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HIRZEBRUCH L-HOMOLOGY CLASSES AND
THE INTERSECTION FORMULA

By AKINORI MATSUI

1. Introduction. In [7], Goresky and MacPherson introduced the signature
for compact oriented PL-pseudo-manifolds which can be stratified with only
strata of even codimension, using the intersection homology theory. Further-
more they defined the Hirzebruch L-homology class. Our main purpose is to
prove the intersection formula for Hirzebruch L-homology classes, which is the
analogy of the Stiefel-Whitney homology classes’ version [11]. By simple
calculation, the case of manifolds can be reduced to the product formula for
cohomology characteristic classes of bundles.

Let X and Y be compact oriented PL-pseudo-manifolds, possibly with
boundary, which can be stratified with only strata of even codimension (cf. [7;
§51). If X and Y are properly PL-embedded in an oriented PL-manifold M,
and if they are mutually transverse in M, then the intersection XNY is an
orientable PL-pseudo-manifold which can be stratified with only strata of even
codimension (cf. Proposition 2.3). Then we denote by X-Y the intersection
XNY with the canonical orientation. Let @ and b be in Hy(M, 0M; Q). To
state our main theorem, we define a-b by a-b=[MIN([MIN)a\U([MIN)b).
Let f: X—>M, g:Y->M and h: X-Y—M be the inclusions. Our main theorem
is the following:

THEOREM. With the above, the following holds :
FaLs(X) gxLs(Y)=hs Li(X- Y )NXM),
where [*(M) is the L-cohomology class of M.

We recall the definition of the Hirzebruch L-homology classes due to
Goresky and MacPherson [7]. Let 2% be the oriented cobordism ring of com-
pact oriented PL-pseudo-manifolds which can be stratified with only strata of
even codimension (cf. [7;§5]). Let X be a compact n-dimensional oriented
PL-pseudo-manifold without boundary which can be stratified with only strata
of even codimension. Denote by ¢(X) the signature of X ([7]). Then o: 2%
—Z is a ring homomorphism ([8]). We denote by [X, S*] the set of homotopy
classes of maps from X to the k-sphere S*. Define a map 0:[X, S*]1—Z by
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0(f)=a(f'(p)), where f is transverse regular to p. Let u be the generator
of H*(S*, Z). For the case 2k>n-+1, the Hirzebruch L-homology class L,(X)
in H,(X, Q) is characterized by the following identity :

(LX), f*u>=0(f)  for all f in [X, S*].

The restriction 22>n41 can be removed by crossing X with a sphere, as in
Milnor [13]. If X has a boundary, we define L.(X) to be the pull back of
Ly(XUX), where X\UX is the double of X. If X is a manifold, then L(X)=
[XINI*X) (cf. [13]).

2. Transversality and classes of singularities.

First we recall the definition of transversality according to Buoncristiano,
Rourke and Sanderson [4].

Let X be a polyhedron. Let K be a collection of PL-balls in X. We write
|K|=\Usexo. The collection K is a ball complex structure ([4]) on X if the
following hold:

Bl. X is the disjoint union of the interiors Inte¢ of all PL-balls ¢ in K.

B2. If ¢ is a PL-ball in K, then the boundary d¢ of ¢ is the union of PL-
balls in K.

Let K be a ball complex structure on a PL-manifold M and let X be a
subpolyhedron of M. We say that X is collarable in M, if there exists a collar
¢: (M, XNoM)xI—(M, X). The polyhedron X is transverse to K, if for each
PL-ball ¢ in K, the intersection XN is collarable in ¢. Let X and Y be sub-
polyhedra in M. We call the polyhedron X transverse (or mock-transverse) to
Y in M, if there exists a ball complex structure K on M and exists a sub-
complex L of Ksuchthat |L|=Y and X is transverse to K ([4]). By McCrory
[12], we know that for collarable polyhedra X and Y in an ambient PL-mani-
fold, the polyhedron X is transverse to Y if and only if Y is transverse to X.
Other definitions of transversality were given by Armstrong [3], Stone [16]
and McCrory [12]. These definitions are equivalent if subpolyhedra are collar-
able in an ambient PL-manifold (McCrory [12]).

Let X be a subpolyhedron and N be a PL-submanifold in a PL-manifold.
The polyhedron X is block transverse to NV if there exists a normal block bundle
v=(E, 7, N) of N such that the restriction (XNE, i[(XN\N), XN\N) of v to
XNN is a block bundle over XNN (cf. [14]). Then by [4] we have the
following :

PROPOSITION 2.1. The polyhedron X is block transverse to N if and only if
N 1s transverse to X.

We need the following to prove our theorem (cf. [117).

LEMMA 2.2. Let X and Y be collarable subpolyhedra in a PL-manifold M
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and V a proper PL-submanifold in M. Suppose that X is transverse to Y and
V is transverse to X\UY in M. Then XNV is transverse to YNV in V.

LEMMA 2.3. Let X and Y be collarable subpolyhedra in a PL-manifold M
and V be a proper PL-submanifold in M with a normal block bundle v=(E, i, V).
Let X be transverse to Y and let X\UY be block transverse to v. Then XNV
and YNV are transverse to YNE and XNE in E, respectively.

TRANSVERSALITY THEOREM 2.4 ([4], [14]). Let X and Y be collarable sub-
polyhedra of a PL-mamifold M and let XNOM be transverse to YNOM in oM.
Then there exists an arbitrarily small ambient 1sotopy h, of M such that h,|0M
is the identity for all t and that h(X) is transverse to Y in M.

Next we recall the definition of classes of singularities due to [1] and [4].
Let X and Y be polyhedra. We denote by XY the join of X and Y. Let &
be a class of compact polyhedra. Let ¢ be a point. We define ¢x& by ¢x&S=
{exX|Xe®}. A class &" of polyhedra of pure dimension » is called a class
of singularities (cf. Akin [1], Buoncristiano, Rourke and Sanderson [4]) if the
following hold:

Sl. If Xe&" and Y=X, then Ye&".

S2. ¢=&,

S3. X" if and only if S*Xe&"*,

S4. If Xe®&™ and Y=6", then XxYe@m+*+!,

S5. @™"Ncx@&™ =g
Put &={G"}. We also call © a class of singularities.

Let © be a class of singularities. Let X be a polyhedron of pure dimension
n and let 0X be a subpolyhedron. The polyhedron X is called a &-space if
the following hold:

1. 0X is of pure dimension (n—1) or empty.

2. Link(x, X) is in &*"! for x in X—dX.

3. Link(x, X) is in ¢#&™?% for x in 0X if 0X is not empty.

4. Link(x, 0X) is in &"% for x in dX if X is not empty.

We say that a &-space X is properly PL-embedded in a PL-manifold M if
oMNX=0X.

PROPOSITION 2.5. Let X and Y be ©-spaces properly PL-embedded in a PL-
manifold M. If X is transverse to Y in M, then XNY 1s a S-space.

In order to prove this proposition, we will introduce some notations. Let
L be a ball complex. We assume that, for all PL-ball A in L, collars ¢, : dA
XI—A are given. Put Star*(A)={A’L|A’>A, dimA’=dimA+£k} and put
|Star#(A)| =\UA’, where A’ runs over all PL-balls in Star*(A). For a polyhedron
A in A, we construct a subpolyhedron P*(A) in |Star*(A)| as follows:

First we put P°(A; L)=A. Next assume that P*-'(A; L) is constructed.
Then we put P*(A; L)=Uc, (P*"Y(A)NA")X ), where A’ runs over all PL-balls
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in Star*(A). By the construction, we obtain the following :
LEMMA 2.6. Let ¢ be a point in A. Then P*(A; L)Y=P*; L)X A.

Proof of Proposition 2.5. Let K be a ball complex structure on M and let
L be a subcomplex of K such that |L|=Y and X is transverse to K. First
we prove that, for each PL-ball A in K, the intersection XNA is an empty set
or a ©-space with the boundary XNdA, by induction on the codimension of A
in M. If dimA=dim M, it is clear. Assume that, for each A" * in K, the
intersection XNA™"* is a ©-space with the boundary XM0A"-*. For any A™-#-!
in K, there exists an (n— k)-dimensional PL-ball A*~* in K such that A™-*>
A" *-'. Since XNA" *-'=(XN0A" *)NA""*-!, we can see that XNA""*"! is a
&-space. Then XNA is a &-space for each A in K.

Let K’ be a subdivision of K which contains a triangulation of X. Let L’
be a subcomplex of K’ which is a subdivision of L. Let A be a PL-ball in L.
Let 7 be a simplex in K'|XNA—K’'|XMN0A. Let ¢ be a vertex of = and let ¢
be a simplex such that t=c*¢. Put L.=Link(c; K’'|XNA). Then P*(¢xL.; L)
=P*c¢; L)YXcxL, by Lemma 2.6, where % is the codimension of A in L. Let
P(c) and P(cxL,) be triangulations of P*(c; L) and P*cxL,; L), respectively.
Since X is transverse to Y, we have

Link (r; L'| X)=Link (r; P(cxL,)).
Then N
Link (r; L’|X)=Link (¢ ; P(c)Xc*L,)

=Link (¢ ; P(c))*Link (¢ ; cxL,).

The fact that XNA is a ©-space implies that Link(o; ¢xL,) is an element in

&. On the other hand, Y is a ©-space. Then Link (¢ ; P(c)) is an element in

©. Hence Link(r; L'|X) is an element in &. Then XNY is a &-space.
q.e.d.

Denote by &7 the class of compact oriented n-dimensional PL-pseudo-mani-
folds without boundary which can be stratified with only strata of even codi-
mension. Put &,={€%}. Define &(&,) by &"(&,)=U{S* 2x X2 | X &},
Then &(&,) is a class of singularities. Furthermore orientable &(&,)-spaces
coincide with orientable PL-pseudo-manifolds which can be stratified with only
strata of even codimension. Consequently, we can see the following from
Proposition 2.5.

PROPOSITION 2.7. Let X and Y be compact oriented PL-pseudo-manifolds
which can be stratified with only strata of even codimension. If X and Y are
PL-embedded in an oriented PL-manifold M and X is transverse to Y in M, then
XNY is a compact oriented PL-pseudo-manifold which can be stratified with only
strata of even codimension.
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Let © be a class of singularities. Then the bordism theory of &-spaces is
a Z,-homology theory (Akin [1]). If each of &-spaces is an orientable PL-
pseudo-manifold, then the oriented bordism theory 2% of S-spaces is a Z-
homology theory. We denote by 2% the bordism theory of compact oriented
PL-pseudo-manifolds which can be stratified with only strata of even codimen-
sion (Goresky and MacPherson [7], [8]). We need the following lemma, to
prove Lemmas 4.1 and 4.7.

LEMMA 2.8 ([5]). Let hy be 24 or 2¥. For a pair (A, B) of polyhedra,
the following hold:

1. 7: ha(A, BYQQ—H(A, B; Q) is a surjection, where n(p, V)=@«[V].

2. There exists a natural transformation T : h,(A, BYQQ—X"H, (A, B;
hiQQ) and there exist bases (9} *epa, UT*XWY) of ha(A4, BYQQ such that
T(p3 e pa, Ut XW)=i «[UF*JQW} and they are bases of 2, H,-i(A, B;
h.@Q)-

Proof. First we prove the statement 2. Let T,:#i (A4, B ®h.RQ—
h.(A, BYRQ and T,: n%_(A, BIQh.QQ—H,-i(A, B; h;QQ) be natural trans-
formations ([5; §1]), where #n%(A, B) is the stable homotopy group of (A4, B).
Then T,: 3emh-i(A, BYQhQQ—hn(A, BYQQ and T,: Zlomh-i(A, BYQhQQ
-3 H,.(A, B; h;QQ) are isomorphisms ([5; §3, Corollary 3]). Put T=T,-
T1*. Then T: h,(A, BYYQ-2~H,-i(A, B; h;QQ) is the natural transform-
ation. By the construction of 7, we can obtain the bases which we want.

Next we show the statement 1. Noting the construction of T, we can see
that = : h,(A, BYQQ—H,(A, B; Q) coincides with T : h,(A, BYQQ—H,.(A, B;
ho®@Q). Then =z is a surjection. g.e.d.

We immediately have the following by the Kiinneth formula of ordinary
homology and by Lemma 2.8. We need the following lemma to prove Lemma
4.3.

LEMMA 2.9. Let hy be Q4 or 2. Let (A, B) and (C, D) be pairs of poly-
hedra. Then the cross product X :%o(hn-«(A, B)YXhi(C, D)QRQ—h,(AXB,
AXDUCXB)QQ is a surjection, where (¢, V)X(¢p, U)y=(pX¢, VXU).

3. Axioms of Hirzebruch L-homology classes.

Let X and Y be compact oriented PL-pseudo-manifolds which can be
stratified with only strata of even codimension. Assume that dim X=dimY.
Let f: X—Y be an orientation preserving PL-embedding. We call f a regular
embedding if f(X) is closed in Y, f(Int X)NdY=¢ and f|IntX is an open map,
where Int X=X-—0X.

Given a regular embedding f:X—Y, we define a homomorphism
¥ HJ(Y,0Y; Q)—»Hu(X,0X;Q) by [f#=(f4)'eix, where :(Y,0Y)—
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(Y, Y—f(IntX)) is the inclusion. Note that fi: Hy(X, 0X; Q)—
H(Y, Y—f(IntX); Q) is an isomorphism by the excision property. Therefore
f# is well defined.

Let & be the category whose objects are compact oriented PL-pseudo-mani-
folds, possibly with boundary, which can be stratified with only strata of even
codimension and whose morphisms are regular embeddings.

For each object X in & with dim X=n, we consider a (total) homology
class

LiX)=LoX)+ LX)+ - +La(X) in Hy(X, 0X; Q)

satisfying the following axioms:

LO. L, (X)=[X].

L1. For every object X of &, the homology class L.,(X) is in Hi(X, 0X; Q)
such that L,_;(X)=0 if /=0 (mod4).

L2. If f: X—Y is a morphism in &, then L X)=f#L(Y).

L3. L AXXY)=LX)XLY).

L4. If 0X=¢, then (LX), 1°>=0(X), where ¢(X) is the signature of X.

We call such a homology class L,(X) an axiomatic L-homology class of X.

THEOREM 3.1. Let X be a compact oriented PL-pseudo-manifold which can
be stratified with only strata of even codimension. Then the axiomatic L-
homology class of X coincides with the Hirzebruch L-homology class of X.

We will prove the existence of axiomatic L-homology classes in Section 4.
(cf. Lemma 4.3 and Corollaly 4.4).

LEMMA 3.2. If axiomatic L-homology classes exist, they coincide with the
Hirzebruch L-homology class.

Proof. Considering Axiom L2, we may assume that X has no boundary.
Let 0:[X, S*]—»Z be the map which is used to define the Hirzebruch L-
homology class in Section 1. Let f: X—S™ be an element of [X, S*]. Then
there exists a PL-embedding f’: X—S™®XD* such that f'~fx{0} for £ suffi-
ciently large. Let ptXc¢: D¥—~S"XD* be the embedding defined by (ptXe)(x)=
(pt, x), where pt is a point of S™. Let v=(E, 7, D*) be a normal bundle of
ptXe. On the other hand, we can assume that f'(X) is transverse to v. For
simplicity, we put

XND*=f/(X)N(ptXe)D*),
and
X-Drt=f"(X)-(ptXe)D*).

Since v is a trivial bundle, we have the following commutative diagram:
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XND* ————> D"X(XN\DH=f"(X)NE —> X
{0} xid Jx

In fg=idXxIn f!

Dk ﬂ% DnXDsz ___________)SnXDk .
Here j, fz and In are the inclusions and jy is defined by jx(x)=f""'(x) for x
in f"(X)NE. Let u be the generator of H™(S™; Z). Assume that dimX=m
and put e=(—1)»+*-™2_ Then

CLAX), frud=<fiLaX), ([S"XD*IN)"7xx[D*1>
=ejxdx[D*], ([S"XD*IN) fRLa(X)>
=elix[D*], PX[S"XD*IN) [ La(X)).

Note that j*([S*XD*IN)*fi=(EIN) ' frx/%. By Axiom L2, we have j§ L ,(X)
=L,(f"(X)NE). Then

CLAX), frup=eisx[D*], (LEIN) " fox La(f(X)NE)>.

We note that f'(X)NE=D"X(X-D*). By Axioms L0 and L3, we have
L X)INE)=LAD"X(X-D*))=L (D™")X L4(X-D*)=[D"]1X L(X-D*). Then

Fex La(f(XINE)=(id X In)«([D"]X L 4(X- D*))

=[D"]XIn«L(X-D%).
Thus
(LX), fruy=<{[D"1XIny L (X -D*), ((EIN)"ix[D*1)>

=nx Ly(X-D*), 1= L X -D*), 1°>.

By Axiom L4, we have (LX), f*ud>=a(X-D*). Since 6(f)=a(X-D*), we have
(LX), f*ud>=60(f). Thus LX) is the Hirzebruch L-homology class.
g.e.d.

4. Characterization of Hirzebruch L-homology classes.

Let X be a compact oriented PL-pseudo-manifold which can be stratified
with only strata of even codimension. Let M be an oriented PL-manifold.
Let M and M be codimension zero submanifolds of M such that aM=MUM
and MNM=0M=0M. Let Q4 be the oriented bordism theory of compact
differentiable manifolds. Let 2% be the oriented bordism theory of compact
oriented PL-pseudo-manifolds which can be stratified with only strata of even
codimension. Throughout this section, we use the above notation.

Let X be PL-embedded in M such that dXCM and X—9XCM—oM. Let
f:(X, dX)—(M, M) be the inclusion. We define homomorphisms
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0 M, MYQ®Q —> Q, and &,: 2M, MHRQ — Q.

Let b: Q«(M, M)-»Q22(M, M) be the natural map. If &, is defined, we define
o; by o;=d,b. Let ¢: V—M be a map in 29(M, M). Then there exists a
PL-embedding ¢: (V, dV)—~(Mx D%, Mx D%), for a sufficiently large, such that
¢=¢x{0}. By using the transversality theorem, we can assume that ¢(V) is
transverse to XXD* in MXD®. By Proposition 2.7 the intersection ¢(V)N
(XxD*) is an oriented PL-pseudo-manifold which can be stratified with only
strata of even codimension. We denote by ¢(V)-(XXD*) the intersection
H(VIN(XXD*) with the canonical orientation. Therefore we define &,(¢, V)
to be the signature o(H(V)-(XXxD*)). By the transversality theorem and
Proposition 2.7, we can well define 6,. We assume that dim X=n and dim M
=n-+k.

LEMMA 4.1.  With the above situation, there exists a unique cohomology class
O()=P° 4+ D'+ - + O™k in H¥M, M: Q) satisfying the following :

Lo LVINIKVY), B(f>=0a,p, V)  for each (¢, V)

m 24M, MYQQ. Here IXV) is the Hirzebruch L-cohomology class of V.
Furthermore @*+*=0 1f {50 (mod 4) or i<0.

Proof. We will inductively define cohomology classes @* in H* (M, M; Q)
for :=0,1, ---, n+k, where dimX=n and dim M=n+£k. Note that we can
choose bases of Q4(M, M)RXRQ in 2+(M, M). First we define 8°: 2,(M, M)RQ
—Q by ®%p, VO=a,p, V°) for (p, V°) in 24(M, M). Let us define
D Q(M, MYQQ—H(M, M; Q) by pip, V)=¢«[V]. Then p, is a surjection
by Lemma 2.8. Since ¢«[ V°]=0 implies ﬁ“(go, V9=0, we see that ®° deter--
mines a cohomology class @° in H%(M, M; Q) such that Lx(LVINIKV?)), O
=a,(p, V'). Next we assume that there exist cohomology classes @* in
HYM, M; Q) for i=0,1,--,s—1, such that {p[VIINXV?), T D>=
a,(p, V) for each (¢, V?)in 2,(M, M) with j<:<s. Define &*: 2,(M, M)®Q
—Q by 5‘(go, V=0 (¢, V=L VINIKV?)), 23zid¢y. We will prove that
@* determines a cohomology class. We assume that ¢[V*]=0. By Lemma
2.8, there exist (¢;, U*™%) in Q,_(M, M), W in Q2,(pt) and e, in Q such that

(¢, V=S algieq, U XWH  in (M, DRQ,

where ¢: Us~*xWi—U*""* is the projection. On the other hand, ®*(¢;-q, U*"*XW?)
=0 1(¢oq, U XWH)—=L@io@)s([U XW INIXU* X W), 2?26@‘>=0(W:){0f(90i,
Us=)—<L @i ([UsINIXU*"Y), 23240} =0. Then @[ V*]=0 implies O%(¢p, V*)
=0. Note that p,: 2(M, M)xQ—H,M, M; Q) is a surjection. Then @* deter-
mines a cohomology class @° in H*(M, M; Q) such that {@«([V*IN*V?®),
oD =0,(p, V). Put @(f/)=0°+@'+ --- +0™** By the construction of
@(f), we have @*+*=0 if :<0 or %0 (mod 4). g.e.d.
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DEFINITION 4.2. Choose a PL-embedding of X in DV for N sufficiently
large such that XNdD¥=3X. Let M and M be regular neighborhoods of X
and 80X in D and dD¥, respectively. Let f: (X, 3X)—(M, M) be the inclusion.
We define a homology class L(X) in H(X, 0X; Q) by L(X)=fz([MIND(f)),
where @(f) is the cohomology class in Lemma 4.1. The cohomology class
L(X) does not depend on the choice of the embedding in DV.

LEMMA 4.3. Assume that L(X) is the homology class as above. Then L(X)
satisfies Axioms L0, L1, L2, L3 and LA4.

Lemmas 3.2 and 4.3 imply the following corollary, which includes Theorem
3.1

COROLLARY 4.4. The homology class L(X), the axiomatic L-homology class
and the Hirzebruch L-homology class coincide with each other.

Proof of Lemma 4.3. We can easily prove that L(X) satisfies Axioms LO,
L1 and L2. So we omit the proof. First we prove that L(X) satisfies Axiom
L4. For the case where (¢, V)=(@d, M), we have ¢ ,(id, M)=0(X). Since M
is a codimension zero submanifold of DV, we have [MIN*(M)=[M]. Then
o(X)=<[M7J, IMIN)*fx L(X))={fxL(X), 13>=<L(X), 1°.

Next we prove that L(X) satisfies Axiom L3. Let My and My be regular
neighborhoods of X and Y in D™+? and D"™*?, respectively. Let fx: (X, 0X)—
(My, 0Myx) and fy: (Y, 0Y)—(My, dMy) be the inclusions. We use the same
notation as in the definition of L(X). By calculation, we have {(¢X@)([VXU]
NIV XU), ([Mx X Myl N\ ) M(fx X frx (LX) X LY =L« ([VINIHV)),
(CMx1IN) " f xx LCXO> XLV INIKUD), CMeIN) " fex L(Y )y =04 (0, V) 0,,(, U)
=0 pxsp{X¢, VXU). By Lemmas 2.9 and 4.1, we have O(fxXfy)=
([Mx X MpIN)(fx X fr)x( L(X)X L(Y)). By considering the definition of L(XXY")
(cf. Definition 4.2), we have L(X)X L(Y)=L(XXY). qg.e.d.

THEOREM 4.5. Let X be PL-embedded in M such that 9XCM, XNaM=0X
and X is collarable in M. Let_f: (X, 0X)—(M, M) be the inclusion. Then, for
each map ¢: VM in (M, M), the following holds:

CoR(LVINKVY), CMIN) fxL(XDNIM))> =0 (o, V).

Furthermore the_ homology class f«L«(X) is completely characterized by this
identity. Here (M) is the inverse of I*(M), that is, (M) JI*M)=1.

This theorem gives the fundamental characterization of Hirzebruch L-
homology classes. We need both this theorem and the following proposition
to prove our main theorem.

PROPOSITION 4.6. With the same situation as in Theoren 4.5, the following
holds :
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s L(V), CMIN) ([ s Ll X)NIM))>=3 7(¢p, V)
for each (¢, V) in Q¥(M, M).

We need the following lemma to prove this proposition. For the proof of
this lemma, we may replace [VINI*V), o, and £, in Lemma 4.1 by L(V),
Gy and Q%. Then we can apply the proof of Lemma 4.1 to that of the follow-
ing lemma, using Corollary 4.3. So we omit the proof.

LEMMA 4.7. With the same situation as in Lemma 4.1, there exists a unique
cohomology class D(f)=@°+@°+ - +@+* jn H*M, M; Q) satisfying the
following :

s Le(V), O(f)>=é,(p, V)
for each (¢, V) in QL(M, M).

Furthermore @(f) coincides with that in Lemma 4.1.

Proof of Proposition 4.6. If (¢, V) is in 2+(M, M), then Lyo(V)=[VINI*V).
Hence the cohomology class @(f) in Lemma 4.7 satisfies the identity in Lemma
4.1. By Theorem 4.5 and the uniqueness of @(f) in Lemma 4.1, we have O(f)
=M IN) ([ 5 L(XOINIM)). g.e.d.

The following in this section is devoted to prove Theorem 4.5. To prove
Theorem 4.5, we need to give a characterization of the dual Hirzebruch L-
cohomology class (&) of an oriented block bundle &.

Let £=(E, ¢, B) be an oriented block bundle over a compact polyhedron B.
Denote by E the total space of the sphere bundle associated with & Let U,
be the Thom class of &, We will define homomorphisms o, : 24«(E, EYRQ—-Q
and G¢: Q(E, E)Y®RQ—Q as follows. We assume that B is PL-embedded in
R¥. Let A be a regular neighborhood of B in RY. Denote by p: A—B the
deformation retraction. Denote by p*e=(E(p*£), ¢/, A) the induced bundle.
Let (P, p): (E(p*€), A)—~(E, B) and (1, 7): (E, B)—(E(p*), A) be bundle maps,
where i and 1 are the inclusions. Define ¢; and ¢ by g, V)=0,0¢, V)
and G¢lp, V)=a.(3-¢p, V).

PROPOSITION 4.8. With the situation as above, the following holds:
Cox(LVINIKVY), Uk &)y =aelp, V)

for (¢, V) in 24(E, E). Furthermore the dual Hirzebruch L-honology class I(&)
is completely characterized by this identity.

This proposition is the fundamental characterization of the dual Hirzebruch
L-cohomology classes of bundles. We need this proposition only to prove the
following proposition, which is necessary to prove Theorem 4.5 and our main
theorem.
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PROPOSITION 4.9. With the same situation as in Proposition 4.8, the follou-
ing holds:

s L(V), UeNe* U €)>=354(p, V)
for (¢, V) in Q¥E, E).

Furthermore the dual Hirzebruch L-homology class I(€) is completely characterized
by this identity.

Proof of Proposition 4.8. We use the notations which are used to define
gs. Let ¢: VoE be a map in 24(FE, E). Then there exists a PL-embedding
¢ V- E(p*€) in Q(E(p*€), E(p*€)) such that ¢=1.¢ and ¢(V) is transverse to
A. Since p=po1op=po¢h, we have

L[V INIKV ), Ugue*~i&)y
={P([[VINKV)), PULIP**1(8))
=(LV ], $*U pue NIXV )UGH*(p*E))
=V ING*U pog, IV ) > U(p*E)) .

Let j: ¢(V)NA—V be defined by j(x)=¢*(x). Then [ VING*U pee=75[H(V)- A].
On the other hand, we have j¥X(V)Uj*¢*/'*(p*€)=I¥(¢(V)-A). Then
Cox(LVINIKV)), Ueue*1&)y=<[p(V)- A], IX((V)-A)>. Noting that ¢(V)-A
is an oriented PL-manifold, we have ([J(V)-A], IX(P(V)-Ap=a((V)-A).
Consequently <@«([VINI*(V)), UeUz*"l'(E)>=a,,(iogo)=oe(gp, V) for each (¢, V)
in Q4E, E).

Replacing f by ¢/, we can see that the uniqueness of @(f) in Lemma 4.1
implies the uniqueness of (&). g.e.d.

Proof of Proposition 4.9. By Lemma 4.7, there exists a unique cohomology
class @(1o¢) such that <gxL(V), O(o@)p=5,. (109, V)=3(p, V) for each (¢, V)
in Q¥E, E). If V is an oriented PL-manifold, then L«(V)=[V1N{*(V) and
d:(p, V)=0elp, V). By using Proposition 4.8, we have

O(1o@)=UJe*H(£). q.e.d.

Proof o_j: Theorem 4.5. Let (¢, V) be a map in 2.(M, M). Let ¢:(V,aV)
—(MxD*, MxD*) be a PL-embedding for £ sufficiently large, such tha
¢=¢x{0} and ¢(V) is transverse to (f X:d)(XxXD*). Then

Cpx[LVINKVY), ([MIN) ™ fa Le(X)NIM)}>
=LP([VINEK(V)), ([MXD*¥IN){(f Xid)sx L (X X D*)NI(M X D*)}>.

Therefore we may prove the case where ¢ is a PL-embedding and ¢(V) is
transverse to f(X).
We assume that ¢: V—M is a PL-embedding with a normal block bundle
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v=(E, ¢z, V) and that X is transverse to ». Let U, be the Thom class of v,
that is [E]JNU,=¢g«[V]. Let E be the total space of the sphere bundle
associated with v. Put X=ci(X—E) and M=cl(M—E). Let j: (M, M)—(M, M),
je:(E; E, Ey»(M; M, M), i: (XNE, dXNE)— (X, X), jx: (X, 8X)— (X, X),
fe: (XNE, dXNE)—(E, E) and f: (X, X)—»(M, M) be the inclusions. Then
we have the following commutative diagram:

Hy(X, 0X) ——> Hy(X, X)~——— H«(XNE, 8 XNE))
Jxx% Ix
lf * /i *l lf Ex
Hy(M, M) —— H (M, M)<—— H(E, E)
Es JEx
Joman . Jtean
H¥M, i) /E > HY(E, )

o* H¥(V,av)<  $E

Put P=<{p«([VINIXTV)), ([_M]ﬂ)'l{f*L*(X)f\[(M)}>- Then P=([V],
HFVYUEHIMINM M f« Lo(XINIM)}>.  Note that [E]JNU,=¢g[V]. Put
g=(—1)codimV-codimx Then  P=e[EIN@E X [MIN) " fxL(X)NI(M)},
U, V¥ '1*(V)>. By the above commutative diagram, we have ([E]N)pi '¢*
([MIN)*=jgks%. Then

P=e{jEfs [« L(X)NIM)), U, gk 1X(V))
=e{ kiS5 Le(XINFE(M), U, U@t 1¥(V))
=e{jakfxfxL(X), U UTE(M)U@EHV)) .

By the above commutative diagram, we have jzkjsf+=SEex!x'Jx+. Then we
have 3 Jxx Lx(X)=i#*Lo(X)=L«(XNE) by Axiom L2. On the other hand, we
have jE(M) U@k IX(V)=I(E)Ups*(V)=¢% (V). By the above, we have
P=e{fex Le(XNE), U,\Ugsi(v)>. By Proposition 4.9, we have P=¢4,(fgz, XNE).
In view of the definitions of &, and ¢, we have P=¢o((XNE)-V)=0a(V-X)=
d (¢, V). Furthermore by Lemma 4.1, we can see the uniqueness of fyL4(X).
q.e.d.

5. Proof of Theorem.

In order to prove our theorem, we need the following Halperin-type formula
([6], [10]). See [10] for the proof of Stiefel-Whitney homology classes’ version.

THEOREM 5.1. Let £=(E, ¢, X) be an oriented block bundle over a compact
PL-pseudo-manifold X which can be stratified with only strata of even codimension.
Then
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e Li(X)=(LE)NU N *-(E).

P:oof. Let E be the total space of the sphere bundle associated with &.
Put E=cl(0E—E). Assume that E is properly PL-embedded in D= for a«
sufficiently large. Denote by M a regular neighborhood of E in D“ Let M
be a regular neighborhood of 8X in dD¢ such that E=MNE. Put M=cl(dM—M).
Let g: E—~M be the inclusion. Put f=g-¢. We will prove the following:

oLV INKVY), (M IN) gl (L EXNUNFUED=0(p, V)

for (¢, V) in 24(M, M). Consequently, we obtain Theorem 5.1 from Corollary
4.4 and in view of the definition of L4«(X) (cf. Definition 4.2). We can easily
see that the left side of the identity is equal to that of the stable version.
Then we may assume that ¢: (V, 0V)—(M, M) is a PL-embedding and o(V)
is transverse to X and E. Let v=(N, ¢n, V) be a normal block bundle of
¢: V=M. Assume that X and E are transverse to . Let U, be the Thom
class of v. Then [N]NU,=¢uy<[V]. Put W=(L*(E)/\U5)ﬂc*“l'($). Then

Lp(LVINKV)), (LM 1N gD

=LV, V)V CMIN) " gW>

={e([LNINU,), oX([MIN)"'gW IV )>

=([N1, U,V XM 1N)" gV Uk X (V).
Note that /%(V)=I(v). Put e=(—1)codims-codime  Thep

Co(LVINKV), CMIN) gV
=e([NIN@F o (M IN)"'g«W, U, Upk 1)) .
Iiet N be __the totfxl space of the sphere bungle associated with w. Pgt
N=cl(a{V—N) and M=cl(M—N). Let jx:(N, N, N)=(M, M, M) and iu: (M, M)
—(M, M) be the inclusions. Put E=cl(E—N). Let jz:(ENN; ENN, ENN)

—(E; E, E), iz: (E, E)>(E, E) and gy(ENN, ENN)—(N, N) be the inclusions.
Then we have the following commutative diagram :

H*V, V)

. ¥ —

H¥(N, ) H*(M, M)
[NIN| , .M

HyN, Ny — 22 oM, ) 22— H (M, 1)

gN*I Tg* g*T

H«(ENN, ENN) — Hy(E, E) , Hy(E, E).

JE% 1Ex
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Note that ¢¥%, /¥« and jg« are isomorphisms. Then
[NIN@Y 'o*TMIN) " gsW =1 s s gsW
= josiax@ e Le( EYN U Ue*1(E)})
=g v i Bdpr( L EYN{U U1 I(6)})
=g n(Jekipx Ls(EYNJEU LU ¥ 1(E)) -
By Axiom L2, we have jpiipx L(E)=j%L«(E)=L«(ENN). Then
oLV INKVY), M IN) gD
=egws( L{ENN)NFEU U 1(E))), U, Uk I(V )
=e(L(ENN), jiUUghU, Ut ' i(E)Ughel (v .
Note that j3U.UghU,=U¢ xryes i xnv and
JEFUE gkl ) =ckny  IEI XN VB | XN V),
where ¢xny: XNV—ENN is the inclusion. Then
Cpx(LVINIKVY), (IMIN) gV
=e{L«(ENN), Usixrwew xrw\ Ik ne  IE| XN VBV XNV )) .
By Proposition 4.9, we have
oLV INKVY), M IN) " gsW)=¢ed¢ 1 xrwer i xrwlid, ENN)
=¢a(X-V)=0a(V-X).

In view of the definition of ¢, we have o(V-X)=0,(p, V). Then for each
(¢, V) in 2(M, M), we have

oLV INIXVY), (M INY ' g(L EYNUINHUEN =0 (9, V).

By Corollary 4.4 and in v_iew of the definition of L(X) (cf. Deﬁn_ition 4.2), we
have gx((Lo(E)NU)N*(E))=gxtx L+(X ). Then (Lu(E)NU)N*1(E)=t4 L4(X).
g.e.d.

Proof of theorem. The case where X and Y are collarable implies the
general case. Thus we may suppose that X and Y are collarable in M. We
will prove that

LV INIKV ), CMIN) M4 La(X)- g4 Li(Y INIMNNIM )y =0 1(e, V)
for each (p, V) in Q«(M, M).

This implies our theorem by Theorem 4.5_._
Let ¢: V-M be a map in 24«M, M). We can choose a PL-embedding
¢: VoMxD* for a sufficiently large such that ¢ is homotopic to ¢Xx{0}:
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V—-MxD* and (V) is transverse to (XUY)XD* in MxD® Hence we give
the proof only when ¢: V—M is a PL-embedding such that ¢(V) is transverse
to XUY in M. We thus assume that ¢:V—M is a PL-embedding with a
normal bundle v=(E, ¢g, V). We have the following commutative diagram :

X<—— XNE XNg(V)
Jx ©Ox
f l fi al
M—l g% 4
gT . gEI y
Y < vnE <2 yrpv).

Here all maps except ¢z: V—F are inclusions and v"=(XNE, ¢x, XNe(V))
and v'=(YNE, ¢y, YN(V)) are block bundles. Let U, be the Thom class of
the normal block bundle v=(FE, ¢g, V), that is, [E]JN\U,=¢g[V]. Let iv) be
the dual Hirzebruch L-homology class of the normal block bundle v. Note that
{W)=@*(M)UIX(V) and L(V)=[VINXV).

We put W(f)=([MIN)"*f«Lx(X), W(g)=([MIN)'g«L+(Y) and

P=(p(LVINKV)), (EMIN)M(fe LX) g4 LY )NIM)NIM)}> .
Noting that [EINU,=wg«[ V], we have
P=CLVINIKV), @*W(f)Up*W (g)Uep*i(M )
=<pek([EINU,), o*W(/)U@*W () IIXV)IUp* (M)
=<[E], U, Upt o*W (/) W (g)UeE XV )UpE o (M) .

On the other hand, we have [EIN@¥ 'o*W(f)=fes 7%+ L+(X) and [EJN@F '¢*W(g)
=gexJEL«(Y). By Axiom L2, we have jEL«(X)=L«(XNE) and jEL(Y)=
L(YNE). Furthermore we have *(V)Ue*(M)=I(v) and goﬁ"go*l'(M)=l'(E).
Put g=(—1)codim f-codimy  Thep

P=e{fpx L XNE), ([EIN) " gex L YNE)UU, Uk I()VI(E)>
=e{fex L(XNE), (EIN) gl (L YNE)NgHU )N gke¥ i)} VI(E)) .
Note that gfU,=U,. and gfp$'l(v)=0¥'i(»'). By Theorem 5.1, we have

(Le(YNEYNU,)N@E () =@px LY - (V).
Then
P=¢{fpx L(XNE), ([EIN) (gex@rs LY - @(V)NIE)) .

By Proposition 4.6, we have P=¢&d,,(fg, XNE). By Lemma 2.3, we have
YNe(V) is transverse to XNE in E. In view of the definition &,,, we see
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that
P=co(XNE)-(Y-o(V))).
Then
P=ea(X-(Y-o(V))=0a(p(V)(X-Y))=0a:(p, V).

Consequently, Theorem 4.5 implies that
FaLa(X) ge La(NIM)=hyLy(X-Y). q.e.d.
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