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ON JORIS' THEOREM ON DIFFERENTIABILITY

OF FUNCTIONS
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1. Introduction.

Let f:Rn^R be a function. If f\ /3eC°°, does it follow that /GΞC°°?
The Inverse Function Theorem does not immediately give the answer. In 1982
H. Joris answered this problem affirmatively by showing the following theorem.

THEOREM 1 (H. Joris [J]). Let nltn2, ~ , nm be positive integers with g. c. d.
{nu n2, ••• , wm}=l. // f:Rn->R is a function such that fn^^C°° for i—l,2, — ,m,
then /<ΞC°°.

In the same paper H. Joris proposed the next problem.

PROBLEM. Find the other families of smooth functions {φi: /2->/2|/=l, 2, •••, m)
having the following property: For any function f: Rn->R, f is smooth if and
only if φi°f is smooth for 2 = 1 , 2, ••• , m.

If we assume the continuity of /, then we need only consider the germs at
x = 0 since the study of differentiability is a local problem. In 1985 J. Duncan,
S. G. Krantz and H. R. Parks gave a certain family {φi} for continuous /.

THEOREM 2 (J. Duncan, S. G. Krantz and H. R. Parks, [D] Theorem 2). Let
φi'.R->R be smooth functions such that φi(x)—xnι-\- ^higher order terms" near
x=0 for f = l , 2, •••, m with g.c.d.{nu n2, ••• , wm}=l. Then {φi} has the follow-
ing property: For any continuous function f: Rn-*R with /(0)=0, / is smooth
near x=0 if and only if φi°f is smooth near x=0 for i=l, 2, ••• , m.

In the present paper, we give a simple proof of Joris' Theorem (§ 2) and the
necessary and sufficient condition for {φt} to have the property mentioned in
Theorem 2 (§ 3 Theorem 3). In Appendix (§ 4), we discuss this condition further,
especially for polynomials φi.

2. Simple proof of Joris' Theorem.

The essential part of our proof is the following algebraic lemma.
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LEMMA 1. Let Si be a ring and S a subring of Si with the property:
(P) if a^Si and ar^S for every sufficiently large positive integer r, then

Then the ring S[xJ of formal power series of x with coefficients in S has
the property (P) as a subring of Si[xJ.

Proof. Suppose f=J}?=oalx
k+l for some k>0, a^Si, and fr<=S{x} for

every large r, then since a\ is the coefficient of the lowest term of fr, ar

0^S
and hence by (P) ao<BS. The set S' of all the elements a of Si for which aoa

m

<=<S for every positive integer m is a subring of Si including S, because aoa
rm,

aQbrm^S implies ar

oa
rmbrm<ΞS for r>2 and hence ao(ab)m(=S. Now we prove, by

induction, an^Sf for every n. Suppose a0, au •••, an<^S', then for fn=Ί]ι^axx
k+'1,

aof%ϊΞSlx} for every m. So α o / r ( / - / π ) ( r + 1 ) m = Σ s c o n s t . fr+saofΐ
+Όm-s^SlxJ

and hence the coefficient al+ιa%t?m of **r+c*+n+i>(r+i>m i n aof
r(f-fn)<r+1>m is in

S. Therefore, by (P), aoa^+i^Sf that is, an+1<^S'. Since an^Sf for every ny

aof
m£ΞSlx] for every m. Then for f-aox

k=a1x*+1+ •••, (f-aQxk)r=fr+
Σϊ=i const. asofr~sxks<^Slx}. This shows a^S and repeating the same argument,
we have an^S for every n, that is, f^SlxJ, which completes the proof of
Lemma 1.

Let / : Rn->R be a function such that f ι £ C M for ι'=l, 2, ••• , m with g. c. rf.
{nlf n2, ••• , n m } = l . We must show that /eC°°. In [B] J. Boman showed that
/ : Rn-+R is smooth if and only if fog is smooth for every smooth map g: R
-*Rn. Hence we may assume that n = l , namely / : R^R. Since g.c.d.{rii}=lf

there exists a positive integer p such that any integer r^p is written as r =
Σ«i«t for suitable non-negative integers α t and hence / r = Π ( / π ί ) α ' is smooth.
For any smooth function g(x), the oo-jet jag of g at #=α, i.e. Σϊ=o(l/w \)g<:n:>(a)xn

y

gives an element of the formal power series ring /£[*]. We say g is flat at a
if jag—{). It is easy to show that / is smooth near the non-flat point of fv.
In fact, assume that jof

pΦθ. Choose an odd prime number r>p. Then we
have fp=axn+ ••• and fr=bxmjr ••• =xmg where g is a smooth function with
g(O)=£θ. Since (fp)r=(fr)p and ??z=r/ for some positive integer /, f=xιg1/r is
smooth near x=0. Let JD be the set of all non-flat points of fp, then D is an
open subset of R and fr is flat at every point in R—D for any r^p. Now
apply Lemma 1 to the ring Si of all continuous functions on D and its subring
S consisting of the restrictions of all continuous functions on R which vanish
in R—D. Obviously S has the property (P) in Si. For any smooth function g
on D, {jag\a^D} can be considered as an element J(g) of Si[xJ. Now for our
/ considered as a smooth function on D, J(fY=J(fr)^<Slx} for any r^p. So,
by Lemma 1, J(f)^<Slx], in other words, for every n, the n-th derivative / c n )

of / is the restriction of a continuous function on R vanishing in R—D. The
rest of the proof is covered by repeated applications of the following simple
lemma.

LEMMA 2. Let D be an open set of R. If f and g are both continuous func-
tions vanishing in R—D, f is differentiable in D, and f\x)=g{x) for every
then f is differentiate in the whole R and f'—g.
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Proof. For a^R—D and ε>0, there exists δ such that \a—x\<δ implies
\g(x)\<ε. For any b with \a—b\<δy let c be the point closest to b among
points of R—D between a and b. Then since any point x between b and c
belongs to D and |/ ' (*) ! = \g(x)\<ε, we have \f(a)-f(b)\ = \f(c)~f(b)\<ε\c-b\
<ίε\a—b\. So / is differentiate at a and f'(a)=0. This completes the proof.

3. Condition for {φi}.

Here we give an answer to Joris' Problem. In the sequel, d(g) denotes, for
g=zΈn=oanx

n^R[x], the smallest n such that anΦθ, d(A)=g.c.d.{d(g)\ g^Λ}
for any subset A(zR[xJ, and ljoφ1} j 0 φ 2 , ••• , joφml the subalgebra of RlxJ
generated by j \ φ u / = 1 , 2, ••• , m.

T H E O R E M 3. Let φt: R-+R be smooth functions with φi(fl)=0 for i=l, 2, •••, m.
Then the following (1) and (2) are equivalent.

(1) For any continuous function f: Rn^>R with / ( 0 ) = 0 , / is smooth near
x=0 if and only if φ^f is smooth near x=0 for ί = l , 2, ••• , m.

(2)

Proof. As in section 2 we may assume that n = l . We consider two more
conditions for

(3) There exist smooth functions FJt ; = 1 , 2 , •••, / such that Fjiφ^x), φ2(x), •••,
φmM)—xn3jr uhigher order terms" near x = 0 with g.c.d.{nίf n2, ••• , n j = l .

(4) There exist smooth functions Fι and F2 such that Fjiφ^x), φ2(x), •••, φm(x))
— xnJ near x=0 with g.c.d.{nun2)—\.

Proof of (2)<=>(3). This follows from E. BoreΓs theorem which states that
for any element g<=R[x] there exists a smooth function g(x) with jog=g.

Proof of (3)=φ(4). This is given in Theorem 2 [D]. Here we give another
proof. As in section 2 there exists a positive integer p such that any integer
r^p is written as r^^apj for some non-negative integers a3 and hence
TlFj(φi(x), ~)ai — xrjr -" . Then, for any odd integer n^p, there exists
F(xu •" , xJ^Rlxu '" , XmJ such that F(joφu > )=xn in RlxJ. By E. Borel's
theorem there exist smooth functions F and gx such that jogi=O and F{φι{x)f •••)
—xnjrgι(x) near x=0. We can easily find a smooth function G with (G°F)
(0i(x), "')=xn. In fact, since 3^(x)=:(F(^1(x), •••))1/π is smooth and jQy=χ, we
have % = &(:y)=::y(l+£2(:y)) for suitable smooth functions k(y) and ^2(^) with
/o*2=o. P u t G ( r ) = ^ ( 7 1 / n ) n , then G ( r ) = ( r i / n ( i + ^ , ( r i / | i ) ) ) i i = y ( i + 5 r i ( y l / l l ) ) B is
smooth since j0g2=0 and (G<-F)(f(x), ...)=G(3;(x)n)=^(3;(x))7i=x71 which com-
pletes the proof.

<?/ (4)=Φ(1). This follows from Joris' Theorem.
To prove (I)=χ2), we need the following algebraic lemma. g=
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is said to be normal if α d ( ί ) = l and α*d<*)=0 for every &>1, and for
with d(g)>0, Igj denotes the closed subalgebra generated by g, namely

LEMMA 3. For any subalgebra ΛdRlxJ with d(A)>0 and any positive in-
teger d with d\d{A), there exists a unique normal elemen Ae/2[x] such that
d(h)=d and [A]=)A

Proof. First we prove the following statement.
(i) If d(h)=d and {h}ΓλAφ{0} then [/ι]DA

Since the coordinate transformation y = h(x)1/d induces the isomorphism RlxJ —
RlyJ and h corresponds to yd, we may assume that h—xd. If there exist
elements g=xrdJr ••• +cxτd+a+ ••• E A with cφO and a)(d, we can choose g
having the smallest a in the above representation. Take any k — χsd+ ••• ̂
[xd}nAφ{0}, then gs-kr=bxtd~\ \-scxsrd+a+ ••• e A and srd+a-td<a con-
tradicting the choice of g. This completes the proof of ( i ) . As a corollary

we have

(ii) If d(A)=d(A!)>0 and [ A ] n [ A J ^ {0} then [A] = [AJ .

Now to show the existence of A in the lemma, choose any g=xrd+ ••• E i and

put h1=g1/r=xd-] , then {hjΓΛA^g and hence [AJIX4 by (i). We can
easily find real numbers cz with cx—l such that A—ΣΓ=i^ϊ is normal. We
have also [A] = [Aj3i4 by (ii). To prove the uniqueness of A, let A2 be any
element satisfying the conditions of the lemma, then [A] = [A2] by (ii). If A —A2

ΦQ then d)id{h — h2) contradicting the fact A —A2e[A]. This completes the
proof of Lemma 3.

Proof of (1)=K2). Suppose d = d([joφ1, •••])>!• By Lemma 3 there exist
h = xd+ — and F^RlxJ such that joφi-Pi(h) for i=l, 2, ••• , m. By E. BoreΓs
theorem we have φi(x)=Fi(h(x))+gi(x) for suitable smooth functions Flt A, gt

with jogι=0. So it is sufficient to show that there exists a non-smooth func-
tion / for which A°/ and g^f are smooth. Since h(x)=xd{l-\—)=(x + -~)d,
we can find a smooth function k with h(k(x))=xd. Now we put f(x)=k(x1/d)
if d is odd and f(x)=k(\x\) if d is even. Then / is not smooth and g^f is
smooth since jogι^=O. Moreover A°/ is smooth, for A(/(*))=# if ^ is odd and
h(f(χ))=χd if d is even. This contradicts (1). So the proof of Theorem 3 is
completed.

4. Appendix.

In this section we discuss about the algorithm of computing d(£joφu •••]) by
use of jets joφί. Let g be an element of R{xJ with d(g)>0 and d a positive
integer with d\d(g). Then, applying Lemma 3 to the subalgebra generated by
g, we can find a unique normal element h = h(g, d)^R[xJ such that d(h)=d
and g=F(h) for some F<=R[x]. Note that each coefficient of h(g, d) is given
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by some polynomial of an/adag} where g—^anx
n. Now, put A=[joφu •••],

dA—d{A) and /o0i=Sj=iflij*n*-; where aιjΦθ, lτ<°o and w fi<w ί2< ••• for i=
1, 2 , ••• , m . I t i s c l e a r t h a t g . c . d . { n τ j \ ι , j ) \dA a n d d A \ g . c . d . { n n \ i ) . I n t h e
finite number of integers d such that d\g.c.d.{nn\i}, dA is characterized by the
following proposition.

PROPOSITION 1. For any positive integer d with d\g.c.d.{nn\i}, we have
d\dA if and only if h(joφu d)= ••• = h(jQφm, d).

Proof. Assume that dA—rd for some r. By Lemma 3, lhAJZ)Λ for some
hA with d(hA)=rd and hence joφi=Fi(hΛ) for some Ft. Let h = h(hAf d), then
hA~F{h) for some F and hence joφi=(Fi°F)(h). So by the uniqueness of
Kjoφi, d)> we have h(joφiy d)—h as desired. Conversely assume that h{j\φly d)
= ... =h. Then [Λ]3/O0i and hence ihJZDΛ which implies d\dA.

The following corollary corresponds to Theorem 3[D].

COROLLARY. // jQφι—xnn then dA—g.c.d.{nlJ\ifj}.

Proof. We have h(joφu dΛ)= ••• =h and jQφi=Fi(h) for suitable F i e / ^ x ] .
It follows from joφ1—χn^—Fι{h) that h — xd^ and from jQφi—Fi{xd^)f dA\n%3

which implies dA—g.c.d.{ntj\i, j}.
Proposition 1 gives an algorithm of computing dA by use of jets joφif but it

needs an infinite number of procedures to check whether h(joφu d)— ••• —
Kjoφm, d) or not even though each φx is a polynomial. The following Proposi-
tion 2 gives a finite algorithm of computing dA for polynomials φi%

LEMMA 4. (i) Let 31 be the maximal ideal of C[xJ generated by x and
Φ: 3i->C[x}m a map given by Φ(g)—(]\φι°g, •••), then Φ is dA to 1 map, namely
for any gφQ there exist exactly dA elements k such that Φ(k)=Φ(g).

(ii) Suppose that every φi(x) is analytic near x=0. Let Φ : U-+Cm be a map
given by Φ(x)=(φ1(x), •••) for some neighbourhood U of 0 in C, then Φ is dA to
1 map near x—Q.

Proof, (i) By Lemma 3, [hJ'DA for some h with d{K)—dA—d. By the
coordinate transformation we may assume that h = xd and hence j^φi—^ΣijaιJx

:)d

for suitable aX]. By the definition of dA there exists a positive integer p such
that for any integer r^p we can find / G A with d(f)=rd and hence F G
Rlxu "' , XvΛ with F(jΌφίy ••• , joφm)=xrd. Therefore Φ(k)=Φ(g) if and only if
kd—gd, that is, k — ζ.n

dg for £d=exp(2m/d) and n = l , 2, ••• , d.
(ii) Suppose Φ(x)=Φ(y). Then ^ ( x ) = α ι x

r * d ( l + ••.)=rαι:y
rid(l+ ...) and

3^(l+ )=e?idΛ:(H ) and hence ;y=e?< dx+ ••• =ytn(x). Since 3/tn(%) is holo-
morphic near * = 0 , it follows from (i) that the number of small solutions y of
φ(y)=φ(x) is dA for small xφO.

COROLLARY. The following condition for {φx} is equivalent to (1) in Theorem 1.
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(5) The map Φ(g)~(]\φι°g, •••): <3ί->C[x}m is injective.

PROPOSITION 2. Suppose that each φt is a polynomial. Let φ{x, y) be the

greatest common divisor of {φi(x)—φi(y)\i=l, 2, •••, m} in R\_xf y"\, then d([joφu

, 0)).

Proof. φ(x, y) is obtained by using Euclidean algorithm with respect to

polynomials of x whose coefficients are rational functions of y. Then φ(x, a)

is the greatest common divisor of {φi(x)—φi(a)\i\ in /£[%] for any real number

a with finite exceptions. Since the coefficient of the highest order term of

φ(x, a) is independent of a, the solutions x of φ{x, α)=0 depend continuously on

a. So d(φ(x, 0)) is equal to the number of solutions x of φ(x, a)=Q such that

x->0 as <2->0. This number is equal to the number of common solutions x of

φi(x)—φi(a)=0, ί = l , 2, •••, m, such that *->0 as α->0. By Lemma 4 (ii) we

have d{φ{x, 0))=dΛ.
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