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HIRZEBRUCH L-HOMOLOGY CLASSES AND

THE INTERSECTION FORMULA

BY AKINORI MATSUI

1. Introduction. In [7], Goresky and MacPherson introduced the signature
for compact oriented PL-pseudo-manifolds which can be stratified with only
strata of even codimension, using the intersection homology theory. Further-
more they defined the Hirzebruch L-homology class. Our main purpose is to
prove the intersection formula for Hirzebruch L-homology classes, which is the
analogy of the Stiefel-Whitney homology classes' version [11]. By simple
calculation, the case of manifolds can be reduced to the product formula for
cohomology characteristic classes of bundles.

Let X and Y be compact oriented PL-pseudo-manifolds, possibly with
boundary, which can be stratified with only strata of even codimension (cf. [7
§ 5]). If X and Y are properly PL-embedded in an oriented PL-manifold M,
and if they are mutually transverse in M, then the intersection XΓ\Y is an
orientable PL-pseudo-manifold which can be stratified with only strata of even
codimension (cf. Proposition 2.3). Then we denote by XΎ the intersection
XΓ\Y with the canonical orientation. Let a and b be in H*(M, dM; Q). To
state our main theorem, we define a-b by α 6=[M]Π(([M]Π)" 1αW([M]Π)" 16).
Let / : X-+M, g: Y-+M and h : X Y-+M be the inclusions. Our main theorem
is the following:

THEOREM. With the above, the following holds:

where l*(M) is the L-cohomology class of M.

We recall the definition of the Hirzebruch L-homology classes due to
Goresky and MacPherson [7]. Let Ω% be the oriented cobordism ring of com-
pact oriented PL-pseudo-manifolds which can be stratified with only strata of
even codimension (cf. [7 § 5]). Let Z be a compact n-dimensional oriented
PL-pseudo-manifold without boundary which can be stratified with only strata
of even codimension. Denote by σ(X) the signature of X ([7]). Then σ: Ω%
—>Z is a ring homomorphism ([8]). We denote by [_Xy S

k~\ the set of homotopy
classes of maps from X to the ^-sphere S*. Define a map θ: [Z, S*]-»Z by
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θ(f)=σ(f~\p)), where / is transverse regular to p. Let u be the generator
of Hk(Sk, Z). For the case 2k>n+l, the Hirzebruch L-homology class Lk(X)
in Hk(X, Q) is characterized by the following identity:

<Lk(X), f*u>=θ(f) for all / in [Z, S*].

The restriction 2k>n + l can be removed by crossing X with a sphere, as in
Milnor [13]. If X has a boundary, we define L*(X) to be the pull back of
L*(X\JX), where X\jX is the double of X. If X is a manifold, then L*(X)=
LXlnl*(X) (cf. [13]).

2. Transversality and classes of singularities.

First we recall the definition of transversality according to Buoncristiano,
Rourke and Sanderson [4].

Let X be a polyhedron. Let K be a collection of PL-balls in X. We write
\K\—\JσBKσ. The collection AT is a ball complex structure ([4]) on X if the
following hold:

Bl. X is the disjoint union of the interiors Intσ of all PL-balls σ in K.
B2. If σ is a PL-ball in K, then the boundary dσ of σ is the union of PL-

balls in K.

Let K be a ball complex structure on a PL-manifold M and let I be a
subpolyhedron of M. We say that X is collarable in M, if there exists a collar
c: (3M, XΓ\dM)Xl->(M, X). The polyhedron Z is transverse to K, if for each
PL-ball a in if, the intersection Xίλσ is collarable in σ. Let X and F be sub-
polyhedra in M. We call the polyhedron X transverse (or mock-transverse) to
Y in M, if there exists a ball complex structure K on M and exists a sub-
complex L of if such that | L | = F a n d X is transverse to if ([4]). By McCrory
[12], we know that for collarable polyhedra X and Y in an ambient PL-mani-
fold, the polyhedron X is transverse to Y if and only if Y is transverse to X.
Other definitions of transversality were given by Armstrong [3], Stone [16]
and McCrory [12]. These definitions are equivalent if subpolyhedra are collar-
able in an ambient PL-manifold (McCrory [12]).

Let X be a subpolyhedron and N be a PL-submanifold in a PL-manifold.
The polyhedron X is block transverse to N if there exists a normal block bundle
v=(E,i, N) of N such that the restriction (XΓ\Ey i\(XΓ\N), XΓ\N) of v to
XΓ\N is a block bundle over XC\N (cf. [14]). Then by [4] we have the
following:

PROPOSITION 2.1. The polyhedron X is block transverse to N if and only if
N is transverse to X.

We need the following to prove our theorem (cf. [11]).

LEMMA 2.2. Let X and Y be collarable subpolyhedra in a PL-manifold M
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and V a proper PL-submanifold in M. Suppose that X is transverse to Y and
V is transverse to XVJY in M. Then XίΛV is transverse to YΓΛV in V.

LEMMA 2.3. Let X and Y be collar able subpolyhedra in a PL-manifold M
and V be a proper PL-submanifold in M with a normal block bundle v=(E, i, V).
Let X be transverse to Y and let XKJY be block transverse to v. Then XfΛV
and YίλV are transverse to YΓλE and XίλE in E, respectively.

TRANSVERSALITY THEOREM 2.4 ([4], [14]). Let X and Y be collarable sub-

polyhedra of a PL-manifold M and let XfΛdM be transverse to YίλdM in dM.
Then there exists an arbitrarily small ambient isotopy ht of M such that ht\dM
is the identity for all t and that hx{X) is transverse to Y in M.

Next we recall the definition of classes of singularities due to [1] and [4].
Let X and Y be polyhedra. We denote by X*Y the join of X and Y. Let <B
be a class of compact polyhedra. Let c be a point. We define c*β by c*€>=
{c*X\X<^<&}. A class <&n of polyhedra of pure dimension n is called a class
of singularities (cf. Akin [1], Buoncristiano, Rourke and Sanderson [4]) if the
following hold:

51. If I G 6 " and Y=X, then Fe=©\
52. φ<Ξ&-\
53. X(Ξ&n if and only if S°*X£Ξ&n+ι.
54. If Z e 6 m and FeE©n, then Z * F e 6 m + n + 1 .
55. (BmΓ\c^m-1=φ.

Put (δ={<δw}. We also call © a class of singularities.
Let 6 be a class of singularities. Let X be a polyhedron of pure dimension

n and let dX be a subpolyhedron. The polyhedron X is called a ©-space if
the following hold:

1. dX is of pure dimension (n — 1) or empty.
2. Link(x, X) is in S71'1 for x in X-dX.
3. LinkU, X) is in c*&n~2 for x in dX if dX is not empty.
4. LinkU, dX) is in ©n~2 for x in dX if dX is not empty.
We say that a ©-space X is properly PL-embedded in a PL-manifold M if

dMΓ\X=dX.

PROPOSITION 2.5. Let X and Y be ^-spaces properly PL-embedded in a PL-
manifold M. If X is transverse to Y in M, then XΓ\Y is a <5-space.

In order to prove this proposition, we will introduce some notations. Let
L be a ball complex. We assume that, for all PL-ball Δ in L, collars cA: 3Δ
X/->Δ are given. Put Star*(Δ)={Δ'eL|Δ'>Δ, dimΔ'=dimΔ+&} and put
|Star*(Δ)| = U Δ ' , where Δ' runs over all PL-balls in Star*(Δ). For a polyhedron
A in Δ, we construct a subpolyhedron Pk(A) in |Star*(Δ)| as follows:

First we put P°(A; L)—A. Next assume that Pk~\A; L) is constructed.
Then we put Pk(A; L)=\JcA,{(Pk-\A)Γ\Δ')Xl), where Δ' runs over all PL-balls
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in Star*(Δ). By the construction, we obtain the following:

LEMMA 2.6. Let c be a point in A. Then Pk(A; L)=Pk(c; L)xΛ.

Proof of Proposition 2.5. Let K be a ball complex structure on M and let
L be a subcomplex of K such that \L\—Y and X is transverse to K. First
we prove that, for each PL-ball Δ in K, the intersection XΓ\A is an empty set
or a ©-space with the boundary XίλdA, by induction on the codimension of Δ
in M. If dimΔ=dimM, it is clear. Assume that, for each An~k in K, the
intersection XΓ\An~k is a ©-space with the boundary XΓ\dAn~k. For any Δ71"*"1

in K, there exists an (n —/?)-dimensional PL-ball Δn~Mn K such that Δn~*>
An-k~\ Since XnΔn-*-1=(A'π3Δ l ι-*)Γ\Δn-*-1, we can see that Xr\An-k~l is a
©-space. Then XίλA is a ©-space for each Δ in K.

Let K' be a subdivision of K which contains a triangulation of X Let L'
be a subcomplex of Kr which is a subdivision of L. Let Δ be a PL-ball in L.
Let τ be a simplex in K' \XΓ\A—K' \XΓ\dA. Let c be a vertex of τ and let a
be a simplex such that τ—c^σ. Put L c =Link(c; i f | Z n Δ ) . Then Pk(c*Lc; L)
=Pk(c; L)Xc*Lc by Lemma 2.6, where & is the codimension of Δ in L. Let
P(c) and P(c*Lc) be triangulations of P*(c; L) and Pk(c*Lc; L), respectively.
Since J£ is transverse to Y, we have

Link(τ; L / | Z ) = L i n k ( τ ; P(c*Le)).
Then

Link(τ; L/ |Z)=Link(c*(T P(c)Xc*Lc)

The fact that Z π Δ is a ©-space implies that Link(σ; c*Lc) is an element in
©. On the other hand, Y is a ©-space. Then LinkO; P(c)) is an element in
©. Hence Link(r; L ' | Z ) is an element in ©. Then XΓ\Y is a ©-space.

q. e. d.

Denote by β™ the class of compact oriented n-dimensional PL-pseudo-mani-
folds without boundary which can be stratified with only strata of even codi-
mension. Put e,= {βn,}. Define ©(<?0) by (Bn(ε0)=VJ{Sn-2ι^X2ι-1\X2ι-ι^εl1-1}.
Then ©(£o) is a class of singularities. Furthermore orientable ©(£0)-spaces
coincide with orientable PL-pseudo-manifolds which can be stratified with only
strata of even codimension. Consequently, we can see the following from
Proposition 2.5.

PROPOSITION 2.7. Let X and Y be compact oriented PL-pseudo-manifolds
which can be stratified with only strata of even codimension. If X and Y are
PL-embedded in an oriented PL-manifold M and X is transverse to Y in M, then
XίλY is a compact oriented PL-pseudo-manifold which can be stratified with only
strata of even codimension.
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Let 6 be a class of singularities. Then the bordism theory of θ-spaces is
a Z2-homology theory (Akin [1]). If each of ©-spaces is an orientable PL-
pseudo-manifold, then the oriented bordism theory Ω% of ©-spaces is a Z-
homology theory. We denote by Ω% the bordism theory of compact oriented
PL-pseudo-manifolds which can be stratified with only strata of even codimen-
sion (Goresky and MacPherson [7], [8]). We need the following lemma, to
prove Lemmas 4.1 and 4.7.

LEMMA 2.8 ([5]). Let h* be i2* or Ωf. For a pair (A, B) of polyhedra,
the following hold:

1. π: hn(A, B)<g)Q-+Hn(A, B; Q) is a surjection, where π(φ, V)=φ*[V].
2. There exists a natural transformation T: hn(A, £)®Q-»Σ?-o#n-i(-A, B;

and there exist bases (φί-%oPλ,U$-χXW\) of hn(A, B)®Q such that
and they are bases of Σ ί X ^ . S ;

Proof. First we prove the statement 2. Let 7\: πs

n-i(A,
hn(A, B)®Q and Γ 2 : π*n-t{A, B)<g>hi<g>Q->Hn-i(A, B A*®*?) be natural trans-

formations ([5; §1]), where πi(A, B) is the stable homotopy group of (A, B).

->Σ>ΐ=oHn-i(A, B; At(g)Q) are isomorphisms ([5; §3, Corollary 3]). Put T = 7 >
T\\ Then T: hn(A, β)®Q->Σ?=o#n-<CA, B; ht®Q) is the natural transform-
ation. By the construction of T, we can obtain the bases which we want.

Next we show the statement 1. Noting the construction of T, we can see
that π: hn(A, B)<g>Q->Hn(A, B Q) coincides with T: hn(A, B)®Q->Hn{A, B;
ho(g)Q). Then π is a surjection. q. e. d.

We immediately have the following by the Kύnneth formula of ordinary
homology and by Lemma 2.8. We need the following lemma to prove Lemma
4.3.

LEMMA 2.9. Let A* be β* or Ω%. Let (A, B) and (C, D) be pairs of poly-
hedra. Then the cross product X : Σtπ=o(An_i(^, B)Xhi(C> D))®Q-+hn(AxB,
AXD\JCXB)®Q is a surjection, where (φ, V)X(ψ, U)=(φXφ, VxU).

3. Axioms of Hirzebruch L-homology classes.

Let X and Y be compact oriented PL-pseudo-manifolds which can be
stratified with only strata of even codimension. Assume that dimZ=dimK
Let / : X->Y be an orientation preserving PL-embedding. We call / a regular
embedding if f(X) is closed in Y, f(JntX)Γ\dY=φ and / | I n t Z is an open map,
where \ntX—X—dX.

Given a regular embedding / : X^> Y, we define a homomorphism

/ * : H*(Y, dY; Q)-+H*(X, dX; Q) by /*=(/*)- 1 °f*, where i:(Y, 37)-*
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(Y, Y-f(intX)) is the inclusion. Note that f*: H*(X,dX; Q)->
H*(Y, Y— /(IntZ); Q) is an isomorphism by the excision property. Therefore
/* is well defined.

Let 6 be the category whose objects are compact oriented PL-pseudo-mani-
folds, possibly with boundary, which can be stratified with only strata of even
codimension and whose morphisms are regular embeddings.

For each object X in 6 with dimZ^rc, we consider a (total) homology
class

+Ln(X) in H*(X,dX;Q)

satisfying the following axioms:
LO. Ln(X)=lXl.
LI. For every object X of e, the homology class LX(X) is in Hi{X, dX Q)

such that Ln.i(X)=0 if ZΞ£O (mod4).
L2. If f:X-*Y is a morphism in <£, then LA(X)=f*LA(J).
L3. L i ( ί χ y ) = L ^ ) x L i ( r ) .
L4. If dX=φ, then <LA(X), V>=σ(X), where σ(Z) is the signature of X.
We call such a homology class LA(X) an axiomatic L-homology class of X.

THEOREM 3.1. Let X be a compact oriented PL-pseudo-manifold which can
be stratified with only strata of even codimension. Then the axiomatic L-
homology class of X coincides with the Hirzebruch L-homology class of X.

We will prove the existence of axiomatic L-homology classes in Section 4.
(cf. Lemma 4.3 and Corollaly 4.4).

LEMMA 3.2. // axiomatic L-homology classes exist, they coincide with the
Hirzebruch L-homology class.

Proof. Considering Axiom L2, we may assume that X has no boundary.
Let θ: \_X, Sn~]-*Z be the map which is used to define the Hirzebruch L-
homology class in Section 1. Let / : X-+Sn be an element of IX, Sπ]. Then
there exists a PL-embedding f: X->SnxDk such that /'^/χ{0} for k suffi-
ciently large. Let ptXc: Dk->SnxDk be the embedding defined by {ptXc){x)—
(pt, x), where pt is a point of Sn. Let v=(E, i, Dk) be a normal bundle of
ptXc. On the other hand, we can assume that f'(X) is transverse to v. For
simplicity, we put

XΓ\Dk^f\X)Γ\{ptXc){Dk)f

and
X'Dk=f'(X)'(ptXή(Dk).

Since v is a trivial bundle, we have the following commutative diagram:
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> DnX(XΓ\Dk)=f'(X)Γ\E —Γ-* X
{0}Xid Jx

In fE=idXln

Dk i=ptxid ^ D n χ D k =

f

Here j , fE and In are the inclusions and j x is defined by jx(x)=f'~1(x) for x
in f'(X)Γ\E. Let u be the generator of Hn(Sn;Z). Assume that dimX=m
and put e=(- l) ( n + *- m ) > n . Then

<LΛ(X), f*u>=<fίLΛ(X), ([S^

Note that y*([SnxZ)*]n)-1/;=([£:]n)-1/£*yi. By Axiom L2, we have jxLA(X)
= LA{f'{X)Γ\E). Then

<LΛ(X), /*M>=e<i*[ΰ*], VLE-]r\)-ιfB*LAnx)r\Ey>.

We note that f'(X)Γ\E=DnX(X-Dk). By Axioms LO and L3, we have
LA(f\X)r\E)=LA(DnX(X'Dk))^LA(Dn)XLA(X'Dk)=[DnlxLA(X'Dk). Then

Thus

By Axiom L4, we have <LA(X), f*u>=σ(X-Dk). Since θ(f)=σ(X Dk), we have
), f*u> = θ(f). Thus L^(Z) is the Hirzebruch L-homology class.

q. e. d.

4. Characterization of Hirzebruch L-homology classes.

Let X be a compact oriented PL-pseudo-manifold which can be stratified
with only strata of even codimension. Let M be an oriented PL-manifold.
Let M and M be codimension zero submanifolds of dM such that 3M=MVJM
and MΓ\M=dM=dM. Let Ω* be the oriented bordism theory of compact
differentiate manifolds. Let Ω% be the oriented bordism theory of compact
oriented PL-pseudo-manifolds which can be stratified with only strata of even
codimension. Throughout this section, we use the above notation.

Let X be PL-embedded in M such that dXcM and X-dXdM-dM. Let
/ : (X, dX)-^(M, M) be the inclusion. We define homomorphisms
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σf : Ω*(M, M)®Q — > Q, and σf: Ω%Ό(M, M)®Q — > Q.

Let b: β*(M, M)->β^(M, M) be the natural map. If σf is defined, we define
σf by σf=σf°b. Let y>: F-*M be a_map in Ω^(M, M). Then there exists a
PL-embedding 0 : (F, 3F)->(MxDα, MxDa), for α sufficiently large, such that
ψ~φX{0}. By using the transversality theorem, we can assume that ψ(V) is
transverse to XxDa in MxDa. By Proposition 2.7 the intersection 0(F)Π
(XχDa) is an oriented PL-pseudo-manifold which can be stratified with only
strata of even codimension. We denote by ψ(V)-(XxDa) the intersection
ψ(V)Γ\(XxDa) with the canonical orientation. Therefore we define σf(φ, V)
to be the signature σ{φ{V)-{XxDk)). By the transversality theorem and
Proposition 2.7, we can well define σf. We assume that ά'ιmX=n and dimM

LEMMA 4.1. With the above situation, there exists a unique cohomology class
φ(f)=φ°JΓφ

1-\ \-φn+k in H*(M, M: Q) satisfying the following:

<<P*(IV1Γ\1*(V)), Φ(f)> = σf(φ, V) for each {φ, V)

in Ω*(M, M)®Q. Here l*(V) is the Hirzebruch L-cohomology class of V.
Furthermore Φk+ι=Q if IΈ£0 (mod4) or i<0.

Proof. We will inductively define cohomology classes Φι in H\M, M Q)
for ι=0, 1, ••• , n + k, where άimX=n and dimM— n + k. Note that we can
choose bases of β*(M, M)®Q in β*(M, M). First we define Φ°: Ω0(M, M)®Q
-+Q by Φ\ψ, V«)=σf(φ,_V«) for (φ, V°) in Ω0(M, M). Let us define
pt: Ωt(M, M)®Q->Hi(M, M; Q) by plφ, 7 ) = 9 * [ 7 ] . Then p% is a surjection
by Lemma 2.8. Since ^ * [ ^ ° ] = 0 implies_Φ°(^>, F°)=0, we see that Φ° deter-
mines a cohomology class Φ° in H\M, M; Q) such that <^*([F°]n/*(F0)), Φ°>
=ff/(y>, V°). Next we assume that there exist cohomology classes Φι in
Hι(M,M;Q) for /=0, 1, ••• , s-l,__such that <<p*(lW]nl*(V>))9 H3t=^Φt> =
σf(<p, Vj) for each (φ, VJ) in Ωj(M, M) with j^ι<s. Define Φ s : ΩS(M, M)®Q
->Q by Φ s(^, V )=*/(ίP, 7 5 )-<^*([^ s ]Π/*(y s ) ) , Σ!=JΦβ>. We will prove that
Φs determines a cohomology class. We assume that #>*[F s]=0. By Lemma
2.8, there exist (<pif U

8'1) in Ω8-t(M, M), Wι in Ωlpt) and a% in (J such that

(φ, V^Σ^iφsq, U^XW1) in Ω*{M, M)®Q ,

where ^ : ί/^ 'x^-^ί/ 8 " 1 is the projection. On the other hand, Φs(<pi°q,

J7-*)-<y>i*([£/-i]Π/*(£/-<)2, Σ!4Φ ί >}=0._Then ^)*[F s ]=0 implies Φs(^), Vs)
=0. Note that />,: ΩS(M, M)xQ->Hs(M, M; Q) is a surjection. Then Φ s deter-
mines a cohomology class Φs in HS(M, M Q) such that <^*([F*]Π/*(y s)),
Σι

st=oΦt> = σΛφ, Vs). Put Φ(f)=Φ°+Φ1-\ \-Φn+k. By the construction of
Φ(/), we have Φk+ι=0 if z<0 or ZΞ£O (mod4). q.e.d.
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DEFINITION 4.2. Choose a PL-embedding of X in DN for N sufficiently
large such that Xr\dDN—dX. Let M and M be regular neighborhoods of X
and dX in DN and 9Z>*, respectively. Let f:(X, dX)->(M, M) be the inclusion.
We define a homology class L(X) in H*(X,dX;Q) by L ( Z ) = / ϊ 1 ( [ M ] π Φ ( / ) ) ,
where Φ(/) is the cohomology class in Lemma 4.1. The cohomology class
L(X) does not depend on the choice of the embedding in DN'.

LEMMA 4.3. Assume that L(X) is the homology class as above. Then L(X)
satisfies Axioms LO, LI, L2, L3 and L4.

Lemmas 3.2 and 4.3 imply the following corollary, which includes Theorem
3.1.

COROLLARY 4.4. The homology class L(X), the axiomatic L-homology class
and the Hirzebruch L-homology class coincide with each other.

Proof of Lemma 4.3. We can easily prove that L(X) satisfies Axioms LO,
LI and L2. So we omit the proof. First we prove that L(X) satisfies Axiom
L4. For the case where (φ, V)—(idf M), we have σf(id, M)=σ(X). Since M
is a codimension zero submanifold of DN, we have [M]Π/*(M)=[M]. Then

Next we prove that L(X) satisfies Axiom L3. Let Mx and Mγ be regular
neighborhoods of X and Y in Dm+P and Dn+\ respectively. Let fx:(X, dX)-*
(Mχf dMx) and fγ: (Yf dY)->(Mγ, dMγ) be the inclusions. We use the same
notation as in the definition of L(X). By calculation, we have <(^>X^)*([Vxί/]
Γ\ 1*{V X U\ {IMX X My] Γ\ YKfx X /r)* (L(X) X L(Y))> = <φ* ( [F] Λ t*(V)),
{lMχ^Γ\Yιfχ*L{X)yx(ψ*{ίV^Γ\l*mΛίMγ^Γ\Y^
=σfχxfγ(φXψ, VxU). By Lemmas 2.9 and 4.1, we have Φ(fχXfY)=
(lMχXMγ']r\)-\fχXfγ)^L(X)xL(Y)). By considering the definition of L(XxY)
(cf. Definition 4.2), we have L(X)xL(Y)=L(XxY). q.e.d.

THEOREM 4.5. Let X be PL-embedded in M such that dX(ZMf XίλdM=dX
and X is collar able in M. Let^f: (X, dX)-*(M, M) be the inclusion. Then, for
each map ψ: V—>M in β#(M, M), the following holds:

<φ*(ίVlΓ\l*(V)), (CAί]nr1(/*L*(^)Π/(M))>=σ/(?)f V).

Furthermore the homology class f*L*(X) is completely characterized by this
identity. Here Ϊ(M) is the inverse of /*(M), that is, Z"(M)U/*(M)=1.

This theorem gives the fundamental characterization of Hirzebruch L-
homology classes. We need both this theorem and the following proposition
to prove our main theorem.

PROPOSITION 4.6. With the same situation as in Theorem 4.5, the following
holds:
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φ lMlnTKf*L*(X)Γ\'KM))> = σf(φ, V)

for each (φ, V) in Ω%(M, M).

We need the following lemma to prove this proposition. For the proof of
this lemma, we may replace [V]Π/*(V), σf and Ω* in Lemma 4.1 by L*(V),
df and Ω%. Then we can apply the proof of Lemma 4.1 to that of the follow-
ing lemma, using Corollary 4.3. So we omit the proof.

LEMMA 4.7. With the same situation as in Lemma 4.1^ there exists a unique
cohomology class Φ(f)=Φ°+Φ°-i [-φn+k in H*(M,M;Q) satisfying the
following:

<φ*L*(V),Φ(f)> = σf(φ, V)

for each (φy V) in Ω%(M, M).

Furthermore Φ(f) coincides with that in Lemma 4.1.

Proof of Proposition 4.6. If (<p, V) is in Ω*(M, M), then L*(7)=
Hence the cohomology class Φ{f) in Lemma 4.7 satisfies the identity in Lemma
4.1. By Theorem 4.5 and the uniqueness of Φ(f) in Lemma 4.1, we have Φ(/)

q e. d.

The following in this section is devoted to prove Theorem 4.5. To prove
Theorem 4.5, we need to give a characterization of the dual Hirzebruch L-
cohomology class /(£) of an oriented block bundle ξ.

Let ξ=(E, c, B) be an oriented block bundle over a compact polyhedron B.
Denote by E the total space of the sphere bundle associated with ξ. Let U$
be the Thorn class of ξ. We will define homomorphisms σξ: Ω*(E, E )(g)Q->Q
and σξ: Ω$(E, E)®Q-*Q as follows. We assume that B is PL-embedded in
RN. Let A be a regular neighborhood of B in RN. Denote by p: A-+B the
deformation retraction. Denote by p*ξ=(E(p*ξ), c', A) the induced bundle.
Let (p, p): (£(/>*£), A)-+(E, B) and (ϊ, /): (£, B)-*(E(p*ξ), A) be bundle maps,
where i and i are the inclusions. Define βξ and dξ by tf^, V)=cτί/(z°^), F)
and σξ(<p, V)=σif(ι°φf V).

PROPOSITION 4.8. With the situation as above, the following holds:

= σξ(φ, V)

for (φ, V) in β*(£, S). Furthermore the dual Hirzebruch L-homology class /(£)
zs completely characterized by this identity.

This proposition is the fundamental characterization of the dual Hirzebruch
L-cohomology classes of bundles. We need this proposition only to prove the
following proposition, which is necessary to prove Theorem 4.5 and our main
theorem.
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PROPOSITION 4.9. With the same situation as in Proposition 4.8, the follow-
ing holds:

<ίP*L*(V),ί7fΠί*-1/(5)> = σe(ί), 7)

for (φ, V) in Ω%υ(E,E).

Furthermore the dual Hirzebruch L-homology class /(£) is completely characterized
by this identity.

Proof of Proposition 4.8. We use the notations which are used to define
σξ. Let φ: V-^E be a map in Ω*(E, E). Then there exists a PL-embedding
ψ: V-+E(p*ξ) in Ω*(E(p*ζ), E(p*ξ)) such that φ^ϊoφ and ψ{V) is transverse to
A. Since φ=p°ι°φ~p°φ, we have

=<Φ*(IV1M*(V)),

Let / : 0 ( 7 ) r v l - > 7 b e defined by j\x)=φ'\x). Then

On the other hand, we have jV*(V)Vj*φ*c'*-H(p*ξ)=l*WV)'A)- T h e n

<P*([^]Π/*(7)), ί/€Wί*-1/(f)>=<[s6(7).i4],/*(ί5(y) i4)>. Noting that
is an oriented PL-manifold, we have
Consequently <φ*&V]nl*(V)), Uξ\Jc*-1Kξ)>=σΛ~ι°φ)=σξ(φ, V) for each (φ, V)
in fl*(£, £).

Replacing / by c', we can see that the uniqueness of Φ(f) in Lemma 4.1
implies the uniqueness of /(£). q. e. d.

Proof of Proposition 4.9. By Lemma 4.7, there exists a unique cohomology
class Φ(ϊoy>) such that <y>*L*(V), Φ(ϊ*»^)>=5^(i«y>, V)=^(y>, 7) for each (9, V)
in ί2^(£, 5). If F is an oriented PL-manifold, then L*(VP)=[VP]Π/*(Vr) and

)=σ5(^>, V). By using Proposition 4.8, we have

Φ(ϊoίp)=ί7€Ur*-1/(f). q.e.d.

0/ Theorem 4.5. Let (p, V) be a map in β*(M, M). Let 0 : (F, 37)
>(MxDk, MxDk) be a PL-embedding for fe sufficiently large, such tha
^φX{0} and ^ ( 7 ) is transverse to (fXtd)(XxDk). Then

<?>*([7]n/*(7)),

Therefore we may prove the case where ψ is a PL-embedding and <p(V) is
transverse to /(Z) .

We assume that ψ: V-^M is a PL-embedding with a normal block bundle
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v=(E, φE, V) and that X is transverse to v. Let Uv be the Thorn class of v,
that is [E]ΓλUv=φE*lV]. Let E be the total space of the sphere bundle
associated with v. Put X=cl(X-E) and M^cl(M-E). Let j: (M, M)-*(M, M),
jE:(E;E, £)->(M; M, M\i: (XΓ\E, d(XnE))-*(X, X), jx:(X, 3Z)-*(Z, Z),
/^ : (ZΠE, 9(Zn£))-»(£, £) and / : (Z, X)-*{M, M) be the inclusions. Then
we have the following commutative diagram:

Put P=<p*([7]n/*(7)), ([MjπrMΛi^JΠ/CM)}). Then P
/*(y)U^*([M]n)-M/*^(^)n/(M)}>. Note that [JB]n£7v=ί>JΪ*[Vr]. Put
e=(_l)codimΓ.codim2Γ# T h e n P = ε < [ E ] Π ^ - V^CMlΠ)" 1 {/*L*(X)Π/(M)},

). By the above commutative diagram, we have (\_E~]Γ\)φ%~ιφ*-
*. Then

By the above commutative diagram, we have j~E*J*f*—fE*i*ljx*. Then we
have i*1 jχ*L*{X)=i*L*{X)—L*(XίλE) by Axiom L2. On the other hand, we
have j%ϊ(M)KJφί-H*(V)=ϊ(E)yφ%-H*{V)=φ%-1KV). By the above, we have
P=ε<fE*L*(XΓ\E), UvVJφ%-H{v)y. By Proposition 4.9, we have P=εσv(fE, XΓ\E).
In view of the definitions of σv and σf, we have P=εσ((XΓ\E) V)=σ(V-X)=
0f(φ, V). Furthermore by Lemma 4.1, we can see the uniqueness of f*L*(X).

q. e. d.

5. Proof of Theorem.

In order to prove our theorem, we need the following Halperin-type formula
([6], [10]). See [10] for the proof of Stiefel-Whitney homology classes' version.

THEOREM 5.1. Let ξ=(E, c, X) be an oriented block bundle over a compact
PL-pseudo-manifold X which can be stratified with only strata of even codimension.
Then
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Proof, Let E be the total space of the sphere bundle associated with ξ.
Put E=cl(dE—E). Assume that E is properly PL-embedded in Da for a
sufficiently large. Denote by M a regular neighborhood of E in Da. Let M
be a regular neighborhood of dX in dDa such that E=MΓΛE. Put M=cί(dM—M).
Let g : £—>M be the inclusion. Put f—g°i. We will prove the following:

for (̂ ?, V) in Ω*(M, M). Consequently, we obtain Theorem 5.1 from Corollary
4.4 and in view of the definition of L*(X) (cf. Definition 4.2). We can easily
see that the left side of the identity is equal to that of the stable version.
Then we may assume that φ: (V, 3F)-»(M, M) is a PL-embedding and φ(V)
is transverse to X and E. Let v—{N} φN, V) be a normal block bundle of
φ: F->M. Assume that X and E are transverse to v. Let Uv be the Thorn
class of v. Then [ N ] n £ / p = ^ * [ F ] . Put W={L*{E)Γ\Uξ)Γ\c*-%ζ). Then

Note that /*(7)=/(p). Put ε=(_i)codim/ codim^ T h e n

Let iV be J he total space of the sphere bundle associated with v. Put
N=cl(dN-N) and tiί=cl(M-N). Let /* : (iV, iV, iV)->(M, M, M) and ί^j (M, M)
->(M, M)_be the inclusions. Put £=cl(E-N). Let jE:(Er\N; EίλN, EίΛN)
- » ( £ ; £ , £), «jsr: (£, ^)->(J5, £) and gN(EίλN, EΓ\N)->(N, N) be the inclusions.
Then we have the following commutative diagram:

H*(N, ft) < H*(M, M)

LNln\ β m [A/]n|
/AT* ίΛf4t tv

H*(N, N) — > H*(M, M) * — H*(M, M)

gN* g

H*(EΓ\N, EΓλN) -τ-*H*(E, E) < H*(E, E).
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Note that φ%, j N * and j E * are isomorphisms. Then

By Axiom L2, we have jEyE*L(E)=βL*(E)=L*(EnN). Then

Note that /fί7'5\J'g^ϋ'„=£/'e ι znr®y ι XΠK and

where ίXΠK : ^A V-+EΓ\N is the inclusion. Then

By Proposition 4.9, we have

In view of the definition of σf, we have σ(V-X)=σf(φ, V). Then for each
(φ, V) in Ω*(M, M), we have

=σ /(p, 7) .

By Corollary 4.4 and in view of the definition of L(X) (cf. Definition 4.2), we
have ^*((L*(£)Πί7e)Πί*-1/(f))=^^L*(^). Then {L*{E)r\Ut)Γ\c*-ιKξ)=cMX).

q. e. d.

0/ theorem. The case where X and F are collarable implies the
general case. Thus we may suppose that X and Y are collarable in M. We
will prove that

for each (φ, V) in Ω*(M,M).

This implies our theorem by Theorem 4.5.
Let φ: V-+M be a map in Ω*(M, M). We can choose a PL-embedding

φ: V^MxDa for a? sufficiently large such that ψ is homotopic to
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V-*MxDa and ψ(V) is transverse to (X\jY)xDa in MxDa. Hence we give
the proof only when φ: V-+M is a PL-embedding such that φ(V) is transverse
to I w Y in M. We thus assume that φ: V-^M is a PL-embedding with a
normal bundle v—{Ey φE, V). We have the following commutative diagram:

XίΛφ(V)

YΓ\φ(V).

Here all maps except ^ : F->£ are inclusions and v"={XΓ\E, φx, XΓλφ(V))
and vr=*(YΓ\E, φγ, YΓ\φ(V)) are block bundles. Let Uv be the Thorn class of
the normal block bundle v~{Ey φE> V), that is, [£]Γ\J7 V =^*[7]. Let ϊ(y) be
the dual Hirzebruch L-homology class of the normal block bundle v. Note that
i(v)=φ*ϊ(M)Ul*(V) and L*(7)=[7]Π/*(F).

We put ^(/)-([M]Π)- 1 /*L*(Z),^te)-([M]Π)- 1 ^L*(F) and

Noting that [£]ni/ v =o i . * [7] , we have

On the other hand, we have [£]Λy>f" V*W(/)=/^*;l*^*W and
=gB*JrL*(Y). By Axiom L2, we have jγL*(X)=L*(XnE) and
L*(Fn£). Furthermore we have /*(V)Up*/(M)=/(p) and φE-ιφ*ϊ(M)=KE).
Put ε=(_l)codim/.codimί.ί

Note that g%Uv=Uvl and gίφTHM^Φf-'kv'). By Theorem 5.1, we have

(
Then

By Proposition 4.6, we have P=εσgv(fE, XίλE). By Lemma 2.3, we have
is transverse to X(~\E in E. In view of the definition σgv, we see
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that

P=εσ((XnE).(Y'ψ(V))).
Then

XΎ))=σκ(φ, V).

Consequently, Theorem 4.5 implies that

hMX Y). q.e.d.
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