E. BUJALANCE, J.J. ETAYO AND E. MARTÍNEZ KODAI MATH. J. 10 (1987), 174–181

AUTOMORPHISM GROUPS OF HYPERELLIPTIC RIEMANN SURFACES

By E. Bujalance*, J. J. Etayo* and E. Martínez*

Hurwitz [3] proved that a Riemann surface of genus g has at most 84(g-1) automorphisms. If the surface is hyperelliptic this bound may be very much shortened.

In this paper we obtain all surfaces of genus g>3 with more than 8(g-1) automorphisms, and their corresponding automorphism groups. As a consequence of these results, all hyperelliptic Riemann surfaces with more than 8(g-1) automorphisms appear to be symmetric.

The surfaces of low genus were studied by Wiman [12] and A. and I. Kuribayashi [4, 5].

The methods of our study of Riemann surfaces involve the representation of compact Riemann surfaces as quotient spaces of Fuchsian groups [6]. A Fuchsian group is a discrete subgroup of the group of orientable isometries of the hyperbolic plane D. If the quotient space D/Γ , Γ being a Fuchsian group, is compact, then Γ has the following presentation:

$$\langle a_1, b_1, \cdots, a_g, b_g, x_1, \cdots, x_r \mid a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} x_1 \cdots x_r = x_1^{m_1} = 1 \rangle.$$

Then we call $(g, [m_1, \dots, m_r])$ the signature of Γ and g is the genus of D/Γ . The numbers m_i are called proper periods. When X is a surface of genus g, it may be expressed as D/Γ , Γ having signature (g, [-]).

If G is a group of automorphisms of the Riemann surface D/Γ , then G may be written as Γ'/Γ , where Γ' is another Fuchsian group. A Fuchsian group K with signature $(g, [m_1, \dots, m_r])$ has associated an area

Area
$$[K] = 2\pi \left(2g - 2 + \sum_{i=1}^{r} \left(1 - \frac{1}{m_i} \right) \right) = 2\pi |K|,$$

and the order of $G = \Gamma'/\Gamma$ is $|G| = |\Gamma|/|\Gamma'|$.

Let now D/Γ be a Riemann surface of genus g, and $G = \Gamma'/\Gamma$ its group of automorphisms. If |G| > 8(g-1), then $|\Gamma'| < \frac{2(g-1)}{8(g-1)} = \frac{1}{4}$. We list the Fuchsian groups Γ' with $|\Gamma'| < \frac{1}{4}$.

^{*} Partially supported by "Comisión Asesora de Investigación Científica y Técnica". Received July 30, 1986.

i) ii)	(0, [2, 3, <i>m</i>]) (0, [2, 4, <i>m</i>])	$m \ge 7$ $m \ge 5$
iii)	(0, [2, 5, m])	$5 \leq m \leq 19$
iv)	(0, [2, 6, m])	$6 \leq m \leq 11$
V)	(0, [2, 7, m])	$7 \leq m \leq 9$
vi)	(0, [3, 3, m])	$4 \leq m \leq 11$
vii)	(0, [3, 4, 4])	
viii)	(0, [3, 4, 5])	
ix)	(0, [2, 2, 2, 3]).	

A Riemann surface X is hyperelliptic if it admits an involution ϕ such that X/ϕ has genus 0. In terms of Fuchsian groups the surface D/Γ is hyperelliptic if and only if there exists a unique Fuchsian group Γ_1 such that $|\Gamma_1:\Gamma| = 2$, and the signature of Γ_1 is $(0, [2, \frac{2g+2}{\dots}, 2])$ [9]. Furthermore, the element Γ_1/Γ is central in the automorphism group of D/Γ , and so when $G=\Gamma'/\Gamma$ is the automorphism group of the surface we have the following relations: $\Gamma \triangleleft \Gamma_1 \triangleleft \Gamma'$.

THEOREM. Let X be a hyperelliptic Riemann surface of genus g and G its automorphism group. If g>3 and |G|>8(g-1), then one of the following holds:

Genus of X	Presentation of G	Order of G
	$\langle a, b a^2 = b^4 = (ab)^m = 1, ab^2 = b^2 a \rangle$	4m = 8(g+1)
	$\langle a, b a^2 = b^4 = (ab)^m = 1, b^2 = (ab)^{m/2} \rangle$	2m=8g
5	$\langle a, b a^2 = b^3 = (ab)^{10} = 1, (ab)^5 = (ba)^5 \rangle$	120
9	$\langle a, b a^2 = b^5 = (ab)^6 = 1, (ab)^3 = (ba)^3 \rangle$	120
6	$\langle a, b a^2 = b^6 = (ab)^8 = 1, b^3 = (ab)^4 \rangle$	48
15	$\langle a, b a^2 = b^6 = (ab)^{10} = 1, b^3 = (ab)^5 \rangle$	120
5	$\langle a, b a^3 = b^4 = (ab)^4 = 1, ab^2 = b^2 a \rangle$	48
14	$\langle a, b a^3 = b^4 = (ab)^5 = 1, ab^2 = b^2 a \rangle$	120

Besides, in each case the surface is unique up to conformal equivalence.

Proof. Let $X=D/\Gamma$, with genus g. Since X is hyperelliptic, there exists an automorphism ϕ of X, of order 2, and hence a Fuchsian group Γ_1 with signature $(0, [2, \frac{2g+2}{\dots}, 2])$ such that $|\Gamma_1:\Gamma|=2$. If $G=\Gamma'/\Gamma$ is the automorphism group of D/Γ , then $\Gamma \triangleleft \Gamma_1 \triangleleft \Gamma'$. So there exists an epimorphism $\theta_1:\Gamma' \to G_1 =$ $G/\langle \phi \rangle$ whose kernel is isomorphic to Γ_1 .

We look for the existence of this epimorphism θ_1 , according to the signature of Γ' , i)—ix) above.

1) Let Γ' have signature i). Let *m* be odd. We have $\theta_1: \Gamma' \rightarrow G_1$ with

kernel Γ_1 . The order of G_1 is $|\Gamma_1|/|\Gamma'| = \frac{g-1}{(m-6)/6m} = \frac{6m(g-1)}{m-6}$. From [8, Cor. 2] since *m* is odd, the proper periods of the kernel of θ_1 are produced by the image of x_1 . Hence $\theta_1(x_1)$ is 1, and the number of proper periods in ker θ_1 is $|G_1| = \frac{6m(g-1)}{m-6}$. We have $\frac{6m(g-1)}{m-6} = 2g+2$, and $g = \frac{2m-3}{m+3}$, impossible.

Now, if *m* is even, the proper periods of ker θ_1 may be obtained from x_1 and x_3 . Then its number is

$$lpha rac{6m(g-1)}{m-6} + eta rac{6m(g-1)}{(m-6)(m/2)}$$
 ,

 α (resp., β) being 1 when $\theta_1(x_1)$ (resp., $\theta_1(x_3)$) is 1 (resp., an element of order m/2) and being 0 when $\theta_1(x_1)$ (resp., $\theta_1(x_3)$) is an element of order 2 (resp., order m) [8, Cor. 2]. So

$$\alpha \frac{6m(g\!-\!1)}{m\!-\!6}\!+\!\beta \frac{6m(g\!-\!1)}{(m\!-\!6)(m/2)}\!=\!2g\!+\!2$$

and this holds only for $\alpha=0$, $\beta=1$, g=2 or 5. Thus the unique case in our scope is $\alpha=0$, $\beta=1$, m=10, g=5.

2) Let Γ' have signature ii). Now the order of G_1 is $\frac{4m(g-1)}{m-4}$ and we distinguish again m odd and m even. By the same argument above, we consider the number of proper periods of ker θ_1 :

Let m be odd. Then

$$\alpha \frac{4m(g-1)}{m-4} + \beta \frac{2m(g-1)}{m-4} = 2g+2$$

and in no case we obtain an integer value of g.

When m is even.

$$\alpha \frac{4m(g-1)}{m-4} + \beta \frac{2m(g-1)}{m-4} + \gamma \frac{8(g-1)}{m-4} = 2g+2.$$

The possibilities that appear now are:

(*)
$$\alpha = 0$$
, $\beta = 1$, $\gamma = 0$, $g = \frac{m-2}{2}$,
 $\alpha = 1$, $\beta = 0$, $\gamma = 0$, $m = 12$, $g = 2$,
 $\alpha = 0$, $\beta = 0$, $\gamma = 1$, $m = 6$, $g = 3$,
(*) $\alpha = 0$, $\beta = 1$, $\gamma = 1$, $g = \frac{m}{4}$.

For our purposes we will deal only with the starred cases.

176

3) Let Γ' have signature iii). The order of G_1 is $\frac{10m(g-1)}{3m-10}$. If *m* is odd,

$$\frac{10m(g-1)}{3m-10} = 2g+2, \quad \text{impossible.}$$

If m is even,

$$\alpha \frac{10m(g\!-\!1)}{3m\!-\!10}\!+\!\beta \frac{20(g\!-\!1)}{3m\!-\!10}\!=\!2g\!+\!2$$

and it holds just for $\alpha=0$, $\beta=1$, m=6, g=9.

4) Let Γ' have signature iv). Then the order of G_1 is $\frac{3m(g-1)}{m-3}$ and the number of proper periods of ker θ_1 is, when m is odd,

$$\alpha \frac{3m(g-1)}{m-3} + \beta \frac{m(g-1)}{m-3} = 2g+2$$

and then $\alpha = 1$, $\beta = 1$, m = 9, g = 2, what is out of our scope. If m is even,

$$\alpha \frac{3m(g-1)}{m-3} + \beta \frac{m(g-1)}{m-3} + \gamma \frac{6(g-1)}{m-3} = 2g+2$$

and then we have

from which the starred cases are the interesting ones.

5) Let Γ' have signature v). The order of G_1 is $\frac{14m(g-1)}{5m-14}$. If m=7 or 9 we have

$$\frac{14m(g-1)}{5m-14} = 2g+2, \quad \text{impossible.}$$

If m=8,

$$\alpha \frac{112(g-1)}{26} + \beta \frac{28(g-1)}{26} = 2g+2$$
, impossible.

6) When Γ' has signature vi), the order of G_1 is $\frac{3m(g-1)}{m-3}$. The kernel of

 θ_1 has proper periods only when m is even, and their number is

$$\frac{6m(g-1)}{m-3} = 2g+2$$

holding only when m=4, g=2, out of our hypothesis.

7) Let Γ' have signature vii). The order of G_1 is 6(g-1) and the number of proper periods of ker θ_1 is $\alpha 3(g-1)$, with $\alpha=1$ or 2; if $\alpha=1$, g=5, and if $\alpha=2$, g=2.

8) If Γ' has signature viii), the order of G_1 is $\frac{60(g-1)}{13}$ and the number of proper periods is

$$\frac{30(g-1)}{13} = 2g+2$$

holding for g=14.

9) If Γ' has signature ix), the order of G_1 is 6(g-1) and there are $\alpha 6(g-1)$ proper periods, $1 \le \alpha \le 3$. When $\alpha = 1$, it is g=2 and the other cases are impossible.

Now we check that all these cases actually hold. Since G_1 is a group of automorphisms of $X/\langle\phi\rangle$, a surface of genus 0, by [1, §§ 4.3, 4.4], this group must be one of the following: C_q , D_q , A_4 , S_4 or A_5 . (In what follows we use for finite groups the notation of [1]). In each of the cases we construct the epimorphism θ satisfying $\pi\theta = \theta_1$, where $\pi: G \to G_1 = G/\langle\phi\rangle$ is the canonical projection. Since ker θ has no proper periods, $\theta(x_i)$ must have order m_i . We study separately the eight possibilities.

I. $\Gamma':(0, [2, 3, 10]), g=5, |G_1|=60, \alpha=0, \beta=1$. Then the signature of Γ_1 is $(0, [2^{(12)}])$ (where $2^{(p)}$ means that there exist p proper periods equal to two), and $\theta_1: \Gamma' \rightarrow G_1$ is defined [9] by

$$\theta_1(x_1) = x, \qquad \theta_1(x_2) = y, \qquad \theta_1(x_3) = (xy)^{-1}.$$

satisfying $x^2 = y^3 = (xy)^5 = 1$. Hence $G_1 = A_5$. Now the epimorphism $\theta: \Gamma' \to G$ with kernel Γ is given by

$$\theta(x_1)=a, \quad \theta(x_2)=b, \quad \theta(x_3)=(ab)^{-1},$$

with $a^2 = b^3 = (ab)^{10} = 1$. Since $\pi \theta = \theta_1$, $(ab)^5$ is a central element and so $(ab)^5 = (ba)^5$. This group is just the group

$$\langle R, S | R^{10} = S^3 = (RS)^2 = (R^{-4}S)^2 = 1 \rangle$$

described in [11, p. 46]. For, call a=RS, b=S. Then $S^3=b^3=1$; $(RS)^2=a^2=1$; since $ab=S^{-1}R^{-1}S$, the order of R is the one of ab, i.e., 10; finally $(R^{-4}S)^2=((ba)^4b)^2=(ab)^{10}=1$. By the definition of the epimorphism, $D/\ker\theta$ is a Riemann surface of genus g, and its hyperellipticity comes from the automorphism $(ab)^{5}$.

II. $\Gamma': (0, [2, 4, m]), m$ even, $g = (m-2)/2, |G_1| = 4(g+1) = 2m, \alpha = 0, \beta = 1, \gamma = 0$. The signature of Γ_1 is $(0, [2^{(2g+2)}])$ and $\theta_1: \Gamma' \to G_1$ is defined by

$$\theta_1(x_1) = x, \qquad \theta_1(x_2) = y, \qquad \theta_1(x_3) = (xy)^{-1},$$

 $x^2 = y^2 = (xy)^m = 1$, and obviously $G_1 = D_m$. The epimorphism $\theta: \Gamma' \to G$ with kernel Γ is given by

$$\theta(x_1) = a, \quad \theta(x_2) = b, \quad \theta(x^3) = (ab)^{-1},$$

with $a^2 = b^4 = (ab)^m = 1$. Since $\pi \theta = \theta_1$, b^2 is a central element and so $ab^2 = b^2 a$. This group has order 8(g+1) and has presentation

$$\langle T, U | T^4 = U^{2(g+1)} = (TU)^2 = (T^{-1}U)^2 = 1 \rangle$$

(see [7, Th. 4]). Effectively, we call b=T, a=TU, and the presentation follows at once. Now $D/\ker \theta$ is a Riemann surface of genus g and b^2 gives the hyperellipticity.

III. $\Gamma': (0, [2, 4, m]), m$ a multiple of 4, g=m/4, $|G_1|=4g=m, \alpha=0, \beta=1$, $\gamma=1$. Γ_1 is again $(0, [2^{(2g+2)}])$ and θ_1 is given by

$$\theta_1(x_1) = x, \qquad \theta_1(x_2) = y, \qquad \theta_1(x_3) = (xy)^{-1}$$

satisfying $x^2 = y^2 = (xy)^{m/2} = 1$, and G_1 is $D_{m/2}$. Now $\theta: \Gamma' \to G$ is defined by

$$\theta(x_1) = a, \quad \theta(x_2) = b, \quad \theta(x_3) = (ab)^{-1},$$

 $a^2=b^4=(ab)^m=1$, and by unicity of the central element, $b^2=(ab)^{m/2}$. Consider the group $C_m=\langle y | y^m=1 \rangle$, $C_2=\langle x | x^2=1 \rangle$, and $C_m \times_{\phi} C_2$ with $\phi: C_2 \rightarrow \text{Aut}(C_m)$, $\phi(1)=Id$, $\phi(x)=\phi$, $\phi(y)=y^{(m/2)-1}$. In this situation a=(x, 1), ab=(1, y) and Gis so $C_m \rtimes C_2$. $D/\ker \theta$ is a Riemann surface of genus g and $b^2=(ab)^{m/2}$ gives the hyperellipticity.

IV. $\Gamma': (0, [2, 5, 6]), g=9, |G_1|=60, \alpha=0, \beta=1$. The signature of Γ_1 is $(0, [2^{(20)}])$ and θ_1 is defined by

$$\theta_1(x_1) = x, \quad \theta_1(x_2) = y, \quad \theta_1(x_3) = (xy)^{-1}.$$

satisfying $x^2 = y^5 = (xy)^3 = 1$, G_1 being so A_5 . Now θ is given by

$$\theta(x_1) = a, \quad \theta(x_2) = b, \quad \theta(x_3) = (ab)^{-1}$$

with $a^2 = b^5 = (ab)^6 = 1$, and $(ab)^3 = (ba)^3$. By [1, p. 76] G is the quotient of the group 2[6]5 by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi = (ab)^3$.

V. $\Gamma': (0, [2, 6, 8]), g=6, |G_1|=24, \alpha=0, \beta=1, \gamma=1$. The signature of Γ_1 is $(0, [2^{(14)}])$ and θ_1 is defined by

$$\theta_1(x_1) = x, \quad \theta_1(x_2) = y, \quad \theta_1(x_3) = (xy)^{-1}.$$

with $x^2 = y^3 = (xy)^4 = 1$. So G_1 is S_4 . Now the epimorphism θ is given by

$$\theta(x_1)=a, \quad \theta(x_2)=b, \quad \theta(x_3)=(ab)^{-1}.$$

satisfying $a^2 = b^6 = (ab)^8 = 1$, and, as above, $b^3 = (ab)^4$. G is the group $\langle 3, 4 | 2; 2 \rangle \cong S_4 \times C_2$ [1, p. 72], X is a hyperelliptic surface and $\phi = b^3 = (ab)^4$.

VI. $\Gamma': (0, [2, 6, 10]), g=15, |G_1|=60, \alpha=0, \beta=1, \gamma=1.$ Γ_1 has signature $(0, [2^{(32)}])$ and the epimorphism θ_1 is defined by

$$\theta_1(x_1) = x, \quad \theta_1(x_2) = y, \quad \theta_1(x_3) = (xy)^{-1},$$

with $x^2 = y^3 = (xy)^5 = 1$, and G_1 is A_5 . The epimorphism θ is given by

$$\theta(x_1)=a, \quad \theta(x_2)=b, \quad \theta(x_3)=(ab)^{-1}$$

with $a^2 = b^6 = (ab)^{10} = 1$ and $b^3 = (ab)^5$. G is the group $\langle 3.5 | 2; 2 \rangle \cong A_5 \times C_2[1, p. 72]$. X is a hyperelliptic surface and $\phi = b^3 = (ab)^5$.

VII. $\Gamma': (0, [3, 4, 4]), g=5, |G_1|=24, \alpha=1$. In this case the signature of Γ_1 is $(0, [2^{(12)}])$. The epimorphism θ_1 is defined by

$$\theta_1(x_1) = x, \qquad \theta_1(x_2) = y, \qquad \theta_1(x_3) = (xy)^{-1},$$

with $x^3 = y^2 = (xy)^4 = 1$, and G_1 is S_4 . The epimorphism θ is given by

$$\theta(x_1) = a, \quad \theta(x_2) = b, \quad \theta(x_3) = (ab)^{-1},$$

with $a^3=b^4=(ab)^4=1$, and $ab^2=b^2a$. G is the quotient of the group 3[4]4 ([1, p. 76]) by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi=b^2$.

VIII. $\Gamma': (0, [3, 4, 5]), g=14, |G_1|=60.$ Γ_1 has signature $(0, [2^{(30)}])$ and θ_1 is given by

$$\theta_1(x_1) = x, \qquad \theta_1(x_2) = y, \qquad \theta_1(x_3) = (xy)^{-1},$$

satisfying $x^3 = y^2 = (xy)^5 = 1$. We have $G_1 = A_5$ and θ is defined by

$$\theta(x_1) = a, \quad \theta(x_2) = b, \quad \theta(x_3) = (ab)^{-1},$$

with $a^3 = b^4 = (ab)^5 = 1$ and $ab^2 = b^2 a$. G is the quotient of the group 3[4]5 ([1, p. 76]) by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi = b^2$.

Observe that in all cases I-VIII Γ' is a triangle group and so its Teichmüller space has dimension 0. Besides, the epimorphism θ is unique modulo Aut (Γ') and Aut (G). Hence, using [2, § 3], the surface $D/\ker \theta$ is unique in each case, up to conformal equivalence.

COROLLARY. If X is a hyperelliptic Riemann surface of genus g>3 with $|\operatorname{Aut}(X)| > 8(g-1)$, then X is symmetric.

Proof.

Cases I and III come from [10, note in p. 24 and th. 4, resp.], and case II from [11, p. 46]. In cases IV-VIII, since $a \rightarrow a^{-1}$, $b \rightarrow b^{-1}$ is an automorphism of the group, it follows from [10, th. 2] that X is symmetric.

The authors wish to thank the referee for his helpful suggestions.

References

- COXETER, H.S. M., AND MOSER, W.O. J., "Generators and relations for discrete groups". Ergeb. der Math., 14. Springer. Berlin, etc. 1980 (4th ed.).
- [2] HARVEY, W. J., "On branch loci in Teichmüller space". Trans. Amer. Math. Soc. 153 (1971), 387-399.
- [3] HURWITZ, A., "Über algebraische Gebilde mit eindeutigen Transformationen in sich". Math. Ann. 41 (1893), 403-442.
- [4] KURIBAYASHI, A., "On analytic families of compact Riemann surfaces with nontrivial automorphisms". Nagoya Math. J. 28 (1966), 119-165.
- [5] KURIBAYASHI, I., "Hyperelliptic AM curves of genus three and associated representations". Preprint.
- [6] MACBEATH, A. M., "Discontinuous groups and birational transformations". Proc. Dundee Summer School 1961, 59-75.
- [7] MACLACHLAN, C., "A bound for the number of automorphisms of a compact Riemann surface". J. London Math. Soc. 44 (1969), 265-272.
- [8] MACLACHLAN, C., Maximal normal Fuchsian groups. Ill. J. Math. 15 (1971), 104-113.
- [9] MACLACHLAN, C., Smooth coverings of hyperelliptic surfaces. Quart. J. Math. Oxford. (2) 22 (1971), 117-123.
- [10] SINGERMAN, D., Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 17-32.
- [11] SINGERMAN, D., Symmetries and pseudo-symmetries of hyperelliptic surfaces. Glasgow Math. J. 21 (1980), 39-49.
- [12] WIMAN, A., Über die hyperelliptischen Curven und diejenigen vom Geschlechte p=3, welche eindeutigen Transformationen in sich zulassen, Bihang Kongl. Svenska Vetenskapsakademiens Handlingar, Stockholm 1895-96.

E. BUJALANCE AND E. MARTÍNEZ DEPARTMENTO DE MATEMÁTICA FUNDAMENTAL FACULTAD DE CIENCIAS U. N. E. D. 28040 Madrid—Spain J. J. Etayo DEPARTMENTO DE GEOMETRIA Y TOPOLOGIA FACULTAD DE C. MATEMÁTICAS UNIVERSIDAD COMPLUTENSE 28040 MADRID—SPAIN