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A NOTE ON THE SECOND VARIATIONAL FORMULAS

OF FUNCTIONALS ON RIEMANN SURFACES

BY MASAHIKO TANIGUCHI

§ 1. Introduction.

Recently, F. Maitani proved the second variational formulas for several
fundamental functionals of arbitrary Riemann surfaces when surfaces varies
holomorphically ([6, §3]). His proof based on the classical and fundamental
method of orthogonal decomposition of square integrable abelian differentials.
But since he considered very general classes of differentials, the key of his
argument is not so clear. Hence it seems helpful to give a short and rather
elementary proof in case of typical and fundamental functionals, such as the
extremal length of the homology class of a given curve and Robin's constant
at a given point (which were originally investigated by H. Yamaguchi [9]).

In this paper, the author uses only two very elementary orthogonal decom-
positions. But we succeed in handling fairly general quasiconformal deforma-
tions and giving a general second variational formulas which reduces to Maitani's
ones in case of holomorphic families of surfaces.

In the next section, we will state the second variational formulas for the
above two functionals under general quasiconformal deformation. Proofs of
formulas, which the author intends to be self-contained, will be given in §4
after preparing more general second variational formulas in §3. The lines of
the proofs are similar to those of Maitani's ones.

§ 2. Statements of main results.

1. In general, for a given family ( x ( ί ) G l : ί e / , / is a neighborhood of 0
in Sft} of elements in a Banach space X with the norm || |U, we say that x(t)
is differentiate at to^I if there is an element y<=X such that lim^o.t-ol/ί
Kx(t+to)—x(to))—ty\\χ=O, and denote y by (dx/dt)(t0). When x(t) depends on
several real parameters t—(tu •••, tn), then, for every /, partial differentiability
and the partial derivative dx/dtj are defined in a similar way (cf. [5, Ch. 8]).

For a Riemann surface R, we denote by Γ(R) the Hubert space consisting
of all real square integrable abelian differentials on R with the inner product
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(a, j8)Λ=jί «Λ*jβ. Let ΓC(R) and Γh{R) be subspaces of Γ{R) consisting of all

closed differentials, and of all harmonic ones, respectively. We denote by Γeo(R)
the closure of {df: f is smooth and has a compact support in R} in Γ(R).
Then the following orthogonal decompositions are classically well-known (cf. [3,
Ch. V, §2]);

(1) Γ(R)=Γc(R)+*Γe0(R), and Γc(R)=Γh(R)+Γe0(R),

where we set *Λ0(/?)= {*<//: df(ΞΓe0(R)}. Next for the complex Hubert space

Γ*(R)={a+iβ: a, β^Γ(R)} with the inner product (φ, 0)S=ίί φΛ*ψ, the fol-

lowing orthogonal decomposition is clear

(2)

where we set Γ1'\R)={φ^Γ\R): *φ=-iφ} and Γ0'\R)={φ^Γ\R): *φ=
iφ). Also we set Γf(R)={a+iβ: a, β^Γχ(R)} with Z=c, A or eO.

2. Let R be an arbitrary Riemann surface, and B{R) be the complex Banach
space consisting of all Beltrami differentials, i.e. all bounded (—1, Informs, μ
on R with the norm ||^||0o=ess.supJ,eΛ|^|(/)). First we consider a real 1-param-
eter family {μ(t): t^I} in B(R), and suppose that

(i) //(O)ΞO and ||μ(0IU<l for every t, and

(ii) μ(t) is differentiable at every t^I.

Let /{ be the quasiconformal mapping of R=R0 to another Rt with the complex
dilatation μ(t) for every t. In the sequel, we denote by at°ft the pull-back of
a differential at on i?t by ft.

3. Fix a closed curve Co on /?0 and let Ct be the 1-cycle on Rt determined
by the curve ft(CQ). Let σt—o{Cty Rt) be the period reproducer of Ct in Γh(Rt),
i.e. the differential in Γh(Rt) such that

(a, CtJRt = \ α for every a^Γh{Rt),

and A(ί) be the extremal length of the homology class of Cf. Then Accola's
theorem ([1]) implies λ(f)=\\σt\\ίt, and we have the following

THEOREM 1. Under the assumptions (i) and (ii), further suppose that

(iii) —~ is differentiable at ί=0 .

Then λ(t) is twice differentiate at ί=0.
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Moreover, set φt =-σt+i *Gt and Φ(t)=φt°ft—φo for every t. Then Φ(t) is
differentiate (in Γ(R0)) at t=0 and

4. Next fix a point p0 on Ro> and suppose that Ro admits Green's functions.
Fix a simply connected neighborhood UQ of p0 in Ro and a conformal mapping
Z o of Uo onto the unit disk B={\z\<l} such that Z0(po)=0. Assume that

(iv) μ(f)=0 on Uo for every t.

Then Zt=Z0°(ft)~1 is a conformal mapping of ft(U0) onto 5 such that Zt(pt)
=0, where pt=ft(p0).

Let gt(P)—g(P, Pt i?ί) be Green's function on i?f with the pole £ t for every
ί. Then we can define Robin's constant γ(f) at pt on Rt by setting

for every t, and we have the following

THEOREM Γ. ί7n<ier the assumptions (i) αncί (ii), further suppose that \μ(t)}
satisfies (iii) and (iv). T t o T'(ί) is twice differentiate at t=0.

Moreover, set φt=z—*dgt+i dgt and Φ(t)=φt

oft—φθ' Then Φ{t) is differ-
entiable at t=0 and

5. Now we consider the case that μ depends on a complex parameter t on
a neighborhood U of 0 in (L Then considering that μ(t) depends on two real
parameters x=Ret and y—lmt, we write μ(x+iy) also by μ(x, y).

Suppose that {μ(t)} satisfies (i) and that

(ii') ~~- and ~- exist at every (x, y) with x+iy^U.

Let {ft} and {Rt} be as in §2-2. Then Theorems 1 and V imply the fol-
lowing

THEOREM 2 (cf. [6, § 3]). Under the assumptions (i) and (ii'), further sup-
pose that

d2u d2μ
(iii') 7~0 and ^r^ exist at t=0, and

dx2 dy2

(v) ^ ( 0 ) = 0 , and J/f(O)=O.
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Then

dΦ 2

dt R0

 =

Moreover if {μ(t)\ also satisfies (iv), then

(4')

where we set d/dt=l/2((d/dx)-i-d/dy), d/dt=l/2((d/dx)+i-d/dy), and J =
as usual.

Now it is easy to show the following

COROLLARY ([6], [9]). Suppose that μ depends on n complex parameters ί =
(tu •••, tn) holomorphically on a neighborhood U of (0, •••, 0) in &n, and that (i)
in § 2-2 Λo/rfs. 77j£rc λ(t) is continuous and pluri sub harmonic on U.

Further if {μ} also satisfies (iv), then γ(t) is continuous and plurisuper harmonic
on U.

Here recall that one of mutually equivalent definitions of holomorphical de-
pendence of μ on t is the following (cf., for instance, [5, 8.9 and 9.10]);

έ ) o =i. ,»>
are (exist and) continuous on U, and

(v*) ^sr"Ξ0 on U for every j .
dt

§ 3. A general second variational formula.

For the sake of convenience, we include proofs of all lemmas in this section,
though some of them are well-known.

1. Let {μ(t)\, {ft} and {Rt} be as in §2-2, and a meromorphic differential
φt on Rt be given for every t. Set Φ(t)=φt°ft—φo> and assume that

(A0) ω(t)=ReΦ(t)ξ=Γc(Ro), and r(ί)=ImΦ(ί)GΓeo(i?o) for every ί, and

(B°) there is a subsurface S of Ro such that \\φo\\s< + (X:> and

μ(t)=O on Ro—S for every t.

Consider the following elementary orthogonal decomposition of Φ(t) due to
(2) in §2 ;
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(l)

Then the following two lemmas are well-known (cf., for instance, [6], [8] and
References of them).

LEMMA 1. For every t,

(2) Φ°'\t)=μ(t)'(Φ

and

0) ιiΦi ° ω i k = ι i Φ ϊ 3 ^

where £ e = |lj"(OI|oo<l.

Moreover Φ° \t) is differentiable at ί=0 (in Γ° \R0)) and

Proof. First write φt = at(zt)dzt and ft=L{zt)~ι°Ft°z with generic local para-
meters zt and z=z0 on Rt and Ro, respectively. Then we have

(5) Φ''\t)

and

(6) Φ« \t)=at{Ft{z)).{Ft)-zdz.

Hence we have the equation (2).
Next by (A0) and (1) in § 2, we have

( ) W ) \ \ ω(t)Λτ(t)

=2ί (ω(O,*r(O)Λo=O.

On the other hand,

Ro

Hence set Et = \\Φ' Kt)\\Ro. Then E ^ I I ^ ' W I k - And since Et<kr(Et + \\φ0\\s)
by (B°) and (2), we conclude the inequality (3).

Finally since (Φo \t)-Φo>\O))/t=(μ(t)/t) (Φ1'Xt)+φo) by (2), μ(t)/t converges
to (dμ/dt)φ) in B(R0) by (ii), and Φx-χt) converges to 0 in Γ(R0) by (3), we con-
clude the second assertion and the equation (4). q. e. d.



288 MASAHIKO TANIGUCHI

LEMMA 2. Suppose that

<C°) Φ(t)A*φo is absolutely integrable on Ro for every t.

And set I(t)=\\ Φ(t)Λ*φo. Then I(t) is differentiable at f=0 and

Proof. Since *φQ=-iφQ, (1), (2) and (B°) implies that

wco) rr r*α)=*co)iΛ^
ί JJΛOL ί. J

Hence by the second assertion of Lemma 1, I(t) is differentiable at t=0, and (7)
holds by (4). q.e.d.

Remark. In the above proof, we have used only the differentiability of μ(t)
only at ί=0.

Next recalling (A0), we have

2 Φ1 °(ί)=(α>(0+ί *ω(0)+ι (r(0+i *r(0),
and

And we can see the following

LEMMA 3 (cf. [6, Theorem 1]). In Γe(i?0), Φ(t) is differentiable at t=0,
hence so is Φ^Xt).

Also ω(t) and τ(t) are differentiable at t=0 in Γ(R0).

Proof. By the second assertion of Lemma 1, ReΦ° 1(ί)=ω(0+*τ(0 is dif-
ferentiable at t=0. Since ω(t)^Γc(R0), *r(O^*Λo(#o), and each projection
mapping is bounded linear, ω(t) and τ(t) are differentiable at t=0, hence so is
Φ(t)=ω(t)+i-τ(t). q.e.d.

2. Now take another T in / arbitrarily and replace the center Ro by RT.
Then the quasiconformal mapping ft—ft°(fτ)~ι of Rτ to Rt has the complex
dilatation v(t-T).=v(t-T zτ) (dzτ/dzτ) with

(8) «-T *H

where 2:, zΓ and F Γ are as in the proof of Lemma 1 (with t—T) and we write
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μ{t)=μ{t;z) {dz/dz) (cf. [2, Ch. l-(10)]).
By (ii), μ(t) is differentiate at t=T in B(R0), hence so is v(s) at s = t-T=O

in B(RT). Also the equation

holds. So we have the following

LEMMA 4 (cf. [6, Theorem 2]). Set Φτ{s)—φs+τ°Π+τ—φτ, and assume that

(AΓ) ReΦτ(s)tΞΓc(Rτ) and Im Φτ(s)^Γe0(Rτ) f

(Bτ) there is a subsurface Sτ of Rτ such that | |0rlU r < + 0 0

and V(S)ΞO on Rτ—Sτ, and

(Cτ) Φτ(s)f\*φτ is absolutely integrable on Rτ

for every s with s + T^I. For every such s, set

(10) I(s;T)=\\ Φτ(s)Λ*φτ.

Then I(s; T) is differentiable at s=0 and

(11)

Proof. By the same argument as in the proofs of Lemmas 1 and 2 we can
show the first assertion and the first equation of (11). Next change the variable
zτ to z, and note that dv/ds(0)=0 on Rτ-Sτ by (Bτ). Then we see by (9)
that

:\τ)-(aτ°Fτ)(F
dt

which implies the second equation of (11) by (5). q. e. d.

THEOREM 3 (cf. [6, Theorem 3]). Suppose that (Aτ), (BΓ) and (CΓ) holds
for every Γ G / , and further assume that (iii) in Theorem 1 holds. Then Ϊ(T) is
differ entiable at T=0 and
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Proof. Since | |Φ1 o(T)||/eo=(9(T) as T tends to 0 by (ii) and (3), and since
\\(dμ/dtχT)-(dμ/dt)(0)\\oo=O(T) by (iii), (B°) and (11) implies that

Hence (iii) and (4) implies

Here set Φ^idΦ^/dtXO), Φ»'ι=(dΦ0'ι/dt)(Q) and Φ=(dΦ/dt)(Q). Then
Γ' XRo) and Φ^^Γ^KRo), and hence we have

(15) -2

JRo JJRo

Thus (13) follows from (14) and (15). q. e. d.

Remark 2. Actually, we have used (AΓ) to show that (ReΦτ(t— T),
*Im Φ Γ ( ί - T))=0 for every t and T. Recall that the behavior conditions such
as used by Maitani also assure us the desired orthogonality, by definition.

§ 4. Proofs of Theorems 1, 2 and Corollary.

Although all lemmas in this section are well-known, we again include direct
proofs for the sake of convenience.

1. Proof of Theorem 1. Set φt=σt+i *σt and φτ(t)=φt°fΐ-φτ for every
t and T, where ff=zfto(fτy

ι. Also we recall a standard construction of σt

(cf. [3, V-19]). We may assume without loss of generality that Co is simple,
and take a doubly connected relatively compact subdomain W of RQ whose rela-
tive boundary consists of two smooth Jordan curves, say c+ and c~, homotopic
to the given Co and to — Co, respectively. For every t, let ut be a bounded
smooth function on Wt=ft(W) such that ut = l and ut=0 in neighborhoods of
ft(c+) and ft(c~), respectively. Then we can consider dut as an element of
Γc(Rt), by setting dut=0 on Rt—Wt. Green's formula gives

(ω, *dut)Rt=\\ dutί\ω—\ ω=(ω, σt)Rt\
jc i

for every smooth αίεΓc(i? {), which implies that *dut—σt&*Γeo(Rt)



FUNCTIONALS ON RIEMANN SURFACES 291

LEMMA 5. The family \Φτ(s): s + T e / } satisfies (Aτ), (Bτ) and (CΓ) for
every Te/ .

Proof, Fix T G / and take any simply connected domain D on Rτ. Then
there is a harmonic function vt on ft(D) such that dvt—σt for every t. Since
ReΦτ(t—T)=d(vt°fΐ—vτ) on /), it belongs to ΓC{D) (, where and in the sequel,
du denotes the distributional total differential of u if u is not smooth). Since
a locally closed differential is closed (cf. [7, Proposition 4]), we conclude that
ReΦτ(t-T)(ΞΓc(Rτ) for every ί.

Next set at—dutΛ-^Ot and ht=Utoft—uτ for every t. Then at^Γe0(Rt) as
is shown above. Also since ht has a compact support on Wτ, a generalized

Green's formula ([7, Proposition 3]) gives that (dht, *ω)Rτ=\\ —dhtj\ω—

S JJWT

— ht-ω^O for every smooth ω^Γc(Rτ). Hence dht^Γeo(Rτ) for every t.
dwτ

Similarly, we can show that at°β^Γe^Rτ). (Cf. [7, Theorem 3]. In fact,
approximate at by dh with smooth functions h with compact supports. Then
as above we can see that d(h°fΐ)^Γe0(Rτ), and a simple estimation shows that
\\{dh~atyfτ

t\\%τ^Kτ

t'\\dh-at\\%t ([7, Theorem 2]), where Kf is the maximal
dilatation of /J. Hence we can see the assertion.)

Thus we conclude that ImΦΓ(ί-T)=(*(7 ί)
o/ί-*<Tr=« ί°/ί-αr-^/iί belongs

to ΓeQ(Rτ).
Finally since φτ^Γl{Rτ), (BΓ) holds with ST=RT and also (CΓ) does.

q. e. d.
LEMMA 6. For every t and T in I,

λ(t)-λ(T)=Re\\
j J R

Proof. Since Im Φτ(t~T)^Γe0(Rτ) by Lemma 5, (Im Φτ(t-T), *στ)Rτ=0.
Hence we have

Re (( ΦΓ(ί-T)Λ*0Γ=(Re Φτ{t-T), στ)Rτ
J J Rγ>

=(σt°fΐ, στ)Rτ-\\στ\\Rτ.

Here again by Proposition 3 of [7],

R <rt

=\ σt = \\σt\\i

Thus Accola's Theorem ([1]) implies the assertion. q. e. d.

Now (dλ/dt)(T) exists for every T by Lemma 4 and equals to Re /(T), where
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Ϊ(T) is as in Lemma 4. Hence (d2λ/dt2)(0) exists and (3) in Theorem 1 holds by
Theorem 3.

2. Proof of Theorem Γ. Set φt=-*dgt+i'dgt for every t, and let Φτ(t-T)
be defined as before. We recall one of standard definitions of Green's functions
(cf. [3, Ch. IV, 6F]). For every ί, take an exhaustion {Sn}i=i of Rt consisting
of regular subregions Sn with smooth boundary (cf. [3, Ch. II, 12D]). Assume
that pt^Su and let gt,n be Green's function on Sn with the pole pt, i.e. the
harmonic function on Sn—{pt} with singularity —\og\Zt\ and boundary values
0, for every n (cf. [3, Ch. Ill, 15A]). Consider gt,n as a continuous function
on Rt by setting gt,n=0 on Rt—Sn. Then it is well-known and easily seen
that gt—gt,n converges to 0 locally uniformly on Rt as n tends to +oo, that
\\d(gt—gt,n)\\Rt decreases as n tends to +oo, and that \\mn_»+00\\d(gt- gt,n)\\κ=<d
for every compact K in Rt. Also we have the following

LEMMA 7. The family {Φτ(s): S+TZΞI} satisfies (AΓ), (BΓ) and (CΓ) for
every T.

Proof. Fix T and t. First (iv) implies that Φτ(t—T) is holomorphic in a
neighborhood of pτ. And the same argument as in the proof of Lemma 5
shows that ReΦτ(t-T)<ΞΓc(Rτ).

Next let {gt,n}i=i and {gτ,n\i=i be as above, and set hn=gt,n
ofΐ—gτ,n for

every n. Then, since \\dhn-lmΦτ(t-T)\\Rτ^\\d(gt,n-gtyfU\RτH\d(gτ,n-gτ)\\Rτf

{\\dhn\\Rτ}tZι is a bounded sequence and \imn-.+Oo\\dhn-lmΦτ(t-T)\\κ=Q for
every compact set K. Hence it is easy to see (cf. [4, Hilfssatz 7.4]) that
dhn converges weakly to Im Φτ{t—T) in Γ(Rt), i.e. \imn-.+oo(dhn, ω)Rτ=
(lmΦτ(t-T),ω)Rτ for every ω£ΞΓ(Rτ).

Now, since every hn has a compact support, Proposition 3 of [7] gives as
before that (dhn, *ω)ieΓ=0 for every smooth QXΞΓC(RT). Hence (Im Φτ(t—T), *ω)Rτ

= 0 for every such ω. Thus we can conclude that ImΦ Γ (ί-T)GΓ e O (i? Γ ).
Finally, since v(t-T)=0 on fτ(UQ) for every t (by (iv) and (8) in §3) and

\\dgτ\\RT-u is finite for every neighborhood U of pτ, (BΓ) holds with, for instance,
Sτ=^Rτ-{p^Rτ: \Zτ(p)\^l/2}. Also since Φτ(t~T) is holomorphic on fτ(UQ)
and pτ is the unique simple pole of φτ, (Cτ) holds. q. e. d.

LEMMA 8. For every t and T,

r(0-rO>~Re(ί Φτ{t-τ)/\*φτ.

Proof (cf. the proof of Lemma 4 of [8]). Fix t and T. Let {gτ,n} be as
before. Let X(p) be a smooth function on Rτ with a compact support in Uo

such that X(p)=l in a neighborhood of pτ, and set hn(p)=(\—X(p))-gTtn{p) for
every n. Then we can show as in the proof of Lemma 7 that dhn converges
weakly to (1—X)-gτ, and that (dhn, *ωW=0 for every smooth ω<^Γc(Rτ). Hence
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we conclude that (l-Z)^ΓGΓ e o(i?r). Since Re Φτ{t-T)^ΓC{RT) by Lemma 7,
Green's formula gives

ReΦτ(t-T)Λdgτ=\\ ReΦτ(t-T)ΛdQC'gτ)
T JJRT

( g τ ( t
β-*0 JdUε

where we set Uε={p<^Rτ: \Zτ(p)\<ε}.
Thus again by Proposition 3 of [7], we conclude that

R e J L φΓ(ί"( ) Λ ? i S L ^
hn>*dgτ)

= lim -2π hn(pτ)=-2π(λ(t)-λ(T)). q. e. d.
71-+OO

Thus Lemma 4 and Theorem 3 give the assertion as in the last part of the
proof of Theorem 1.

Remark 3. If we used the notions of Royden's compactification and Dirichlet
potentials (cf. [4]), then we could make some of above proofs geometrically
clearer. But the author thinks the above proofs are reasonably elementary.

3. Proof of Theorem 2. In the sequel of this section, set F(t)=λ(t) or

To prove Theorem 2, consider the 1-ρarameter families {μ(t,O):
and {μ(O,t):t^$ϊ, it^U) with a real parameter t. Then d/dt for these
families correspond to d/dx and d/dy, respectively. Hence by Theorems 1 and
Γ, we have

Since Jμ(O)=O by (v) and since

JJRQ OX

we have
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* dΦ

Now set Φ=(dΦ/dt)(O). Since (dΦ" ι/dt)(O)=(dμ/dtχθ)'φo=O by (v) and (4) in
Lemma 1, Φ=(3Φ1 °/3ί)(0), and hence *Φ = -i Φ. Since Φ^Γf(R0) by (A0), </Φ
=0 and also d*Φ =—i'dΦ=O. Thus Φ^Γl(RQ) (, which implies further that
Φ is a holomorphic differential).

Since Ψ=(dΦ/dϊX0)-(dΦ/dtX0)=2i-(d Im Φ/dt)φ)^Γfo(Ro) by (A0), (Φ, ?Γ)£0

=0. Hence (Φ, (3Φ/3O(O))Λ O =(Φ, Φ ) S O ^ 0 . Thus we obtain (4) and (4') in The-

orem 2.

4. Proo/ 0/ Corollary. First, continuity of F(ί) follows from Lemmas 6 and 8.

In fact, fix T=(TU - , Tn). Since (f Φ Γ ( ί - T ) Λ * ^ Γ = ( ( (Φτ)°'\t-T) Λ*φτ,
JJRJ JJRT

where (Φτ)°>\t-T) is the projection of Φτ(t-T) to Γ° \RT), we can see by
Lemma 4 that |F(f)—F(T)|=O(Σ"=iU>—7^1) as t tends to T.

Next ήx a complex line Z, = {αί+fr: feg, flGf, fte6n} arbitrarily, and let
G be any component of Lr\U. Set £?={£: α ί + ^ e G } and μL{f)—μ(at+b) for
every ί e β . Then since μL(t) depends on t holomorphically, {μL(t)} satisfies
(ii') and dμL/dt=O on Ω. And since dμL/dt also depends on t holomorphically,
\μL(t)} satisfies (iii;) and (v). Hence by Theorem 2, J(F\L)(0) exists and non-
negative, where F\L(t)=F(at+b). Since b can be taken arbitrarily in G, we
conclude that Δ(F\L) exists and non-negative on the whole Ω, which implies
that F\L is subharmonic on Ω. (In fact, set F6(f)=F\L(f)+ε \t\2 for every posi-
tive ε, and let hY be the harmonic function on V such that kζ=Fs on dV for
every disk V with F c i 3 . If maxK/*Γ—i^) were positive and hence were attained
at a point /0 in F, then ΔF6(U) should be non-positive, which contradicts to the
fact that J F ε ^ 4 ε>0. Hence h%^Fε on V for every V as above. And letting
ε tend to 0, we can conclude that F\L is subharmonic on Ω.) Since L is
arbitrary, we conclude the assertion.
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