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1. Introduction.

In the present paper, we shall study on relations between subspaces of the
space of trigonal Riemann surfaces of genus g^5.

Recently, the author and Horiuchi [6] have studied on the Weierstrass gap
sequences at the ramification points of trigonal Riemann surfaces. It was also
studied by Coppens [1, 2, 3]. Coppens' study in [2] depends upon the fact that
any trigonal Riemann surface lies on a rational normal scroll. On the other
hand, the author and Horiuchi's study depends upon the fact that any trigonal
Riemann surface is defined by an algebraic equation in x and y whose degree
is three with respect to y. They determined a canonical equation of a trigonal
Riemann surface of genus g and of the n-th kind and gave the necessary and
sufficient condition for determining the types of ramification points in terms of
zeros of the discriminant of the defining equation.

At first, we shall give an algebraic equation:

Let S be the trigonal Riemann surface defined by the equation. We shall decide
the genus and the kind of S and the types of the ramification points.

Using this result, we obtain incidence relations between Mg,3>n(ρu ρ2, p^, j04)'s.
The definition of Mg,z,n(ρu p2, /03, p*) will be given later.

Let 5 be a trigonal Riemann surface of genus g and let x: S—•P1 be a
trigonal covering. Following Coppens [1] we say that S is of the n-th kind if
l(nD)=n+l and /((n+l)D)^n+3, where D=(x)oo is the polar divisor of x, l(nD)
(resp. l((n+ϊ)D) is the afϊine dimension of the space of meromorphic functions
on S whose divisors are multiples of nD (resp. (n+ϊ)D) and n satisfies (g—1)/

By definition, a point P on S is a total (resp. an ordinary) ramification point
if the ramification index of x at P is equal to three (resp. two). We say that
P is a total ramification point of type I (resp. type Π) if the gap sequence at
P is equal to

(1, 2, 4, 5, •••, 3 n - 2 , 3rc-l, 3 n + l , 3rc+4, •••, 3(£-n
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( resp .d, 2, 4, 5, •••, 3 n - 2 , 3 n - l , 3 n + 2 , 3 n + 5 , •••, 3 ( £ - n

We say that P is an ordinary ramification point of type I (resp. type Π) if the
gap sequence at P is equal to

(1, 2, 3, ••• , 2 n - l , 2n, 2 n + l , 2n+3, ••• , 2 ^ - 2 n - l ) ,

(resp. (1, 2, 3, ••• , 2w-l, 2n, 2n+2, 2rc+4, ••• , 2g-2n)).

In both total and ordinary cases, each ramification point is of type I or type Π
[1, 2, 5, 6].

Let Mg,z,n(pί, |02> Pz, pt) be the set of trigonal Riemann surfaces of genus g,
and of the w-th kind which have ρx total ramification points of type I , p2 total
ramification points of type Π, ρz ordinary ramification points of type I and p4

ordinary ramification points of type Π. In [6], we have proved that if 3n—g
+ l-p2-p4=0, then Mg>z>n(pu p2, p2) p4) is not empty.

In [3], Coppens studied on the structure of these spaces in the algebraic
moduli space. For example, he proved that both Mg,3>n(l, 0) and Mg,z,n(0, 1) are
irreducible and unirational, where Mg>z>n(pu ρ2) is the set of trigonal Riemann
surfaces of genus g, and of the n-th kind which have pi total ramification
points of type I and p2 total ramification points of type Π.

Concerning the incidence relations, he proved the following. If (g—1)/3<
n<g/2, then M ί l 3 ( n (0, 1) is included in the closure of Mg,z>n(l, 0). If (g—1)/3
<n<g/2, then M,,3.n(l, 0) is included in the closure of Mgl3,n+ί(l, 0). If (g—1)
/3^n£g/2—2, then Mg,z>n(l, 0) is included in the closure of M^>3,n+1(0, 1). In
this paper, we shall consider the sets MgtZ.n(pu p%, Pz, p*)'s as subsets of the
Teichmίiller space and prove some incidence relations of them under the as-
sumption 3n— g+1—p2—pi—0.

The author would like to express his thanks to the referee for his valuable
comments and suggestion.

2. Kind of trigonal Riemann surface.

In this section, we shall show how to decide the genus, the kind and the
types of the ramification points for a given equation. To do this, we first show
some theorems which have been already proved in [6].

Following the proofs of Lemmas 3-5 in [6], we know that these lemmas
remain valid without assuming S is of the n-th kind. Hence, we have the fol-
lowing :

THEOREM A. Let S be a trigonal Riemann surface defined by an algebraic
equation

(1) y*+Q(x)y+R(x)=0.

Here, Q(x) and R(x) are polynomials in x, degQ=2n+2, degR=3n+3 and
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deg(4Q3+27R2)=6n-\-6. Furthermore, assume there is no common zero a of Q(x)
and R(x) such that the order of zero of Q(x) at x—a is greater than one and
that of R(x) is greater than two.

Let β be an arbitrary complex number and let μ, v and λ be the orders of
zeros of Q(x), R(x) and 4Q(x)2+27'R(x)2 at x=β, respectively. Then, we have:

i ) There is a total ramification point over x=β, if μ^v—1 or μ^v—2,
ii) There is an ordinary ramification point over x=β, if μ—v^ΰ and λ is

odd or v>μ=l,
iii) There is no ramification point over x=β, otherwise.

Remark. In Theorem A, there is no ramification point over x = oo. To see
this, take a complex number a so that Q{ά)R{a){AQ{af+21R{af)Φθ. Let t=l/x,
γ=tn+1y, Qi(t)=t*n+2Q(l/t+ά) and R1(t)=R(l/t+a). Then, we have

Evidently, Q.it), Rβ) and AQ1(tY+27R1(t)2 have no zero at *=0. We can apply
Theorem A again.

In the case that 5 is of the 72-th kind, the author and Horiuchi [6] have
proved the following:

THEOREM B. In the preceding theorem, assume S is of the n-th kind. Then,
we have:

i ) There is a total ramification point of type I over x=β, if μ^v—l,
ii) There is a total ramification point of type Π over x—β, if μ^v=2,

iii) There is an ordinary ramification point of type I over x—β, if μ—v—^
and λ is odd,

iv) There is an ordinary ramification point of type Π over x=β, if v>μ=l,
v) There is no ramification point over x~β, otherwise.

To decide the Weierstrass gap sequences at ramification points, we need the
following:

THEOREM C. Let S be a trigonal Riemann surface defined by (1). Then,
every holomorphic differential on S is given by

where D(x) and E{x) are suitable polynomials in x and άQgD<n — l and άegE^2n.

Henceforth, we demand the following hypotheses on (1):
i ) Q(x) and R(x) are polynomials in x,
ii) deg(?=2n+2, d e g # = 3 n + 3 and deg(4<?3+27i?2)=6n+6 for some posi-

tive integer n,
iii) There is no common zero α of Q and R such that the order of zero of

Q at x—α is greater than one and that of R is greater than two.
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Then, we have the following equations by suitable polynomials Γt 0 = 1,2,3)
and Π, 0 = 1 , 2 , 3,4) in x;

(2)

(3)

and

(4)

Here, A I L I L and A I L have no common zero,

(5) UjW=mx-aι,j)> O'=l, ... , 4)

for n o n n e g a t i v e i n t e g e r pj (j—l, ••• , 4) a n d m u t u a l l y d is t inct complex n u m b e r s
at,j ( ί = l , •••, pJf y = l , •••, 4),

( 6 ) degΓ1=2n+2-pι-2p2-p4,

(7)

and

(8)

Then, we have:

LEMMA 1. Assume S is a trigonal Riemann surface defined by (1), where
Q(x) and R(x) in (1) satisfy (2)-(8). // a differential

E)- K*)y+EW dχ

is holomorphic on S, then Π2(^)Π 4 (Λ:) is a factor of E(x).

Proof. Assume a is a zero of ILU). By Theorem A, there is a total
ramification point P over x—a. Let t be a local parameter at P so that x—a
=t\ Note that Γ2(α)Πi(α)IL(>)^0 by (3) and (4). Hence, the order of the
zero of y at P is two and those of 3y2+Q(x) and dx are four and two, respec-
tively. Therefore, E(x) must have a zero at x—a.

Assume a is a zero of I L M By Theorem A, there is an ordinary ramifica-
tion point P over x=a. Let s be a local parameter at P so that x—a=s2.
Note that ΛMΠiMILCαO^O by (2) and (4). Hence, the order of the zero of
y at P is one or two and those of 3y2+Q(x) and dx are three and one, respec-
tively. Therefore, E(x) must have a zero at x—a.

THEOREM 1. Assume that Sy Q and R are as in Lemma 1. Then,
i ) The genus g of S is given by
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( g ) 2p1+2p2+p3+pi-4 ^

ii) // g^5 and 2n^gf^3n-\-l, then S is of the n-th kind and has pi total
ramification points of type I , p2 those of type Π, p3 ordinary ones of
type I and pA those of type Π.

iii) // g^5 and (3n-3p-l)/2<g£2n-2p, where p=άegΓ,y then S is of
the (g—n-\-p)-th kind and has p2 total ramification points of type I , px

those of type Π and pz-\-p4 ordinary ones of type I . In this case, there
is no ordinary ramification point of type Π.

Proof. Theorem A implies that S has pι+p2 total ramification points and
pzΛ-pA ordinary ramification points. Hence, by the Riemann-Hurwitz formula
the genus g of S is given by (9).

Assume that 2n<;g^3w+l and S is of the m-th kind. Since deg(;y)oo=
3rc+3, we have m^n.

Assume Γ3 has a zero of order λ at x=a, i.e. Γz(x)=a(x—a)λ+ ••• U>0,
aφQ) near x=a.

If Hz(a)Φθ, then there is a branch of y, say yu so that

for some β^O. If Hz(a)=0, then there is a branch of y, say ylf and a local

parameter s—Vx—a at the ordinary ramification point over x—a, so that

for some β^O. Hence, D{x)yι{x)-\-E{x) in Theorem C must have a zero of
order at least λ at x=a.

Put

U ) Γ , ( * ) d * _ .
) Π 2 W 2 Π 4 U ) ' K f ' " ' g n)'

By the preceding discussion, these differentials are holomorphic on 5. Moreover,
it is easy to see that every holomorphic differential ω of the form

E(x)dx
ω~ 3/+Λ(x)iLU)ILU)2ILU)

is a linear combination of ωk'$ (&=1, ••• , g—n).
Assume that p2Φ0. Let P be a total ramification point over a zero of Πk

say αi.2. Then, for 1=1, ••• , g—n, the differential
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has a zero of order 31—2 at P.
If there were a holomorphic differential

) ,
(χ) * '

which has a zero of order 3{g — n ) + l at P. Then, D(x) had a zero of order at
least g—72 + l ( ^ n + l ) at x = aU2. Hence, by Theorem C, D(x) would be iden-
tically zero. Therefore, ω would be a linear combination of ωk's (k=l, •••, g—n).
Then, the order of zero at P were at most 31—2. This is absurd. Hence, m=n.

Assume that ^ ^ O and ^4^0. Let P be an ordinary ramification point over
a zero of IL, say altA. For 1=1, ••• , g—n, the differential

has a zero of order 2/—1 at P. In a similar way as above, we obtain that
there is no holomorphic differential on 5 which has a zero of order 2(g—n)+l
at P. Hence, m—n.

Assume that p^—^, PA=0 and piΦO. Let P be a total ramification point
over a zero of Πi, say α l f l . For / = 1 , •••, g—n, the differential

has a zero of order 3/—3 at P. Again, we obtain that there is no holomorphic
differential on 5 which has a zero of order 3{g—n) at P. Hence, m—n.

Finally, assume that pι—p2—p^—^ and pzΦθ. Again, let P be an ordinary
ramification point over a zero of IL, say α1>3. For 1=1, •••, g—n, the differential

ι-i(ί-l
Σ
*-°

has a zero of order 2/—2 at P. We shall show that there is no holomorphic
differential on S which has a zero of order 2(g—n) at P. Then, as above, we
obtain that m—n.

To prove the preceding fact, assume Γs(x) has a zero of order λ at jc = α1>3.
Put Tli(x)Γs(x)2=27(x — <Zi,3)

2/i+1Ci(x). Let M and ι> be multivalued meromorphic
functions on S which satisfy
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(10) u5=(-R(x)+s2λ+WCjx~j)/2,

(11) v3=(-R(x)-s2λ+WCM)/2

and

(12) uv=-Q(x)/3,

where s is a branch of Vx — auz. Then, there exist functions U(x) and V(x)
which are holomorphic at x = allZ and satisfy U(aί>z)Φθ, V(altS)Φθ and

u=U(x)+s*λ+1V(x).

Using (10), (11) and (12), we have

v=U(x)-s2λ+ίV(x).

Choose a branch of y which corresponds to the ordinary ramification point:

y=ωu+ω2v=-U(x)+(ω-ω2)s2λ+1V(x).

Then we have

3y2 + Q(x)=-6(ω-ω2)s2λ+1U(x)V(x)-6x2λ+ίV(x)2.

Hence, dx/(3y2+Q(x)) has a pole of order 2λ at P.
Assume that ω=Ω(D, E)=(D(x)y+E(x))dx/(3y2+Q(x)) has a zero of order

2(g-n) at P. Put

E(x)=eo+e1s*+eis
i+ -

and
y=bo+b2s

2+ ... + ^ 2 ^ s 2 ; { + ^ ^ i s 2 ^ 1 + •••,

where ^o^O and ̂ Λ + I ^ O . By the preceding discussion, D(x)y-\-E(x) must have
a zero of order 2{g—n)+2λ at P. Hence, Mo+e o =O. K d0Φ0, then rfo^2^+i
would not be zero. Thus, D(x)y+E(x) must have a zero of order at most

at P. This is impossible. Hence, do^^o^O.
In a similar way, we have

Since άegD^n—l^g—n—1, we have -D(x) is identically zero. Since such a
holomorphic differential is a linear combination of ωk's (&=1, ••• , g—n), there
is no holomorphic differential on S which has a zero of order 2(g—ή) at P.

In each case, we have m—n. Hence, by Theorem B, we have the desired
result.

Next, assume (3n—3p — ϊ)/2^Lg<2n—2ρ. Taking the birational transforma-
tion
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(X, y )_(x,

we have S is conformally equivalent to the surface defined by

(13) γz-

where

and

R1(X)

The discriminant of the equation (13) is

-4(Q1ΠfΠ2)3+27(i?1Π?Π2)2=Γ

=(ΛΛ)ΉίΠϊΠ.IL.
By (6), (7), (8) and (9), we have

deg<? 1=2degΛ+ io 2

=3(g-n+p)+3-2Pl-p2

and
άegΓ2Γ3=3(g-n-hp)-g+l-p1.

By the assumption, 2(g—n+p)^g^3(g—n+p)+l. If deg R1=3(g—n
-sr3—2p1—p2t then this case reduces to the case 2 n ^ ^ ^ 3 n + l and we have the
desired result.

Assume that άegR1<3(g—n+p)Jr3—2pί—ρ2. Let a be a complex number
such that QMRMUMΐlMΦO. Take the birational transformation

(f, η)=

Using the same discussion as in Remark following Theorem A, we have the
desired result.

3. Incidence relations.

We would like to consider incidence relations between Mgf3,n(p1, p2, p3, /04)'s
in the Teichmϋller space. We first show that, roughly speaking, if two trigonal
Riemann surfaces whose branch loci is close, then the Teichmύller distance of
corresponding points is also close.

In the sequel we shall state our situation precisely. Let S be a Riemann
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surface of genus g having a trigonal covering x: S-+P1. Let A={alf ••• , am]
C P 1 be the projection of the set of ramification points of x. Without loss of
generality, we may assume that ΛdC and | α<—α^| >2 if iΦj. Take a point
z^C so that \z—ax\>\ for i—\y ••• , m. Take an arbitrary ε (0<e<l) . For
each i=l, •••, m, let l[ be a curve joining z and α t in C—\JJΦι{z: \z—aj\<l}
and let l% be the curve starting at z and traveling along l[ to the circle of
radius ε with center atf then surrounding the circle and returning to z along Γt.
Let χ-\z)={Qu Q2, Q3} Then, each lx induces a permutation of \QU Q2, Q3}
Then, the lemma is stated as follows:

LEMMA 2. Assume S, A, ε, z, lx are defined as above. Let S* be another
trigonal Riemann surface of genus g having a trigonal covering x*: S*—•P1.
Assume the projection of the set of ramification points of x* is included in ljf=i
{^-neighborhood of at). Let x*~\z)={Q*, Qf, Q*}. Assume lt induces the same
permutation of {(??, Q%, Q%) as that of {Qu Q2, Qs} for each ί = l , ••• , k. Then,
the Teichmuller distance of those points corresponding to S and S* is at most
O(ε2/3).

Proof. (The author is indebted to Professor A. Yamada who showed him
the proof of this version, cf. Gardiner [4]). By virtue of the triangle inequality,
it is enough to prove the case that only one ramification point, say P1^x"1(ai),
varies and all the other ramification points remain fixed. Without loss of
generality, we may assume a1=0.

Assume Pi is a total ramification point and there are two ordinary ramifica-
tion points P? and Pf* over { |** |<β}. Let a ^ x * ( P * ) and i8=Λ:*(Pf*). Let t
be a local parameter at Px such that x—f, | f |<3/2. Let t=<p(s)=s(l+As~2-\-
Bs'ψ*, where

If ε is sufficiently small, then, for some positive number δ, ψ is a univalent
map of {l-δ< | 5 | < 1 + δ\ onto a domain D which is contained in {l/2< |f | <3/2}.
Let γ=φ({\s\=l}) and let Όγ be the interior of γ.

Construct a new Riemann surface S as follows. As a set, S=(S—D^KJ
{ | s |< l } , welding { | s |=l } and γ in such a way that s is identified with t=φ(s).
A system of charts for S is given by those for S on S—Dι and s itself on
{ | s |< l } . We can still take s as a chart on the set (D—D1)\j{l—δ<\s\<l}.

Define a function x on S so that x(P)=x(P) if P^iS-D,) and Jc(P)=s(P)8

+As(P)+B if P e { | s | < l } . Then, x gives a trigonal covering x : S-+P1 and
there are two ordinary ramification points whose projection on the x -plane are
a and β. Hence, S is conformally equivalent to 5*.

Let ψ(s)=s(l^ΓAs2 i-Bs3y/\ Since φ(s)=ψ(s) on {| s| =1}, ψ(s) is a quasicon-
formal mapping of { | s |<l} onto Dx. Evidently, the complex dilatation of ψ is
bounded by O(ε2/3).

The extension ψ of ψ, defined by ψ(P)=P if P e S - D x and ψ(P)=ψ(s(P)) if
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P < Ξ { | S | < 1 } , is a quasiconformal mapping of S onto S. The dilatation of ψ is
also bounded by O(ε2/3).

A similar argument is applicable to both the cases that Px is total and there
is one total ramification point P? over { |x*|<ε} and that Pi is ordinary. In
each of these cases, we have a quasiconformal mapping of S* onto S whose
dilatation is bounded by 0(ε).

Hence, the Teichmϋller distance between S and S* is bounded by O(ε2/3).
This completes the proof of the lemma.
In the following, we shall prove several lemmas related to the distribution

of zeros of polynomials.

LEMMA 3. Let P(x) and Q(x) be polynomials satisfying the following
i ) there is no common zero of P{x) and Q{x),
ii) every zero of P(x)+Q(x) is simple,
iii) 0(0) =£0.

Let xlt •••, xn be the zeros of P(x)+Q(x). Let k be an arbitrary positive integer.
Let ε be a sufficiently small positive number. For an arbitrary α ε C , | α | < e ,
let yu ••• , yn+k be the zeros of

xkP(x)+(x-a)kQ(x).

Then, every yt is simple, i.e. yxΦyj if iΦj, and \yt—xt\ = O(εί/k), i—\, ••• , n
and \yι\=O{ειlk), i=n + l, ••• , n + k, suitably renumbering the suffixes of y, if
necessary.

Proof. Since there is no common zero of P(x) and Q(x), Q(xt)Φθ, i—
1, ••• , n. Take the circles C(xt; r)={\x-xt\=r} and C(0; r)={\x\=r} so that
these are mutually disjoint. Let M=max|Q(x) | and m = m i n | P ( ^ ) + 0 ( x ) | ,
where x runs over the sets \jC(xt r) and C(0 r). Let Mi=max{|x λ\, •••, \xn\}
+2. If \a\<mm{l,mrk/kMMk

1-
1}, then

\{{x-ά)k-xk)Q{x)\<\a\kMM\-1

<mrk

on C(0;r)U{JC(xl;r). Applying Rouche's theorem to xk(P(x)+Q(x)) and
xkP(x)Jr(x—a)kQ(x), we have the desired result.

Remark. Without assuming the condition ii) of this lemma, a similar result
holds. However, the proof becomes slightly complicated and the exponent of ε
in the estimate of y may be changed.

LEMMA 4. Let P(x) and Q(x) be polynomials satisfying the following
i ) there is no common zero of P{x) and Q(x),
ii) every zero of P{x) + Q{x) ts simple,
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iii) P(O)+Q(O)Φθ and P(O)Φθ.
Let xu ••• , xn be the zeros of P(x)+Q(x). Let k be a positive integer. Let
yu '" > yn+k+i be the zeros of

Then, for sufficiently small positive number ε, there are distinct a and β such that
0< |a? |<ε , 0 < | β | < ε and yt, i=l, ~-, n + k—1 are simple, yn+k—yn+k+i and
\yi-xt\=O(ε1«k+1>), ί = l , ••• , n and | ^ l = O ( ε 1 / ( * + 1 ) ) , i=n+l, ••• , n + k.

Proof. Consider the polynomial

fix, a, β)=(x-a)k+1P(x)+x(x-β)kQ(x)

in three variables. The intersection V of two surfaces f(x, a, β)=0 and
df(x, a, β)/dx=0 contains a curve through the point (x, a, j8)=(0, 0, 0). Hence,
for an arbitrary ε>0, there is a point (x1} au βi)^V such that 0 < | * i | + |« i |
+ \β1\<ε. It is sufficient to find such an (xu au βJeV that aφ^-β^φO.

If ε is sufficiently small, applying Rouche's theorem to a pair of functions
f(x, au j8j) and f(x, 0, 0), we have exactly k+1 zeros of f(x, au βι), counting
multiplicity, in a neighborhood of x=0 and any other zero of f(x, au βλ) is
simple.

Assume that j8i=0. Applying Lemma 3, we have no double zero of f(x, au 0).
This is a contradiction.

We shall show that VΓΛ{aΦθ} is not empty. Since (a, a, α ) £ F for k^2,
it is evident in this case. Assume that k = l. Fix an arbitrary x and eliminate
β from f(x, a, β)=0 and df(x, a, β)/dx—Q. Then, we have the quadratic equa-
tion in a:

(P(x)Q(x)+x(P(x)Q\x)-P'(x)Q(x)))a2

-2x\P{x)Q\x)-P'{x)Q(x))a

+ x\x(P(x)Q'(x)-P\x)Q(x))-(P(x)+Q(x))Q(x))=0.

If there were no nonzero solution of a for any x, comparing the coefficients,
we have Q(x)=cP(x) for some constant c. This is a contradiction.

To show that Vφ{a~β), we fix an arbitrary Xi^O ( | x i | < ε ) and find a
point (α, β)Φ(xu xj such that (xu a, β)(=ΞVΓΛ{aΦθ}Γλ{aφβ}.

For simplicity's sake, replace a—xλ (resp. β—Xι) by a (resp. j8) and denote
PixJ, P\xι\ Q(xi), Q'(xi) by P, P', Q, Q', respectively. Then, we have the
following equations:

(14)

and

(15) -P'ak

Substituting (14) into (15), we have



TRIGONAL RIEMANN SURFACES 83

(16) kx1Qβk-1=Rak+1+(k+l)Pak,

where R=(P/'xi)+(PQ'/Q)-P''. Taking the fe-th powers of the both sides of
(16), we have

(17) ak2-\a(Ra+(k + l)P)k-kkx1QPk-1)=O.

Since /? = O(|x 1 | " 1 ), there exists a non-zero solution «i of the equation (17) so
that a1=O(\x1\

t), where f=(m+fe+l)/(£+l) and m is the order of zero of Q{x)
at x=0. Substituting ax into (14), we have a solution J 8 = / 3 I = 0 ( | Λ ; I | ) .

Assume that ax=βι. Then, by (14), we have x1Q=Potι. By (16) we have

hence, P+flα^O. Therefore, we have P2+;d<5P=0, that is

xιPQ'+QP-x1QP' _

Since xx is arbitrarily chosen, we have (xQ(x)/P(x))' = — 1. Then, P(x)+Q(x)=0.
This is a contradiction.

The rest of the proof is similar to that of Lemma 3.

LEMMA 5. Let P(x) and Q{x) be as in Lemma 4. Let yu ••• , yn+2 be the
zeros of

(x-a)(x-β)P(x)+x2Q(x).

Then, for sufficiently small positive number ε, there are distinct a and β such that
0 < | α | < ε , 0 < | β | < ε and yt, i=l, ••• , n are simple, yn+i = yn+2 and \yχ — xt\ =
O(ε1/2), ι = l, - , 7 2 and \yn+i\=O(e^).

Proof. Similar to the preceding lemma.

LEMMA 6. Let P(x) and Q(x) be polynomials satisfying the following:
i ) there is no common zero of P{x) and Q(x),
ii) every zero of P(x)+Q(x) is simple,
iii) P(O)+Q(O)ΦO, Q(O)ΦO and P(x) has a simple zero at x=0.

Let yu -" , yn+4 be the zeros of

x\x-a)2P(x)+(x-βf(x-r)
2Q(x).

Then, for sufficiently small positive number ε, there are distinct a, β and γ such
that 0< \a\ <ε, 0< |jS| <ε, 0< | ^ | < ε and yt, i—1, ••• , n are simple, yn+i=zyn+2z£1

yn+s=yn+iand \yi-xι\=O(ε1/i), 2=1, - , n and 0 i t | ^ | = O ( £ 1 / 4 ) , t = n + l, ••• , n
+4.

Proof. By the hypothesis, we can choose a neighborhood U of x—0 satisfy-
ing that
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P(x)CKxXP(x)+Q(x))Φ0 for

and there is an εo>O such that

x2{x-a)2P(x)+{x-βΠx-γ)2Q(x)

has exactly four zeros in Z7 if \a\, \β\, | ^ | < ε 0 . Then, we have a single valued

branch of VP(x)/x (resp. V—Q(x)) in U which we denote by

A(x)=a + aiX + •••, (resp. B(x)=b+bιx+ •••).

Let ϊ/'=£7—{real negative}-{0}. In U'2xU\ consider two functions

(18) f(x, a, β, γ)=x*<\x-a)A{x)-(x-β){x-γ)B(x),

(19) g(y, a, β, γ)=y*>\x-a)A{y)+{y-βXy-γ)B{y).

Here, we choose suitable branches of xz/2 and y%i2

y for instance, Rex 1 / 2>0 and
R e / / 2 > 0 .

Then, we have

fix, a, β, γ)g(x, a, β, γ)^x\x-a)2P{x)Λ-{x-β)\x-γfQM.

Consider the system of equations:

(20) f(x,a,β,r)=0,

(21) j;f(x,a,β,r)=09

(22) g(y,a,β,r)=0,

(23) jjg(y,<*,β,r)=0.

Then, we have an analytic variety V=V(f,df/dx,g,dg/dy), in the (x, y,a, βty)-
space, whose dimension is at least one. We shall show that, for an arbitrary
ε>0, (εo>ε) there is a point (xu ylt au βu ΐi)^V such that

Let F(x)=~~=co+cίx+ ••• and let G(x)=x*'*F(x), Re x1 / 2>0.

From the equation (20)-(23), we have

(24) G(x)a-x(β+r)+βr=xG(x)-x*,

(25) G(y)a+y(β+r)-βr=yG(y)+y*,

(26) G'(x)a-(β+γ)=G(x)+xG'(x)-2x,

(27) G'{y
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By (26) and (27), we have

(28) (G'(x)+G'(y))a=G(x)+G(y)+xG'(x)+yG'(y)-2(x-y)

and

{xG'(x)+yG'{y))a-{x-yXβ+γ)

=xG(x)+yG(y)+x2G\x)+y2G\y)-2(x2-y2).

From (24) and (25) we have

(G(x)+G(y))a-(x-yXβ+γ)=xG(x)+yG(y)-2ίx2-y2).

Hence, we have

(29) ((xG\x)+yG'(y))--(G(x)+G(y)))a=x2Gf(x)+y2G'(y)--(x2-y2).

Eliminating a from (28) and (29), we have

H(x, y)=(G(x)+G(y))2-2(x-yXG(x)+G(y))

+(x-y)\G'(x)G'(y)+G'(x)-G'(y))=O.

H(x, y) is holomorphic in ({|x|<s2}-{x^0})X({|;y|<ε2}-{;y^0}). Putting
x = s2 and y=t2 and noting that Gf(x)^=xll\3F{x)/2-\-xFf{x))ί we have

A(s, t)=H(s2, t2)

=(s3F(s2)+fF(t2))2-2(s2-t2XszF(s2)+fF(t2))

+ ^(s2-t2)2(s(3F(s2)+2s2F\s2))-t(3F(t2)+2t2F'(t2))

+st(3F(s2H2s2F'(s2)X(3/2)F(t2)+t2F'(t2))).

Then, A(s, 0 is holomorphic in { | s | < ε } X { | f | < ε } and A( ,0) has a zero of
order 5 at s = 0 . Therefore, A( , 0 has five zeros (counting multiplicity) near
5 = 0 for any t.

Since
3 i

we have

Hence, for a sufficiently small arbitrary t, there is a λ sufficiently close by 1 so
that h(λt, 0 = 0 . Hence, there is a pair of (x, y) such that Re;t>0, R e ^ > 0 and
H(x, y)=0.

Hence, there is a point (xu yί} aίf βίf 7Ί)e V such that
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Assume x i — J Ί . By (20) and (22), we have

xV\x1-a1)Λ(xi)=0 and (x1-βί

Since xγ is a double zero of

is also a double zero of x3/\x—ax)A{x). Hence, we have

This is a contradiction.
If j8i=0 or 7Ί=0, then x ^ O (resp. ^i=0) is a double zero of / (resp. g).

Hence, x1=yi=0. Again a contradiction.
If aι=β1 or αi=7Ί, then ^1=^1=0:1. This is also a contradiction.
Assume that J8I=JΊ for every (xx, ̂ 1, αi, j8i, 7Ί)^ ̂  Then, instead of (20)-

(23), we have

-a)(j A(y)+yA'(y))+y*>2A(y)+2(y-β)B(y)+(y-βTB'(y)=0.

Eliminating a from these equations, we have

X y

(x-βfB

+ ys'2A(y) '

(x-βfB(x) 2(x-β)B(x)+(x-βTB'(x)-x°ι*A(x)

xA{x) 3A(x)/2+xA'(x)

(y-βfB(y) 2(y-β)B(y)+(y-β)2B'(y)+y^A(y)
yA{y) ZA{y)/2+yA'{y)

From (31) and (32), we have

/3ab
V 2

where i j = U ! + |;y| + |j8|. Hence, we have

(33) ?

and



TRIGONAL RIEMANN SURFACES 87

(34) -t

From (33), x-β=O(x*/2) or x+3β = O(x*/2) and from (34), y-β = O(x3/2) or
y+3β = O(x*12).

Assume that x-β=Mx3/2 and y-β=Ny*/2. Then, by (33) and (34), we have

M=-yj-+o(l) and N= — -7rτ~-\-o(l).

Substituting them into (30), we have

ί 2+iV 2+0(D).

Hence, a/b+o(l)=a/(2b)+o(l). A contradiction.
Assume that x+3β=Mx3/2 and y-β=Ny2/2. Then,

and

Hence, b+o(l)=o(l). Contradiction.
Assume that x+3β=Mxz/2 and y+Sβ^Λty3/2. Then, by (33) and (34), we

have

(x-β)2B(x) (y-β)*B(y) I6β2(b+o(l)) β\a2/(4b2))
x*'2A{x) ^ y3l2Λ(y) (-3^) ^

j Ό and N=-
Zb

Hence,

and
(x-β)2B(x) (y-β)2B(y) 16β\b+oq))

x3/2A(x) "*" 3^3/2^(^) (-3jβ)3/2(2fl+ί?(l)) *

Hence, b-\-o{l)—o{l). Contradiction.
Thus, there is a point (xu yu au βu 7Ί)e F such that xxφyι and αj, 8̂j, Ί

are mutually distinct.
The rest of the proof is similar to that of Lemma 3.
Let SGM ί l3,n(/)i, P2, pz, pd be defined by the equation (1). There are

polynomials Γx ( ί = l , 2, 3) and Π ; (; = 1, 2, 3, 4) in x which satisfy (2)-(8).
Then we have:

THEOREM 2. Assume that 3n— g+1—p%—p^Q i.e. Γ3 ts constant and2n<
— l. Then, S is included in the closure of any one of

i ) M,.3.»(/0i — l, p2, /O3+2, p4), if |θi>0.
ϋ) Mg,ι,n(pi, /02—1, /θs + 1, |
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Hi) Af, t S i»(0i+l, 02-1, 03, 04), if 02>O.
iv) Mg,3,n(ρlf 02-1, 03+2, ρ4), if 02>O.
v) Mgt3,n{pu p2, 03+1, 04-1), if 04>O.
Vί) Mg,3,n+i(pi — 1, 02, 03, 04+2), ί/ 0i>O.

vii) Mgt3,n+1(p1 —1, 02+1, 03, 04), */ 0i>O.

Without loss of generality, we may assume that \at>j—ak,ι\>2 if
(i, j)Φ(k, /).

Next, we shall show that we may assume that Γk(at>j)Φθ for k—\t 2, z =
1, ..., ^ 7=1, •••, 4. Assume that Γk(altj)=0 for some &, i, j . Let ε be an
arbitrary positive number. Then, there is an ε*^0 such that

has p3 simple zeros α?f8(*'=l, ••• , 08) and that \aftZ — aι>3\<ε. Here, Γf(x)=
Γk(x)+ε* fe=l, 2. Let S* be defined by

Obviously, we can assume that Γt(attJ)Φθ for each k, i, j .
Let At,j={\x — attj\<l} and let Δ be a closed disk such that Δt>>7 c Δ for

every i, j . Then, for every x G Δ - w Δ t , ; , in the equation (1), y takes three
distinct values. It is easy to see that m=mflut^J£S\yi(x)—yj(x)\>0, where
yiWf yzW, ys(x) are three branches of y and x runs over Δ—wΔί)>7. If Γk

changes continuously, then yt also varies continuously. Hence, if ε* is sufficiently
small, then for each / = 1 , 2, 3, there is a branch y*(x) of y* so that |;y*(x)—
yi(x)\<m/2 on Δ—uΔ l t J . Therefore, for any closed curve γ in A—\jAitJt the
continuations of y and 3;*, respectively, along y induce the same permutations
of branches. Hence, 5 and 5* satisfies the assumption of Lemma 2. Therefore,
S can be approximated by such an S*.

Assume that 0i>O. Without loss of generality we may assume that αi.i^O.
Let JtΠ(#)==Πi(*) and let Sa be the Riemann surface defined by

By assumption, every zero of 4Λ(Λ:) 3 III(X)Π2(Λ:) 2 +27Γ2(Λ:) 2 Π4(^) is simple.
Hence, by Lemma 3, for sufficiently small α,

has ^3+2 simple zeros.
By Theorem 1, every Sa corresponds to an element of MgtZ,n{ρ1—1, 02,

+2, ^4). By Lemma 2, Sα tends to S as a tends to 0. This is the case i).
Again, let JtΠ(#)=Πi(tf) and let Sa,β be the Riemann surface defined by
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Using Lemma 5, we can choose sufficiently small a and β so that

has pz simple zeros and exactly one double zero near x=0.
By Theorem 1, every Sa,β corresponds to an element of MgtB,n+i(pi

p2, Pz> /04-l-2). Since So,o is defined by

it is equivalent to S. Again, by Lemma 2, we have the case vi).
Let xTH(x)=TLi(x) and let Sa,β,r be the Riemann surface defined by

Since 4 J Π Π 1 Π i + 2 7 / l I L has exactly ρ3 simple zeros, using Lemma 6, we
can choose sufficiently small a, β and γ so that

has pz simple zeros and two double zeros. By Theorem 1, every Sa,β,r cor-
responds to an element of Mg,3,n+i(pi—l, p 2 + l , ι°3> P*) Hence, we have the
case vii).

Assume that ρ2>0. Again without loss of generality, we may assume that

fll,2 = 0.

Let xU(x)—U2(x) and let Sa be the Riemann surface defined by

By a similar argument as above, we have Sa is an element of Mgt3,n

u |02—1, J03+1, j04+l). Hence, we have the case ii).
Again, let xH(x)=U2(x) and let Sa,β be the Riemann surface defined by

Using Lemma 4 for & = 1, we can find arbitrary small a and β so that
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has one double zero and ρ3 simple zeros. Hence, we have the case iii).
Let xTl(x)—Tί2(x) and let Sa,β be the Riemann surface defined by

Using Lemma 4 for k=^2, we can find arbitrary small a and β so that

has one double zero and p3-\-2 simple zeros. Hence, we have the case iv).
Finally, assume that |O4>0 and assume that fli>4=0. Let x Π M ^ I L M and

let Sa,β be the Riemann surface defined by

Using Lemma 4, we can choose sufficiently small a and β so that

has one double zero and ^o3+l simple zeros. Hence, we have the case v).
This completes the proof.
Making use of Theorem 1 iii) instead of ii), we have another sort of inclu-

sion relation.

THEOREM 3. // p&g—Sn+l, ρ2<3n-g+l, pi+p2^n-l and2n<g<3n
+ 1 , then there exists an S<E:Mg,3,n(plf p2, p3, 0) so that S is included in the
closure of any one of

i ) M,.3.n(iί>i-1, pt, /O3+2, 0), if pt>0.

ϋ) Mg,3,n(pu p2-l, £3+2, 0), // p2>0.
iii) M^s.n+i(^i—1, 1&2+1, £3, 0), if p^O and 2n+2£g.
iv) MgtStn+i(pi, pi, ps, 0), if 2n+2^g.
v) Λftfi8.n+i(/ί>i+l, P2—1, pz, 0), // |O2>0 and

Proof. Let p4=2g—3n-\-l — ρ1 and m—g—n. Then, we have

As is stated in the section 1, we have proved in [6] that there is a trigonal
Riemann surface of genus g defined by an equation such as (1) satisfying (2)-
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(8), where n, pu ρ2 and pz are replaced by m, p2f pi and p^ — p^, respectively.
Since n=g—m and 3m—g + l—ρ1—p4=0) by Theorem 1, we have that 5 G
Mg,3,n(pu p2, p3, 0). The rest of the proof is done by the same procedure as
that of Theorem 2, i. e. the cases i), ii), iii), iv) and v) correspond to the cases
ii), i), iv), v) and vii), respectively. We omit the details.
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