all u^UM, then either

(i) δ(u)=0 and M is totally geodesic in HPn(l),
or

(ii) Max{δ(u)} =1/4 and M is an imbedded submanifold congruent to one of
the NT-imbeddings.

Note that the real dimensions of M for the imbeddings φu φ2, •••, φG are

2m, 2m, 2m, 2m, 20 and 32 respectively.

THEOREM 2. Let φ: M-*HPn(l) be a totally complex immersion of a compact
Kaehler manifold M into HPn{l). Let H denote the holomorphic sectional curvature
of M. If H>l/2, then M is totally geodesic. If H^l/2 and M is not totally
geodesic, then φ is congruent to one of the six NT-imbeddings.

Recall the totally real imbeddings [2] :
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v\ RPn(l/±)—>HPn(l),

and the first standard imbeddings of projective spaces:

φx: JBP2(1/12) — > RPX1/4;)

φ2: CP\lβ) —

φz: HP\lβ)—

φA: CayP2(l/3)

THEOREM 3. Let M be a compact totally real minimal submanifold of
dimension m, immersed in the quaternion projective space HPn(l). If δ(u)<l/12
for all u^UM, then either

(i) δ(u)=0 and M is totally geodesic in HPn(l)
or

(ii) Max{^(w)}=l/12 and M is either congruent to one of the imbeddings
ψi=voφ% or to the immersion φ6=φt-π, where π: S\l /12)^ RPW (1/12)
is the covering map.

Note that the dimension of M for the mappings φu ψ2y ψ3, φ4, ψ5 are 2, 4, 8, 16,
and 2 respectively.

2. Quaternion Kaehler Manifolds.

Let AT" be a differentiate manifold of dimension in, and assume that there
is a 3-dimensional vector bundle V, [6], consisting of tensors of type (1, 1)
over N satisfying the following condition: in any coordinate neighborhood U
of N there is a local base {/, /, K] of V called a canonical local base of V,
such that

p=j*=K*=-Id
(2.1)

IJ=-JI=K; JK=-KJ=I; KI=-KI=J,

where Id denotes the identity tensor field of type (1, 1). If TV is a manifold
and V is a bundle over iV satisfying the above condition then (N, V) is called
an almost quaternion manifold. If g is a Riemannian metric for (N, V) such
that g(φX9 Y)+g(X, φY)=0, holds for any cross section φ of V, with X, YΪΞTN,
then (N, V', g) is called an almost quaternion metric manifold.

Assume that the Riemannian connection 7 of (N, V, g) satisfies the following
condition: if φ is a local cross section of the bundle V, then 1 xφ is also a
local cross section of V, where X is an arbitrary vector field. In this case
N—(N, V, g) is called a Kaehler quaternion manifold.

Let xeTVand X<=TNX. Consider the 4-dimensional subspace Q(x) in TNX

defined by
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X, IX, JXy KX\.

We call this the Q-section generated by X. If for all xeΛΓ, and X^TNXf and
Y, Z<E:Q{X), the sectional curvature σ(Y, Z)—c (a constant), then we say that
N is a Kaehler quaternion manifold of constant Q-sectional curvature c. In
addition, such a manifold is called a quaternion space-form.

The curvature operator R of a quaternionic space-form N=(N, V, g) has
the form:

(2.2) R(X, Y)Z=jtΛ(Y, Z)X-A(X, Z)Y-2Γ(X, Y)Z"\

where c is the Q-sectional curvature,

Λ(Y, Z)X=g(Y, Z)X+g{IY, Z)IX+g(fY, Z)JX+g(KY, Z)KX
and

Γ(X, Y)Z=g(IX, Y)IZ+g(JX, Y)JZ+g(KX, Y)KZ.

It is well known that the quaterion projective space HPn(c) is a compact
4?2-dimensional quaternion space-form.

3. Totally Complex Submanifolds.

Let {My V, g) be a JCaehler quaternion manifold and let M be a Riemannian
manifold immersed in M isometrically by F: M—>M. A submanifold M is called
a totally complex submanifold of M [3], if the following two conditions are
satisfied:

(i) There exists a global section I of F*(V) satisfying

for any X^TM.

(ii) For each X G M ; there exists a neighborhood U(x)(ZM and a canonical
local base {/, /, K} of i?*(T/) over U(x) adapted to / such that

I(TMy)=TMy; J(TMy)±TMy; K{TMy)l_TMy

for each y^U(x).

It follows from this definition, that any totally complex submanifold of a Kaehler
quaternion manifold is even dimensional. In fact, it is easy to see that it has a
natural Kaehler structure. Let h be the second fundamental form of M. We
define

T1(X>Y9Z)=g(h(X9Y)9JZ)t

and
Tt(X, Y, Z)=g(h(X, Y), KZ)

for X, Y, Z(=TMX, X G M . TO simplify notation, we henceforth write g(, )=< , >.
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LEMMA 3.1, [13]. Assume that M is a totally complex submanifold of a
Kaehler quaternion manifold then

( i ) KIX, Y)=h(X, IY)=Ih(X, Y)

for X, YΪΞTMX> XEΞM.

(ii) 7\ and T2 are symmetric with respect to all three arguments.

(iii) Tt(IX, Y, Z)=Tt(X, IY, Z)=Ti(X> Y, IZ) for ί = l , 2,
and for X, Y, Z<ΞTMX,

By Lemma 3.1, h(IX9 IY)=-h(X, Y). It follows that any totally complex
submanifold of Kaehler quaternion manifold is minimal. We shall need the
following to prove Theorem 1.

LEMMA 3.2, [11]. Let S be a k-covariant tensor field on a compact Rieman-
nian manifold N. Then

\ - , u;u)du=0,

where 7 is the Riemann connection on N, UN is the unit tangent bundle of Ny

and du is the canonical volume element on UN.

For the remainder of this section we shall assume that M is a totally
complex compact submanifold of real dimension 2m in the quaternionic projective
space HPn(l). We shall denote by V, 7 and 7 X the Riemannian connections on
HP71, on My and the normal connection on M, respectively. We recall that
δ(u)=\\h(u, u)\\2, where UEΞUM.

LEMMA 3.3. Assume that δ(u)^l/4 for all UΪΞUM. Then

(i) 7/z=0, {i.e. the second fundamental form is parallel).

(ii) g(h(X, Y), JZ)=g(h(X, Y), KZ)=0 for all X, Y, Z^TMXy XEΞM.

Proof. We shall use the method of Ros [11]. The first and second covariant
derivatives of h are given by

))-hφzX, Y)-h(X, 1ZY),
and

(Ψh)(X, Y Z; W)=VJr«$h)(X, Y Z))-φh){lwX, Y Z)

, 1WY Z)-φh){X, Y 1WZ).

Using equation (2.2), we can write the Codazzi equation as:

(3.2) Θh)(Xί} X2, X3)=(

for any permutation σ, and for any Xu X2, X3^TMX, x<=M, (i.e. (7/z) is
symmetric in all three arguments). We obtain the following Ricci identity:
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(3.3) (Ψh)(X, Y Z; W)-(Ψh)(X, Y W Z)

= -R\Z, W)h(X, Y)+h(R(Z, W)X, Y)+KX, R(Z, W)Y),

where R and R1 denote the curvature tensors associated with 7 and V\
respectively. Since M has a Kaehler structure, we have

(3.4) IR(X, IX)X=R(X, IX)IX.

Let t be the 4-covariant tensor field on M defined by

t(x, Y} z, w)=<h(x, γ\ h{z, wy>.

Now, for any u^UM, we have

(κ, u,u,u; u)=2<(Vh)(u, u u), h(uy M)>
and

(3.5) ( Ψ t ) = ( u , u, u,u;u;u)

=2<(Ψh)(u, u u; u\ h(u, M ) ) + 2 | | ( ^ A ) ( M , U;U)\\.

Using equations (3.1) through (3.5) and applying Lemma 3.1, we obtain:

(3.6) (Ψt)(Iu, Iu, Iu, Iu Iu; Iu)

=2<(Ψh)(Iu, u u; Iu), h(u, iO>+2||(Ϋλ)(κ, u uψ

=2<(Ψh)(Iu, u Iu, u), h(u, M)>+2<i?1(/w, u)Ih(u, u), h{u, u)}

-4<R(Iu, u)Iu, AhCu,u,u>+2\\(Vh)(u, u uψ.

By Lemma 3.1,

(3.7) Ajt=IAξ=-AξI.

Using the Ricci equation, (2.2), and (3.7), we obtain

(3.8) <R\Iu, u), Ih{u, u), h(u} u)>

| |A(M, M ) | | 2 | | i 4 Λ ( t t i t t ) ( M ) | | + - ί < A ( M , u), JuY+^(h{u, u\ Ku>\

Now, by Gauss' equation and using (2.2) and (3.7) we have

(3.9) (R{Iu, u)Iu, Λ κ t t i t t ) ( t t ) > = - | | A ( κ , M ) l l 2

It follows from (3.2), (3.6), (3.8) and (3.9) that

(3.10) (Ψt)(Iu, Iu, Iu, Iu Iu Iu)

=:-2<(Ψh)(u, u u u), h{u, κ)>+3||A

(M, U), Juy+<h(u, u), Ku>2+2\\(Vh)(u, u; u)\\\
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Taking the sum of (3.5) and (3.10), we obtain

(3.11) (Ψt)(u, u,u,u; u, u)+{Ψt)(Iu, Iu, Iu, Iu Iu; Iu)

=3(||A(«, uW-i\\Ahίu,u,(uW)+<h(u, u), Ju>*

+(h{u, a), Kuy+φh(u,u;uW.

Integrating (3.11) over UM and applying Lemma 3.2, we have

(3.12)

+ ( «Λ(u, u), Juy+(h{u, u), Kuγdu+i\ \\ΐh(u, u uψdu^O.
J UM JUM

Now observe that by the hypothesis of this lemma \\h(u, w)||^l/4, hence by
Schwartz' inequality:

eigenvalue of ^ ) 2 ^ l / 4 (||f| |=l).

Therefore,

where h(u, u)=\\h(u, u)\\ξ. It now follows from (3.12) that

>=<h(u, u), Ku}=0
and

(7/z)O, M M)=0

for each u^UM. Now, using Lemma 3.1 and equation (3.2), we obtain by
polarization

</2(Z, Y), JZ>=ζh(X, Y)9 KZ>=0,
and

($hXX,Y;Z)=0,

for each X, F, Z<^TMX, xeM. This completes the proof of the lemma.

Proof of Theorem 1. By Lemma 3.3(i) Mhas a parallel second fundamental
form. All submanifolds of HPn(l) which have parallel second fundamental
form have been classified by K. Tsukada in [13], Lemma 3.3(ii) shows that if
the submanifold M in Theorem 1 is not totally geodesic, then it is of the type
(C-C) in Tsukada's classification ([13], Proposition 3.2). It follows from the
classification in [13], that the complete list of all submanifolds of the type
(C-C) with parallel second fundamental form is given by the NT imbeddings
φif *'=1, ••• , 6. It is known that for each NT imbedding

max-{^(M)} =1/4.
UG.UM
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Moreover, this maximum is achieved at every point of M. This completes
the proof of Theorem 1.

Proof of Theorem 2. By (2.2) and Gauss' equation we have

H(u)=<R(u, Iu)Iu, u}=l-2δ(u),

for any u^UM. Hence the conditions H(u)^l/2 is equivalent to the condition
δ(u)<Ll/4. This proves the theorem.

4. Maximal directions.

Let M be a compact m-dimensional Riemannian manifold isometrically
immersed in an (ra+ί)-dimensional Riemannian manifold. As in the previous
section we let h denote the second fundamental form, and we define δ(u) by
δ(u)=\\h(u, u)\\2 for u^UM. Assume that for some u^UMX) we have

δ(u)=max{δ(u)},
v<=UM

then we say that u is a maximal direction at X G M We say that an orthonormal
frame {eu ••• , em+P} is adapted, if {elf •••, em} is a frame for TM, and
(em +i, •••, em+p} is a frame for TM1. Whenever {eu •••, em+P\ is an adapted
frame we use the notation:

hιj—h{elf βj) i, / = 1 , ••• , m.

LEMMA 4.1, [5]. // {eu •••, em+p} is an adapted frame at x^M such that
βί is a maximal direction at x, then

(4.1) <*ii, λ l t >=0 ι = 2 , 3 f - , m

where <, > denotes g{,) in M.

COROLLARY. Diagonalizing the symmetric bilinear form b(X, Y)=(hn, h{X, F)>,
we can always find an adapted frame {eu ••• , em+p\ such that

(4.2) ex is a given maximal direction at x,

(4.3) <An, ht,>=0, iΦj, i, j=l, 2, - , m.

LEMMA 4.2 [5] (Variational Inequality). For any adapted frame satisfying
conditions (4.2) and (4.3),

(4.4) l|/iiill2-</in, / ^ > - 2 | | / ι u | | 2 ^ 0 , ί=2, 3, ..., m.

Let us define a 4-covariant tensor field t on M by the formula

(4.5) t(X, Y, Z, W)=<h(X, Y)9
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where X, Yy Z, W^TMX, Λ G M . The following result is a cosequence of /.
Simon's formula for ΔA, ([12], [1]).

LEMMA 4.3 [5]. For any adapted frame satisfying conditions (4.2) and (4.3)
we have

(4.6) j(At)(eu eu eίf e,)

ίf et)hllf λ l t >+<£(e t , hn)et, hn>-<hn, A«>2

u et)et, O H I M 2 )

l9 e1;e%)n+m<R(eι, hιί)βι, H>+m\\hn\\\hn, H>,

where Δ is the Laplace operator, R is the curvature tensor of M, H is the mean
curvature vector.

Let s be a k-zovariant tensor field on M. Suppose that u^UMx satisfies

s(u, ••• , u)— max {s(v, •••, v)}.
V<=UMX

In such a case we say that u is a maximal direction for s at x. For any
x e M , we define

f*(x)=s(u, — , u)

where u is a maximal direction for s at x. The following result is an obvious
generalization of [7], (Proposition 3.1).

LEMMA 4.4 [5] (Generalized Bochner's Lemma). Let M be a compact Rie-
mannian manifold and s a k-covariant tensor field on M. If

(ΔS)(M, •••, w)^0

for any maximal direction for s, then fs is constant on M, and (Δs)(w, •••, w)=0
for any maximal direction u for the tensor s.

5. Totally Real Minimal Submanifolds.

Let M=(M, V', g) denote a quaternion Kaehler manifold and M be a
Riemannian submanifold isometrically immersed in M. We say that M is a
totally real submanifold of M, [2], if

Θ(JMX)1_TMX

for any X G M , and any Θ<ΞVX, where Vx is the fibre of V over x. Recall that
h is the second fundamental form, and set

τx{x, Y, Z)=(h{xy γ\ izy
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τ2(X, Y, Z)=<Λ(Z, Y), jzy

TAX, Y, Z)=<h(X, Y), KZ>

where <, > denotes the metric g(,).

LEMMA 5.1 [13]. Ti(X, Y, Z) is symmetric in all three arguments for each
i = l , 2, 3.

Proof of Theorem 3. Let X G M and let {I, J, K} denote a cannonical local
base of V defined in some neighborhood U(x)dHPn{l). Let u denote a maximal
direction for t at x, and let {eίf •••, e±n\ denote an adapted frame at x satisfying
conditions (4.2) and (4.3). In addition assume that if w is an element of the
frame {eίf •••, ein}, then Iw, Jw, Kw are also elements of this frame. Using
equation (2.2), Lemma 5.1 and the minimality condition H=0, we can rewrite
(4.6) in the following form:

(5.1) y(ΔfXβ,, βu βu «,)

/ 1
|2(Ί^-||/ϊ11\ 12

TO 1 TO

+2Σ(||λn||«-<ft1If ή , , > ! ) + 7 Σ « , <u J , y)

TO ^

+ Σ IKVAXβ,, ̂  et)||2.
1 = 1

Now, since δ{u)^l/l2 for any UΪΞUM, we have that | |/zn | |2^l/12. Therefore,
using the Cauchy-Schwartz inequality along with the variational inequality (4.4)
we have that each term on the right hand side in (5.1) is non-negative. By
Lemma 4.4, (At)(eίf eu eu £i)=0. Hence

(5.2) I I A π l l 2 ^ - | | A n | | 2 ) = 0 ;

(5.3) ||A11 | |
ί-<A11, A«»(||A11|| -<A11, A«>-2||A1 4 | |

2)=0, i=2, - , m

(5.4) ||A11||
4-<A11, A«>2=0, ι=2, ••• , m;

(5.5) <An, M>=<An, /^>=<An, # 0 = 0 , ι = l , - , m;

(5.6) (7/z)(^, ^ ; O = 0 , / = 1 , - , w .

Now, if 3 ( M ) < 1 / 1 2 for all u^UM, then Λn=0 by (5.2), and we conclude
that M is totally geodesic. Assume, therefore, that

maxί(M)=l/12,
u<ΞUM

then ||An | |=l/Vl2. By (5.4), we have
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IIAiill'^AmΛii^^llAiill IIAtill^llAiill4.

Hence, A«=±An for each i=l, •••, m. By assumption M is minimal and
therefore m is even, m=2r. After a suitable renaming of indices we can write

" 1 1 — " 2 2 — *'• : = : h r r

= z — h r + ι, r + 1 — *** = — Iϊ2r,2r'

Assume that l£λ, μ, v, ξ£r, and let λ=λ+r, then

(5.7) hχχ=hn, hlλ — — /in.

Applying equations (4.4) and (5.7) we obtain that hlλ=0, λφl. In addition
equation (5.7) implies that each element of the frame, eτ, is a maximal direction
for 5. Consequently,

(5.8) hλμ=hip=0, λφμ.

Using equations (5,7) and (5.3) we have \\h1ι\\2=\\hn\\2, therefore

(5.9) | |/^ | |2=| |/ iπll 2 =l/12.

Now since ex is a maximal direction for each i, we have

( m m \ 12 / m

1=2 1=2 / I " ~ \ i=2

(5.10)

for r, x2, •••, xm<^R. Expanding in terms of τ and using equations (4.3), (5.8),
and (5.9), we obtain that

-4τ2,:

for all real τ, x2> •••, xm. Hence <Au, hiβ)=0, λφμ. Since each direction ^z

is maximal, we have

(5.11) (hxp, hn>=Q, flΦv; <hλ-v, hμ-v>=0, λ±μ.

Once more expanding (5.10) in terms of τ we find that

τ3 Σ <Alt,
* * ^ l

Hence, <Alt, AiΛ>+<A1;, AAι>+<A1Λ, AtJ>=0, i, j , kφl. By (5.7), (5.8), (5.11),
and since each ^ is a maximal direction, we obtain

(5.12) <AjP,

where either Λ^μ or v^f. Using (4.3), (5.7)-(5.9), (5.11), and (5.12), we obtain
by direct computation that δ(u)=l/12 for any u(=UM. B. O'Neill [9], calls an
immersion Λ-isotropic if \\h(u, u)\\=λ for any u^UM. Therefore, the immersion
under consideration is Vl/12-isotropic.

By (5.6), (7A)(Z, X; Y)=0. Using polarization we obtain
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(5.13) (V/ι)(X, Y, Z ) = 0 ,

for Z, Y, Z^TMX, x^M. Using equation (5.5), and applying polarization, we

obtain

(5.14) <h(X, Y), IZ>=<h(X, Y\ JZ>=<h(X, Y), KZ>=0,

for X, Y, ZCΞTMX, X G M ,

The second fundamental form of the immersion is parallel by equation

(5.13). All totally real minimal isometric immersions into HPn(l) with parallel

second fundamental form were classified by K. Tsukada [13]. There are two

possible types of such immersions, which are denoted as (R-R)-type and (R-C)-type

(Proposition 3.2, [13]). It follows from (5.14) that our immersion is not of type

(R-C). Among all totally real minimal isometric immersions of type (R-R) with

parallel second fundamental form only φu φ2, φs, φ4, φ5 are —™ isotropic. This

completes the proof of Theorem 3.
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