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CALCULATION OF DENSITY FOR THE MULTIVARIATE

POISSON DISTRIBUTION

BY KAZUTOMO KAWAMURA

§ 1. Summary.

On the bivariate case, each Poisson density has five different recurrence
relations, in the followin lines, we denote them as r. r's. and conversely, if we
need to calculate the density, we can omit one of the two main relations. On
the trivariate case, there are 13 different r. r's. Let us put the r. r's in the
concrete, on the bivariate case.

It is known that a density function of Poisson distribution p{k, I) (k, 1—0,
1, 2, •••) satisfies two main recurrence relations:

k p(k, l)=λlop(k, l-n+λnp(k-l, / - I ) ,

/ p(k, [)=λolp(k-l, [)+λnp(k-l, / - I ) ,

Conversely, if we need to calculate the density using the r. r's., not using the
direct calculation, one of the relations would be meaning less except in the
usage of its reduced relations:

k p(k, O)=λlop(k-1, 0), / p(0, /)=Joiί(O, /-I)

and pφ, 0)=exρ (—λlo—λol—λn).

On the trivariate case, we have three main recurrence relations (r.r's.):

k p(k, /, m)=λloop(k-l, /, m)+λllop(k-l, / - I , m)

+λlolp(k-l, I, m-l)+λlnp(k-l, / - I , m-1),

/ p(k, I, m)=λoίOp(k, 1-1, m)+λnoP(k-Ί, / - I , m)

+λollp(k, l-l, m-l)+λnip(k-l, 1-1, m-1),

m p(k, I, m)=λ0Q1p(k, I, m—l)+λlolp(k — l, I, m—1)

+λonp(k, l-l, m-l)+λlnp(k-l, l-l, m-1).

To calculate the density p(k, I, m) from the r. r's. we need one of the rela-
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tion and their reduced relations.
In this paper we will express the r.r's. for the multivarivate case and it

will be shown that if we need to calculate the density we use only one of the
n main relations and their reduced relations. Because they include the other
main relations as shown in the last section of this paper.

§ 2. Notations and Definitions.

p(k; X): univariate Poisson density with parameter λ

i=(*Ί, H, '•• > * J tj=O or 1 (/=1, 2, •••, n)
k=(klt k2, •" , kn) kj^O nonnegative integer for j — \ y 2, •••, n
0=(O, 0, - , 0 )

E0={0, l)n, E={0, 1Γ-0
p(k): n-variate Poisson density
aif βi: nonnegative integers
a={atr i^E} vector with nonnegative components α, for some ordering of

i, say, the linary scale.
[C{k)~\ : a restriction of a depending only on k a set of a
p—{pi\ i^EQ} vector with 2n components of probabilities such that

Σ Pi=l (©
λ={λt; i^E} vector with 2n—1 nonnegative parameters.
#λ;: the number of positive components of a vector k

—calculable, /vcalculable—
p(k) is calculable on S: If we can calculate all the values p(k) for A;e5

from some prescribed relations then we call p(k) to be "calculable on S" or
simply "calculable". In the same way, if we can calculate all the values p{k)
for k^S—(0, 0) from some prescribed relations except the boundary condition
indicating the value of origin p0, we call p{k) for k<sS—(0, 0) to be "£0-calcu-
lable on S" or simply "ίo-calculable".

a set of vectors <χ—{alyi<=E) with a restriction listed as below,
and we will shorten it as [C]

where iφQ means i^E and Oφi^k and Σ w α means the sum of ua where a
zci

varies on the set [C].
n-variate Poisson density:

P(k)= Σ Π P(at λt),
ίCl i(=E

we denote this distribution as P(λ). If X is a n-variate random vector with
the distribution P(λ) then we can express X as
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X= Σ iXt

where Xt is an univariate Poisson distribution P(λ%) and Xt are mutually inde-
pendent for ΪGJE, see Kawamura [4].

k^i: A relation of two vectors of both sides, which means any two corre-
sponding components k3 and i3 satisfy kj^ij. We use the relation as O^i^k.

§ 3. Introduction.

On the bivariate case, the density function of P(λ) is expressed as

kΔl

P(k, l)= Σ P(k-δ;λlo)P(l~δ;λol)P(δ;λn)

for any nonnegative integers k, I and we used k/\l=-mm{k, Z), see Kawamura
[2] and Polak [7].

The density function p(k, I): a nonnegative function defined on the lattice
points of the first quadrant including two axes, satisfies following recurrence
relations, see Johnson and Kotz [1],

k p(k, l)=λlop(k-l, Q+λnp(k-l, /-I)

I p(k, l)=λolp(k, l-l)+λnp(k-l, /-I)

It is better to express the relations as folio wings, because of they don't
include the reduced forms of at least one of k and / equals zero.

&=Z=0 p{0, 0)=exp(-λlo-λol-λn) (1)

ft^l, /=0 k p(k} 0)=λ1Qp(k-l, 0) (2)

* = 0 , 1^1 I p(0, l)=λolp(O, / - I ) (3)

ky 1^1 k p{k, l)=λlop{k-l, Q+λnpίk-l, / - I ) (4)

k, 1^1 I p(k, l)=λolp(k, l-l)+λnp(k-l, l-l). (5)

The first equality (1) is not a relation but explains the density. If we need
to calculate the density p(k, I) (k, /^O), we can calculate p(0, 0) by (1) and
p(k, 0) (k^l) are calculable from (2) and the induction for k and also p(0, I)
(ίΞ>l) are calculable from the same argument. For p(k, I) (Λ, /^ l ) we need
one of the main relations (4) and (5). That is, we don't need one of the other
relation to prove the calculability of the density p(k, I) (k, ί^O), see Kawamura
[5].

In the case of trivariate Poisson distribution P(λ). The density is written
as

p{k)=p(ku kt, *s)= Σ Π ί(α,, λt)
r_Cj iΦO
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for any pair of nonnegative integers ku k2, kz, see for Kawamura [3] and Liu
[6], where k=(ku k2, ks) and λ ̂ O means every component k3 (/=1, 2, 3) is
nonnegative. And for given λ ̂ O, [C] means a set of pair a={at; I<ΞE} hav-
ing a restriction listed as follows

and Σ ua means the sum of ua where a varies on the set [C]. Another ex-

pression for [C] :

Σ iai—k <=> Σ /iai=*i, Σ hat=k2, Σ hθίi—kz
i-φO i ' i = l i^—1 H—1

THEOREM 3-1. For given trivariate Poisson density p(k) (Λ^O), u^ /zαz g an
expression of the recurrence relations

Σλι) (1),
ieE

; k3 p(k)= Σ λiP(k-i)

for j such that kj^l (; = 1, 2, •••, n).

We can combine the last equation as

kp(k)= Σ ίλtp(k-i) (2)~(13).

We have a concrete expression of the recurrence relations as given in the
next corollary.

COROLLARY 3-1. For given trivariate Poisson density p(k) (k^Q), we have a
concrete expression of the r.r's:

P\\), 0, (J) — e X p ( / 1 0 0 Λ 0 1 0 Λ o o l Λ 1 1 0 Λ 1 0 1 X o l l A m ) (1)

k^l k.pik,, 0 ,0)=λ m pίk ι -1,0, 0) (2)

k^l ktp{0, kz, Q)=λnop(Q, ki-l, 0) (3)

ks^ί k3p(0, 0, kB)=λO01p(0, 0, fts-l) (4)

K A3S1 k2pφ, k2, k3)=λolop(0, A 2 -1, ks)+λnιp(0, A 2 -l, Λ3-1) (5)

ktp(fl, h, kt)=λmp(0, K, k3-l)+λoιlp(Q, kt-l, Ar,-1) (6)

k3, k^l ksp(klt 0, *,)=;.„/»(*„ 0, kt-U+λwPiki-l, 0, A.-1) (7)
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*i/>(*i, 0, A:,)=^ooί(*i-1, 0, kj+λwpild-l, 0, ft8-l) (8)

ku k^l kxp{k1} k2y O)=λloop(k1-1> k2, O)+^no/>(*i-l, h-l, 0) (9)

ktp(ku k2, O)=λOίOp(klt * , - l , 0)+J 1 1 0/>(*i-l, * * - l , 0) (10)

, &2, Λs^l *!/>(*!, λ;2, Λ8)=λ lθo/>(*i-l, λr2, fc8)+^iioi(*i~l, * 2 ~ 1 , Λ,)

+λloip(k1-l, k2y fca-D+^πίίfti-l, λfc-1, * 8 - l ) (11)

k2) ks)=λolop(klf k2—1, Λ8)+^iioί(Λi—1, A:2—1, A8)

+;tonί(fc1, * , - l , * . - l ) + ί i n ί ( * i - l , * i - l , *»-D (12)

fe, h)=λoolp(klf k2, Jk8—l)+^oiί(fti—1, ̂ 2, *8—1)

ί(fti~l, * a - l , * 8 - D . (13)

Conversely, if we calculate the density function p(k) (Λ^0) from the rela-
tions, we need only one of 3 main relations (11)~(13) and their reduced rela-
tions. If we search deligently we have 13 relations and we need only specified
8 from the 13 relations to calculate the density conversely.

THEOREM 3-2 (8 relations). // nonnegaΐiυe function q{k) defined on k^Q
satisfy (1), (2), (3), (4), (5) or (6), (7) or (8), (9) or (10) and (11) or (12) or (13) then

q(k) consists with the density of the Poisson distribution p(k) (Λ ^O).

This theorem means the minimal r.r's. are (1)~(4) and one of (5) and (β),
and one of (7) and (8), and one of (9) and (10), and one of (11), (12) and (13)
to get the calculablity.

COROLLARY 3-2 (7 relations). // a density functions q{k) on k^0 satisfy (2)
- ( 4 ) , (5) or (6), (7) or (8), (9) or (10) and (11) or (12) or (13) then q{k) consists

with one of the density p(k) on k^0.

§4. Multivariate Poisson distribution and its recurrence relations.

We assume Xo to be n-variate bivariate distribution B(N, p), Xo is explained
as the sum of N independent distributions 23(1, p). We can derive n-variate
Poisson distribution P(λ) by the limiting distribution of Xo with the restriction
Npi~+λi as N-*oo for every i^E. Denote X as the n variate Poisson distri-
bution P(λ) then we can represent the density

p(X=k)= Σ Π p{ag, λt)
[C] iΦO

where p(alf λt) (i^E) are usual univariate Poisson density
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and [C] should be generalized to n-variate a set

[C]={«; Σ ««<=*},
iΦO

see Kawamura [4]. Then we have a recurrence relation of P(λ)

kp(k)= Σ ίλiP(k-i) (*)

and if k=0 we have />(0)= Π P(0, Λ,)=exp(— Σ λύ or we can express (*) as
i<EE iGE

i
Σ

i

where k^l for some y = l , 2, •••, n. We can summarize these relations as

following.

T H E O R E M 4-1. 77i£ density p{k) of n-variate Poisson distribution P{λ) satisfies

the recurrence relations

and
k p(k)= Σ iλip{k-

Proof. If kj^l then

kj=ί Σ i<Xi]j= Σ ϊ ^ i ^ Σ at,

kjp(k)=kj Σ Π />(«„ ̂ /)

= Σ(Σ«,)Πί(αι, i()

= ΣEi.τiP(β,,iύ 0 = 1 , 2 , - , n ) ,

[(7] ίj = l iito

where βi=ai—l with / satisfying 1̂ =1 and otherwise βi=at.

kjP(k)= Σ Λ Σ Π ί(j8lf ^)

= ΈλiP(k-i) (7=1, 2, . . . , n ) ,

where ί(j8, , ^/)=0 for βi=—l. We can summarize these relations as

k p(k)= Σ iλip(k-ϊ) kΦO. •
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The recurrence relations just proved involves n 2n~1 different relations
which are caused on the boundary conditions regarding k. And if k—0 then
we have directly from the density

In the case if kφQ we could classify k by the number of positive compon-
ents of the vector as followings.

If #&=1, that is, only one of the components kό^l then we have

kJp(k)=λιp(k-i) (OΦi^k)

where i^k and iφΰ include only one i such that ij=l otherwise 4 = 0 for kΦj.
Practically we have for #fc=l,

kjpφ - 0 fc, 0 - O)=^o.. oio...o PΦ - O kj-1 0 ••• 0) .

We can vary j from 1 to n, so we have n relations for #Λ=1. The number

of relations would be ( 1 having one term in the right side.

Also, in the case %k—2 (klf kj^l, i<j), we have practically

kjpφ - 0 kt 0 ••• 0 A:, 0 ••• 0)=^0...010...ooo...o/>(0 ••• 0 A ^ - l 0 ••• 0 k3 0 ••• 0).

+ V . 0 1 0 . . . 0 1 0 . . . 0 P(0 ••• 0 k , - l 0 - O k j - 1 0 ••• 0 ) .

kjp(0 - - - O k , 0 " Ό k j 0 ••• 0 ) = ^ 0 . . . o o o . . . o i o . . o ί ( 0 ••• 0 k t 0 • • • 0 ^ — 1 0 ••• 0 ) .

+ Λ o . . . o i o . .o io . . .o/>(O ••• 0 k i - l 0 ••• 0 k j - l 0 ••• 0 ) .

The number of relations would be ( 9 ), and each has two terms in the right side.

By the induction for %k we have totally

relations. We can conclude as the theorem.

THEOREM 4-2. The density function p{k) on k^0 of n-variate Poisson dis-
tribution P(λ) has totally

mutually different recurrence relations depending on the boundary condition for
including the density
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§ 5. Minimal relations for getting a multivariate Poisson density.

Let's consider the main theme of calculation of the density. Primarily we
will try to calculate directly from the density function but we will risk sum-
ming up a lot of accidental error, really we can calculate the density by com-
puter if we make the software being careful not to summarize the error. It is,
generally, a very difficalt way to calculate the density and we will be able to
improve the situation by these recurrence relations.

To calculate the density p{k) of rc-variate Poisson distribution P(λ) we need
only prespeciίied 2n relations from the l + n2n~1 relations given in the theorem
4-2. We can express the assertion in the following theorem.

As denoted and defined in the preceding section, we use the notation %k as
the number of positive components of k — (klf kz, •••, kn), if we can calculate
the density p(k) for A G S by some prescribed relations, then we call p(k) to
be "calculable on 5" or simply "calculable".

THEOREM 5-1. The density of n-variate Poisson distribution p(k) for k^O is
"calculable" from the prescribed 2n relations including the relation

In the case of #ft=0 (ft=0), we have one relation £(0)=exp(—ΣΛ) we

need it to calculate the density.
In the case of #ft=l. If ft^l for fixed / = 1 , 2, •••, n we have one relation

k j p ( Q ••• 0 k j 0 ••• O ) = ^ o . . . o i o . . . o ί ( O ••• 0 k j - 1 0 ••• 0 ) .

a n d w e n e e d it t o do t h i s . T h e se lect ion of j m a y be ( J c a s e s t h e n w e h a v e

t o t a l l y ( J r e l a t i o n s a n d w e need all of t h e m to do th i s .

In t h e c a s e of %k—2, if kl} ft^l for fixed i, j ; l^i<j^n t h e n w e h a v e
t w o r e l a t i o n s

ktp(0 "-Ok, 0 "Όkj 0 ... 0 ) = ; o ..oio...ooo...oί(0 - 0 ^ - 1 0 ••• 0 k, 0 ••• 0)

+Λo...oio...oio...o/>(0 ••• 0 ki-1 0 '-'Okj-1 0 ••• 0 ) ,
a n d

kjp(0 ~0kt 0 ••• 0 k j 0 ••• 0)=^0...ooo...oio...oί(0 ••• 0 ft, 0 ••• 0 f t , - l 0 ••• 0)

+^o...oio...oio...oί(O ••• 0 ki-1 0 ••• 0 k j - 1 0 ••• 0 ) .

T h e se lect ion of i a n d / m a y be ( 9 J cases , e a c h c a s e h a s t w o r e l a t i o n s

t h e n w e h a v e t o t a l l y 2( ~ J r e l a t i o n s a n d w e n e e d o n e of t h e r e l a t i o n in e a c h

c a s e to do t h i s so t h a t w e need ( j r e l a t i o n s to do th i s .
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In the case of # k=t (0<*Sn) if k3l, kJV •••, kH^l for fixed

<jt<Ln, we have t different relations and we need one of the relations to cal-

culate the density. The selection of JΊ<J2< ••• <]t may be in ( j cases, so

we have totally t(nλ relations and we need (n j relations to do this. Addi-

tionary we can confirm each of the t relations has 2t'1 terms in maximum in
the right side of the relation; if λt>0 for every i; i&E, i^k then our relation

kjp(k)= Σ ^Pik-i)

has maximum number of terms for kj^l. See DISCUSSION.

In the case of %k—n, k=(klf k2, •••, kn) if any component of k is a posi-

tive integer then we have n different relations and we need one of the n rela-

tions to calculate the density. The selection of such a case may be ί J case,

so we have totally n relations and we need one of the relations to calculate
the density.

Proof of the theorem. Put #&=1 and &=(0 ••• 0 k: 0 ••• 0) where kj>0 and
assume i<k then ι"=(0 ••• 010 ••• 0). In the case we can use specified recurrence
relation

kjp{Jc)^λ%p{k-ϊ), i^{0 ••• 0 1 0 ••• 0)

then we have

ρ{k)=(λt/kj)p(k-i). (1)

If k—ί=(0 ••• 0 kj—1 0 ••• 0)^0 in the right side, then we use the relation in
iteration,

By the iteration and k—kμ—0, we conclude

(2)

We can calculate all the density p(k) for every k satisfying %k—\ and k^l
for flexed j from /-th r.r. of tyρe(l). From the arbitrariness of j , we can
calculate all the density p(k) for every k satisfying #λ;^ l , from our n recur-
rence relations of type(l) (/=1, 2, •••, n). If we put # k—t then in the case
t=Q (A;=0) we know that p(k) is calculable from the relation. In the case t=l
($k—l) all the density p(k) for #Λ=1 are calculable which is proved by using
the recurrence relations of type(l) and the fact of p{k) is calculable on A:=0.
That is, the fact means all the density p(k) are calculable on %k.

To proceed, in the proof by the induction for t. If f=0 then p(k) is cat
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culable, and if t=l then p(k) is calculable. The proof is made using the fact
p(Q) (ί=0) is calculable. Therefore if we assume p(k) is calculable for every
k such that %k<t and let prove that p(k) is calculable on % k—t using pre-
scribed type t recurrence relations. In the case # k=t, we use our notations
i e £ , E={0, l}n—0 and (k)3=k3. For every kj>0 ( l ^ ^ n ) we can express
the recurrence relation of type t

kjp(k)= Σ λtp{k-i) (*)

where { } means {z ^ = 1 , i^k, ί e £ } = {/; (/),== 1, 0<k—i, i^E}, and put ix

the number of { } then we have #(&—ί^f. It #(*—ίi)<* then p{k-ix) in the
right side of the relation (*) is calculable from the assumption of the induction
and otherwise if #(k—i1)=t then (k—i1)J=kJ—1^1 and we can use the relation
(*) of type t for p{k—i^) one more time then we have

1) Σ
{£;£j =l, l^fe-ii, is£}

Put i2 the member of { } then we have #(&—ix—i2)<L$(k—ij^t. If
#(Λ:—ίi—f2)<ί then pik—ii—iz) in the right side of the relation is calculable from
the assumption of the induction and otherwise if #(&—ι#i—ί2)=ί then (k—i1—i2)J

~kj—2^1 and we can use the relation (*) of type t for p{k—i1—i2) one more
time then we have

(ft—ii—i2)iί(fc—ίi—i2)= Σ λtpik-^-iz)
{ί;ίj = l, tέ&-£i-£2, ie#}

Put ι3 the member of { } then we have #(/c—ij—ί2—ί3)^ί. If §{k—iί—i2—18)
< ί then p(k—i1—i2—ί3) in the right side of the relation is calculate from the
assumption (of the induction) and otherwise if %(k—i1—i2—i8)=t we have to
continue this process so as to satisfy all the terms of the right side of the
relation (*) to be calculable. The process to get calculability require at most
kj—1 steps and we put s=kj—l then we have

(kj—s)p(k—i1—i2 /,)= Σ λ.pik-i.-h is-i).
[ι;ij=l, ιύk-ι1-ί2 ιs, iGE]

where #(A:—£A—ί2— ••• —h)^t and if ^{k—ίι—i2— ••• —is)<t then the left side is
already calculable by the assumption and otherwise, in the right side,
${k—ίλ—i2— " —is—i)<t because {k—i1—i2— ••• —is—i)j=kj(s-\-l)=0 for every
member of { }. Therefore we have a result that all the terms of the right
side of the relation (*) are calculable where we used only the relation (*) of
type t repeatedly and the assumption for the induction.

We recognize that the proof is made only on using the relation of type t
and disregard the other t—1 relations in the case %k—i. And arbitrariness of
t (on 0<^<Jn), we have the conclusion of the theorem.

Theorem 5-1. The density of n-variate Poisson distribution p(k) for k^O
is calculable from precribed 2n relations including the relation
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If we omit the relation ί>(0)=exp(— Σ λt) and put p(Q)—p0 and using the

other prescribed 271'1 relations, we can calculate all the values p(k) for λ ^O as
the function of p0 and if we introduce the assumption of the function to be a
density, that is, summing up to unity then all the function p{k) k^O consists
with the multivariate Poisson density.

THEOREM 5-2. The function p{k) for λ ^O is calculable from prescribed 2n—1
relations if we assume p(k) for k^O to be a density.

The proof may be completed by putting p(Q)=p0 and using prescribed 2n—1
relations all the density is calculable as the multiple of p0 in the same discus-
sion of theorem 5-1 and Σ ί ( & ) = l . That is, the function is proved as p0-

JfcέO

calculable.

DISCUSSION

Through this paper, we have counted the number of relations and the num-
ber of terms in a relation including λ^O for some of i&E.

If we consider multivariate Poisson distribution usually we need to treat
λt^0 for i^E then occasionally some parameters λtl, •••, λH {ix, •••, it^E) are
equal to zero.

So we have to understand the numbers in these theorems to be counted at
most!
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