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ASYMPTOTIC BEHAVIOR OF PERIODIC SOLUTIONS

IN BANACH SPACE

BY JONG YEOUL PARK

1. Introduction.

We consider the following problem:

fe(0,oo),

κ(0)=x, (1)

where A is an m-accretive operator in Banach space X and /eL}oc(0, OO; X) is
T-periodic. Let {CJ^ 0 be a nonempty closed convex subset of a Banach space
and let U={U(t, s):O^s^t} be a nonexpansive operator constrained in {CJ,
i.e., U is a family of mappings U(t, s): Cs-^Ct such that

U(t,s)U(sfr)=U(t,r), U(r, r)=I,

\U(t, s)x-U(f, s)y\£\x-y\

for all 0<Lr?ίs<ίt and x, y^Cs. Such an evolution operator U is said to be
T-periodic (T>0) if

Ct+τ=Ct and U(t+T, s+T)=U(t, s)

for all O^s^t. Then, a function u: [0, co)-^X is an almost semitrajectory of

U if

limsup \u(t)-U(t, s)u(s)\=Q.

In what follows, let U={U(t, s): 0<s<Lt} be a T-periodic nonexpansive
evolution operator constrained in {Ct} and we take u(t)=U(t, 0)M(0) for ί^O.
We shall denote u(nT+t) by Mn(ί).

If F(ί/ t )={x:t7(T+ί, i)x = x for 0£t£T} is nonempty, then we can take
z^F{Ut), and we see that

\ιm\un(t)-z\=p(t)
n-*oo

exists. It is well known [1] that (1) has a unique integral solution U(t; s, x)
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w h e n e v e r x^D(A) a n d by s e t t i n g U(t, s)x=U(t; s, x), w e see t h a t {U(t, s): 0
<Js^ί} forms a T-periodic nonexpansive evolution operation operator constrained
in {CJ.

The present paper is concerned with the asymptotic behavior of the T-
periodic integral solution of (1). We prove that if u is an almost semitrajectory
of U and un(t)=u(nT+t), then the closed convex set

Γ\τd{un{t)\n^k}Γ\F{Ut)

consists of at most one point, where Έδ{un(t): n^k} is the closed convex hull
of {un(t): n^k}. This result is applied to study the problem of weak con-
vergence of the sequence \un(f): n^O}. We also prove that if P is the metric
projection of X onto F(Ut), then the strong lim Pun(t) exists. Our proofs employ

the methods of Lau-Takahashi [6] and W. Takahashi-J. Y. Park [7].

2. Lemmas.

LEMMA 1. Let X be a uniformly convex Banach space with a Frechet dif-
ferentiable norm and u is an almost semitrajectory of U. Let

F(Ut)Φφ, ys=F(Ut), 0<a£β<l and r=lim | un(t)-y\ .
n-*oo

Then, for any ε>0, there exists no^O such that

\U(mT+tf t){λun{f)+δ{l-λ)y)-{λU{mTΛ-t> f)un(f)+(l-λ)y)\<ε

for all n>n0, ra^O and λ^R with a<λ<β.

Proof. Let r > 0 . Then we can choose d>0 so small that

where δ is the modulus of convexity of the norm and

Let α > 0 with ro+2a<r. Then we can choose no^O such that

\un(t)-y\^r-a and |um+n(t)-U(jnT+t, t)un(t)\<a

for all n^nQ and m^O because u is an almost semitrajectory of U. Suppose
that

\U(mT+t, tXλun(f)+a-λ)y)-(λU(mT+t9 t)

for some n^nG, w^O and λ^R with a<,λ£β. Put u=(l—λ)(U(mT+t, t)z-y)
and v=λ(U(mT+t, t)un(t)-U(mT+t, t)z), where z=λun(t)+(l-λ)y. Then \u\£
λ{l-λ)\un(t)-y\ and \v\^λ\ur)(t)-z\=λ(l-λ)\un(t)-y\. We also have that
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\u-v\ = \U(mT+t, t)z-(λU(mT+t, t)
and

λu+(X-λ)v=λ(X--λXU(mT+t, t)un(t)-y).

So by using the Lemma in [5], we have

λ{l-λ)\U(mT+t,t)un{t)-y\ = \

and hence \U(mT+t9 t)un(t)-y\£r0. This implies

\un+m(t)-y\^\un+m(t)-U(mT+t, t)un(t)\ + \U(mT+t, t)un(t)-y\

<ίa+ro<r—a.

On the other hand, \un(t)—y\^r—a for all n^n0, this is a contradiction.
In the case when r=0, let y^F(Ut) and λ^R with 0<U^!l,

|£7(mT+ί, OMiίnW+d-^^J-Wί/CmT+ί, t)un(t)+a-λ)y)\

<λ\U{mT+t, tXλun(t)+a-λ)y)-U(mT+t, t)un(t)\

+(X-λ)\U(mT+t,tχλun(t)+a-λ)y)-y\

So, we obtain the desired result.
Let x and y be element of X, then we denote by [x, y~] the set

LEMMA 2 [6]. L#ί C be a closed convex subset of a uniformly convex Banach
space X with a Frechet differentiable norm and {xa} a bounded set in C. Let
z^Γ\~co{xa: a^β}, y^C and {ya} a net of element in C with ya^ly, xal and

β

\ya-z\=mm{\u-z\ : MG[)I, xα]}.

If ya^y, then y=z.

LEMMA 3. Let X be a uniformly convex Banach space with a Frechet dif-
fer entiable norm and u is an almost semi trajectory of U. Let F(Ut)Φφ,
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and y(=F{Ut). Then, for any ε>0, there is no>O such that

<un(t)-y,j(y-z)>£ε\y-z\
for all n^nQ.

Proof. Let z^Γ\Έo{un{t): n^k}nF(Ut), ye=F(Ut) and ε>0. If y=z, this

lemma is obvious. So, let yφz. For any n^O, define a unique element yn

such that yn^ly, un(t)~] and \yn—z\—mm{\u—z\ : MG[)I, H»(ί)]}.
Then, since yφz, by Lemma 2 we have yn-/>y. There exists c>0 such

that for any n^O there is n'^n with \yn>—y\^c. Setting

We also obtain co>O so small that an>^cQ. In fact, since

c^\yn.-y\=an.\un.(t)-y\

we may put co~c/\U{t, 0)x—y\. Since the limit of \un(t)—y\ exists, putting
k=lim\un(f)—y\, we have k>0. If not, we have un(t)-+y and hence yn-*y>

7l-»oo

which contradictions yn-/>y. Let r be a positive number such that ε>r and
k>2r. Choose α>0 so small that

where δ is the modulus of convexity of the norm and R=\z—y\. By Lemma
1, there exists noί̂ O such that

\U(mT+t, tXcoun(t)+a-cQ)y)-(coU(mT+t, t)un(t)+(l-c,)y\<a (2)

for all n^n0 and m^O. Fix n'^0 with n'^n0 and \um+n>(t)—y\^2r and
|Mm+n'(0—ί/(wT+ί, t)un'(t)\<r for all m^O. Then since

Hence

\coun.(t)+(l-co)y-z\^max{\z-y\, \z-yn.\]

= \z-y\=r.

By using (2), we obtain

\c0U(mT+t, t)un'(t)+a~c0)y-z\

<\U(mT+t, tXcoun,(t)+a-co)y)-z\ + \coU(mT+t, t)un,{t)

+(l-c*)y-U{mT+t, t)(cQun,{t)+{l-cQ)y \
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£\U(mT+t, tXcQun.(f)+a-c*)y)-z\+a

£\coun>(t)+a-co)y-z\+a

for all m^O. On the other hand, since \y—z\=R<R-{-a and

\c0U(mT+t, t)un>(t)+a-c0)y-y\

=co\U(mT+t,t)un.(t)-y\

t, t)un.(t)\)

for all ?n^0. By uniform convexity, we have

for all m^O, and hence

}U(mT+t, t)un. <R

for all m>0. This implies that if um=(c0/2)U(mT+t, t)un>(f)+(X-(cύ/2))y, then
IUm+a(y — um)—z\^ \y—z\ for all a^l. By T h e o r e m 2.5 in [ 4 ] , w e h a v e

<um+a(y-um)-y, J(y-z)>^0

and hence <um-y, J(y-z)}^0. Then <U(mT+t, t)un.(t)-y, J(y-z)><0. The-
refore

<um+n>ίt)-y,J(y-z)>

<\um+n'(t)-U(mT+t, t)un,(t)\\y-z\

ί, t)un>(t)-y, J(y-z)>

for all m^O. This completes the proof.

3. Theorems.

THEOREM 1. Let X be a uniformly convex Banach space with a Frechet
differentiable norm and u be an almost semitrajectory of U. If F(Ut)Φφ, then
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for any n(=N, the set

Γ\Έ5{un(t):n^k}ΓΛF(Ut)

consists of at most one point.

Proof. For any n<=N, let y, z e Γ\Έo{un(t): n^k}Γ\F(Ut). Then, since

({y-\-z)/2)^F(Ut), it follows from Lemma 3 that for any ε>0, there exists no^O
such that

<ίe y + Z

2

for all M^n0. Since yeco{un(t): n^k}, we have

vy

y+z
y+z

2 —z

and hence (y— z, J(y—z)}^2\y— z\. Thus \y—z\<2ε. Since ε is arbitrary,
consequently y—z.

THEOREM 2. Let X be a uniformly convex Banach space with a Frechet
differentiable norm and u be an almost semitrajectory of U. If F(Ut)Φφ and
ω(un(t))CZF(Ut), then the sequence {un(t):n<=N\ converges weakly to some ^ G
F(Ut), where ω{un{t))—{y^X: uni(t)-*y with n^co as n-^oo}.

Proof. Since F{Ut)Φφ. \un(t): n<=N\ bounded. So, the sequence {un(t)\
must contain a subsequence {un.(t)} of 1x^(0} which converges weakly to some
z^Ct—D{A). Since ω(un{t))(ZF(Ut) and z(= Γ\7δ{un(t): n^k}, we obtain

zζ=Γ\cδ{un(t): n^k}(ΛF{Ut).

Therefore, it follows from Theorem 1 that \un(t): n^N] converges weakly to

THEOREM 3. Let X be a uniformly convex Banach space and F(Ut)Φφ. Let
P be the metric projection of X onto F(Ut). Then the strong \\mun(t) exists and

limPunifi^Zo, where z0 is a unique element of F(Ut) such that
n-*oo

\\m\un{t)-z,\^mm{\\m\un{t)-z\ :z<=F(](Jt)}.
n -*oo n -»oo

Proof. Since F(Ut)Φφ, we know that {un{t)\ n<=N\ is bounded and
lim\un(f)—z\=ρ(z) exists for each z^F{Ut). Let R=mm{p(z): z&F(Ut)}. Then,
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since p is convex and continuous on F(Ut) and p(z)->oo as z->oo, there exists
zo^F(Ut) such that ρ(zo)=R; see [2: p 79]. On the other hand, since \un(t)—
Pun(t)\^\un{t)-y\ for all n<=N and y^F{Ut), we have

\im\un{t)-Pun{t)\^R.
71-00

Suppose that \\m\un(t)—Pun(t)\<R. Then we can choose ε>0 and no^O such
that

e for all

We observe that

\un+ί(t)-Pun+1(t)\<\un(t)-Pun(t)\ for all n^O.

Thus, there exists no^O such that

I un+1(t)-Pun+1(t) I ^ I un{t)-Pun{t) I

for all n^n0. Thus lim|un{t)—Pun{t)\<R. This is a contradiction. So we

conclude that

We claim that \\mPun{t)—z^ If not, then we have \Pun(t)—zo\ ̂ ε for some
n->oo

ε>0 and n—>oo. Let ^ denote the modulus of convexity of X. There is a
positive a such that

We also have \un(t)—Pun(t)\^R+a and \un(f)—z0\^R+a for all large enough
n. Therefore

=R1<R-ε.

Since the points wn=(Pun(t)+z0)/2 belong to F{U0), also, there is no^O such
that

\un+1(t)-Wn+1(t)\<\un(t)-Wn(t)\

<R-ε<R

for all n^n0. Thus we obtain p(wn)<R. This is a contradiction. Therefore
ϊimPun(t)=zQ. Consequently, it follows that an element zo^F(Uo) with ρ(zo)=

\ is unique.
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4. Remarks.

Fix ί€Ξ[0, T] , let G={0, 1, 2, •••} and S(n)=ί/?, n e G where ί/ t=£/(T+f, ί) :

S(Ϊ4)->Z5(Ϊ4). Then, {5(n): Π G G } is nonexpansive semigroup on Z)(̂ 4) and F(S)

=F(Ut)Φφ.
Next, we define u(n)=un(t)=U(nT+t, 0)x, fix fe[0, T], then M: G-+X is

an almost-orbit of \S(n)}.
In fact,

u(n)=un(t)

=U(nT+t, 0)χ

=U(nT+t, t)U(t, 0)x

=U(nT+t, t)z, z=U(t, 0)x

=Ufz=S(n)z.

Thus we have

Hence u: G-+X is an almost-orbit of \S{n)}. Therefore, by [5]

THEOREM 1-3.

consists of at most one point.
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