AUTOMORPHISM GROUPS OF HYPERELLIPTIC RIEMANN SURFACES

By E. Bujalance*, J. J. Etayo* and E. Martínez*

Hurwitz [3] proved that a Riemann surface of genus g has at most $84(g-1)$ automorphisms. If the surface is hyperelliptic this bound may be very much shortened.

In this paper we obtain all surfaces of genus $g>3$ with more than $8(g-1)$ automorphisms, and their corresponding automorphism groups. As a consequence of these results, all hyperelliptic Riemann surfaces with more than $8(g-1)$ automorphisms appear to be symmetric.

The surfaces of low genus were studied by Wiman [12] and A. and I. Kuribayashi [4, 5].

The methods of our study of Riemann surfaces involve the representation of compact Riemann surfaces as quotient spaces of Fuchsian groups [6]. A Fuchsian group is a discrete subgroup of the group of orientable isometries of the hyperbolic plane D. If the quotient space $D / \Gamma, \Gamma$ being a Fuchsian group, is compact, then Γ has the following presentation:

$$
\left\langle a_{1}, b_{1}, \cdots, a_{g}, b_{g}, x_{1}, \cdots, x_{r} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1} x_{1} \cdots x_{r}=x_{2}^{m_{2}}=1\right\rangle .
$$

Then we call $\left(g,\left[m_{1}, \cdots, m_{r}\right]\right)$ the signature of Γ and g is the genus of D / Γ. The numbers m_{\imath} are called proper periods. When X is a surface of genus g, it may be expressed as $D / \Gamma, \Gamma$ having signature ($g,[-]$).

If G is a group of automorphisms of the Riemann surface D / Γ, then G may be written as Γ^{\prime} / Γ, where Γ^{\prime} is another Fuchsian group. A Fuchsian group K with signature ($g,\left[m_{1}, \cdots, m_{r}\right]$) has associated an area

$$
\text { Area }[K]=2 \pi\left(2 g-2+\sum_{\imath=1}^{r}\left(1-\frac{1}{m_{\imath}}\right)\right)=2 \pi|K|,
$$

and the order of $G=\Gamma^{\prime} / \Gamma$ is $|G|=|\Gamma| /\left|\Gamma^{\prime}\right|$.
Let now D / Γ be a Riemann surface of genus g, and $G=\Gamma^{\prime} / \Gamma$ its group of automorphisms. If $|G|>8(g-1)$, then $\left|\Gamma^{\prime}\right|<\frac{2(g-1)}{8(g-1)}=\frac{1}{4}$. We list the Fuchsian groups Γ^{\prime} with $\left|\Gamma^{\prime}\right|<\frac{1}{4}$.

[^0]i) $(0,[2,3, m]) \quad m \geqq 7$
ii) $(0,[2,4, m]) \quad m \geqq 5$
iii) $(0,[2,5, m]) \quad 5 \leqq m \leqq 19$
iv) $(0,[2,6, m]) \quad 6 \leqq m \leqq 11$
v) $(0,[2,7, m]) \quad 7 \leqq m \leqq 9$
vi) $(0,[3,3, m]) \quad 4 \leqq m \leqq 11$
vii) $(0,[3,4,4])$
viii) (0, $[3,4,5])$
ix) $(0,[2,2,2,3])$.

A Riemann surface X is hyperelliptic if it admits an involution ϕ such that X / ϕ has genus 0 . In terms of Fuchsian groups the surface D / Γ is hyperelliptic if and only if there exists a unique Fuchsian group Γ_{1} such that $\left|\Gamma_{1}: \Gamma\right|$ $=2$, and the signature of Γ_{1} is $\left(0,\left[2,{ }^{2 g+2}, 2\right]\right)$ [9]. Furthermore, the element Γ_{1} / Γ is central in the automorphism group of D / Γ, and so when $G=\Gamma^{\prime} / \Gamma$ is the automorphism group of the surface we have the following relations: $\Gamma \triangleleft \Gamma_{1} \triangleleft \Gamma^{\prime}$.

Theorem. Let X be a hyperelliptic Riemann surface of genus g and G its automorphism group. If $g>3$ and $|G|>8(g-1)$, then one of the following holds:

Genus of X	Presentation of G	Order of G
	$\left\langle a, b \mid a^{2}=b^{4}=(a b)^{m}=1, a b^{2}=b^{2} a\right\rangle$	$4 m=8(g+1)$
	$\left\langle a, b \mid a^{2}=b^{4}=(a b)^{m}=1, b^{2}=(a b)^{m / 2}\right\rangle$	$2 m=8 g$
5	$\left\langle a, b \mid a^{2}=b^{3}=(a b)^{10}=1,(a b)^{5}=(b a)^{5}\right\rangle$	120
9	$\left\langle a, b \mid a^{2}=b^{5}=(a b)^{6}=1,(a b)^{3}=(b a)^{3}\right\rangle$	120
6	$\left\langle a, b \mid a^{2}=b^{6}=(a b)^{8}=1, b^{3}=(a b)^{4}\right\rangle$	48
15	$\left\langle a, b \mid a^{2}=b^{6}=(a b)^{10}=1, b^{3}=(a b)^{5}\right\rangle$	120
5	$\left\langle a, b \mid a^{3}=b^{4}=(a b)^{4}=1, a b^{2}=b^{2} a\right\rangle$	48
14	$\left\langle a, b \mid a^{3}=b^{4}=(a b)^{5}=1, a b^{2}=b^{2} a\right\rangle$	120

Besides, in each case the surface is unique up to conformal equivalence.
Proof. Let $X=D / \Gamma$, with genus g. Since X is hyperelliptic, there exists an automorphism ϕ of X, of order 2, and hence a Fuchsian group Γ_{1} with signature $(0,[2, \stackrel{2 g+2}{\cdots \cdots}, 2])$ such that $\left|\Gamma_{1}: \Gamma\right|=2$. If $G=\Gamma^{\prime} / \Gamma$ is the automorphism group of D / Γ, then $\Gamma \triangleleft \Gamma_{1} \triangleleft \Gamma^{\prime}$. So there exists an epimorphism $\theta_{1}: \Gamma^{\prime} \rightarrow G_{1}=$ $G /\langle\phi\rangle$ whose kernel is isomorphic to Γ_{1}.

We look for the existence of this epimorphism θ_{1}, according to the signature of Γ^{\prime}, i)-ix) above.

1) Let Γ^{\prime} have signature i). Let m be odd. We have $\theta_{1}: \Gamma^{\prime} \rightarrow G_{1}$ with
kernel Γ_{1}. The order of G_{1} is $\left|\Gamma_{1}\right| /\left|\Gamma^{\prime}\right|=\frac{g-1}{(m-6) / 6 m}=\frac{6 m(g-1)}{m-6}$. From [8, Cor. 2] since m is odd, the proper periods of the kernel of θ_{1} are produced by the image of x_{1}. Hence $\theta_{1}\left(x_{1}\right)$ is 1 , and the number of proper periods in ker θ_{1} is $\left|G_{1}\right|=\frac{6 m(g-1)}{m-6}$. We have $\frac{6 m(g-1)}{m-6}=2 g+2$, and $g=\frac{2 m-3}{m+3}$, impossible.

Now, if m is even, the proper periods of $\operatorname{ker} \theta_{1}$ may be obtained from x_{1} and x_{3}. Then its number is

$$
\alpha \frac{6 m(g-1)}{m-6}+\beta \frac{6 m(g-1)}{(m-6)(m / 2)},
$$

α (resp., β) being 1 when $\theta_{1}\left(x_{1}\right)$ (resp., $\theta_{1}\left(x_{3}\right)$) is 1 (resp., an element of order $m / 2$) and being 0 when $\theta_{1}\left(x_{1}\right)$ (resp., $\theta_{1}\left(x_{3}\right)$) is an element of order 2 (resp., order m) [8, Cor. 2]. So

$$
\alpha \frac{6 m(g-1)}{m-6}+\beta \frac{6 m(g-1)}{(m-6)(m / 2)}=2 g+2
$$

and this holds only for $\alpha=0, \beta=1, g=2$ or 5 . Thus the unique case in our scope is $\alpha=0, \beta=1, m=10, g=5$.
2) Let Γ^{\prime} have signature ii). Now the order of G_{1} is $\frac{4 m(g-1)}{m-4}$ and we distinguish again m odd and m even. By the same argument above, we consider the number of proper periods of $\operatorname{ker} \theta_{1}$:

Let m be odd. Then

$$
\alpha \frac{4 m(g-1)}{m-4}+\beta \frac{2 m(g-1)}{m-4}=2 g+2
$$

and in no case we obtain an integer value of g.
When m is even.

$$
\alpha \frac{4 m(g-1)}{m-4}+\beta \frac{2 m(g-1)}{m-4}+\gamma \frac{8(g-1)}{m-4}=2 g+2 .
$$

The possibilities that appear now are:

$$
\begin{array}{rlll}
\text { (*) } & \alpha=0, & \beta=1, & \gamma=0, \\
& \alpha=1, & \beta=0, & \gamma=0, \\
& \alpha=0, & m=12, \quad g=2, & \gamma=1, \\
& & m=6, \quad g=3, \\
\text { (*) } & \alpha=0, & \beta=1, \quad \gamma=1, \quad g=\frac{m}{4} .
\end{array}
$$

For our purposes we will deal only with the starred cases.
3) Let Γ^{\prime} have signature iii). The order of G_{1} is $\frac{10 m(g-1)}{3 m-10}$.

If m is odd,

$$
\frac{10 m(g-1)}{3 m-10}=2 g+2, \quad \text { impossible. }
$$

If m is even,

$$
\alpha \frac{10 m(g-1)}{3 m-10}+\beta \frac{20(g-1)}{3 m-10}=2 g+2
$$

and it holds just for $\alpha=0, \beta=1, m=6, g=9$.
4) Let Γ^{\prime} have signature iv). Then the order of G_{1} is $\frac{3 m(g-1)}{m-3}$ and the number of proper periods of $\operatorname{ker} \theta_{1}$ is, when m is odd,

$$
\alpha \frac{3 m(g-1)}{m-3}+\beta \frac{m(g-1)}{m-3}=2 g+2
$$

and then $\alpha=1, \beta=1, m=9, g=2$, what is out of our scope.
If m is even,

$$
\alpha \frac{3 m(g-1)}{m-3}+\beta \frac{m(g-1)}{m-3}+\gamma \frac{6(g-1)}{m-3}=2 g+2
$$

and then we have

$$
\begin{array}{llllll}
& \alpha=1, & \beta=0, & \gamma=1, & m=8, & g=2, \\
& \alpha=0, & \beta=1, & \gamma=1, & m=6, & g=3, \\
(*) & \alpha=0, & \beta=1, & \gamma=1, & m=8, & g=6, \\
\text { (*) } & \alpha=0, & \beta=1, & \gamma=1, & m=10, & g=15, \\
& \alpha=1, & \beta=1, & \gamma=1, & m=12, & g=2,
\end{array}
$$

from which the starred cases are the interesting ones.
5) Let Γ^{\prime} have signature v). The order of G_{1} is $\frac{14 m(g-1)}{5 m-14}$. If $m=7$ or 9 we have

$$
\frac{14 m(g-1)}{5 m-14}=2 g+2, \quad \text { impossible. }
$$

If $m=8$,

$$
\alpha \frac{112(g-1)}{26}+\beta \frac{28(g-1)}{26}=2 g+2, \quad \text { impossible. }
$$

6) When Γ^{\prime} has signature vi), the order of G_{1} is $\frac{3 m(g-1)}{m-3}$. The kernel of
θ_{1} has proper periods only when m is even, and their number is

$$
\frac{6 m(g-1)}{m-3}=2 g+2
$$

holding only when $m=4, g=2$, out of our hypothesis.
7) Let Γ^{\prime} have signature vii). The order of G_{1} is $6(g-1)$ and the number of proper periods of $\operatorname{ker} \theta_{1}$ is $\alpha 3(g-1)$, with $\alpha=1$ or 2 ; if $\alpha=1, g=5$, and if $\alpha=2, g=2$.
8) If Γ^{\prime} has signature viii), the order of G_{1} is $\frac{60(g-1)}{13}$ and the number of proper periods is

$$
\frac{30(g-1)}{13}=2 g+2
$$

holding for $g=14$.
9) If Γ^{\prime} has signature ix), the order of G_{1} is $6(g-1)$ and there are $\alpha 6(g-1)$ proper periods, $1 \leqq \alpha \leqq 3$. When $\alpha=1$, it is $g=2$ and the other cases are impossible.

Now we check that all these cases actually hold. Since G_{1} is a group of automorphisms of $X /\langle\phi\rangle$, a surface of genus 0 , by [1, §§ 4.3, 4.4], this group must be one of the following: $C_{q}, D_{q}, A_{4}, S_{4}$ or A_{5}. (In what follows we use for finite groups the notation of [1]). In each of the cases we construct the epimorphism θ satisfying $\pi \theta=\theta_{1}$, where $\pi: G \rightarrow G_{1}=G /\langle\phi\rangle$ is the canonical projection. Since $\operatorname{ker} \theta$ has no proper periods, $\theta\left(x_{2}\right)$ must have order m_{2}. We study separately the eight possibilities.
I. $\Gamma^{\prime}:(0,[2,3,10]), g=5,\left|G_{1}\right|=60, \alpha=0, \beta=1$. Then the signature of Γ_{1} is $\left(0,\left[2^{(12)}\right]\right)$ (where $2^{(p)}$ means that there exist p proper periods equal to two), and $\theta_{1}: \Gamma^{\prime} \rightarrow G_{1}$ is defined [9] by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1} .
$$

satisfying $x^{2}=y^{3}=(x y)^{5}=1$. Hence $G_{1}=A_{5}$. Now the epimorphism $\theta: \Gamma^{\prime} \rightarrow G$ with kernel Γ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1},
$$

with $a^{2}=b^{3}=(a b)^{10}=1$. Since $\pi \theta=\theta_{1},(a b)^{5}$ is a central element and so $(a b)^{5}=$ $(b a)^{5}$. This group is just the group

$$
\left\langle R, S \mid R^{10}=S^{3}=(R S)^{2}=\left(R^{-4} S\right)^{2}=1\right\rangle
$$

described in [11, p. 46]. For, call $a=R S, b=S$. Then $S^{3}=b^{3}=1 ;(R S)^{2}=a^{2}=1$; since $a b=S^{-1} R^{-1} S$, the order of R is the one of $a b$, i.e., 10 ; finally $\left(R^{-4} S\right)^{2}=$ $\left((b a)^{4} b\right)^{2}=(a b)^{10}=1$. By the definition of the epimorphism, $D / \operatorname{ker} \theta$ is a Riemann surface of genus g, and its hyperellipticity comes from the automorphism
$(a b)^{5}$.
II. $\quad \Gamma^{\prime}:(0,[2,4, m]), m$ even, $g=(m-2) / 2,\left|G_{1}\right|=4(g+1)=2 m, \alpha=0, \beta=1$, $\gamma=0$. The signature of Γ_{1} is $\left(0,\left[2^{(2 g+2)}\right]\right)$ and $\theta_{1}: \Gamma^{\prime} \rightarrow G_{1}$ is defined by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1},
$$

$x^{2}=y^{2}=(x y)^{m}=1$, and obviously $G_{1}=D_{m}$. The epimorphism $\theta: \Gamma^{\prime} \rightarrow G$ with kernel Γ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x^{3}\right)=(a b)^{-1},
$$

with $a^{2}=b^{4}=(a b)^{m}=1$. Since $\pi \theta=\theta_{1}, b^{2}$ is a central element and so $a b^{2}=b^{2} a$. This group has order $8(g+1)$ and has presentation

$$
\left\langle T, U \mid T^{4}=U^{2(g+1)}=(T U)^{2}=\left(T^{-1} U\right)^{2}=1\right\rangle
$$

(see [7, Th. 4]). Effectively, we call $b=T, a=T U$, and the presentation follows at once. Now $D / \operatorname{ker} \theta$ is a Riemann surface of genus g and b^{2} gives the hyperellipticity.
III. $\quad \Gamma^{\prime}:(0,[2,4, m]), m$ a multiple of $4, g=m / 4,\left|G_{1}\right|=4 g=m, \alpha=0, \beta=1$, $\gamma=1 . \quad \Gamma_{1}$ is again $\left(0,\left[2^{(2 g+2)}\right]\right)$ and θ_{1} is given by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1}
$$

satisfying $x^{2}=y^{2}=(x y)^{m / 2}=1$, and G_{1} is $D_{m / 2}$. Now $\theta: \Gamma^{\prime} \rightarrow G$ is defined by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1},
$$

$a^{2}=b^{4}=(a b)^{m}=1$, and by unicity of the central element, $b^{2}=(a b)^{m / 2}$. Consider the group $C_{m}=\left\langle y \mid y^{m}=1\right\rangle, C_{2}=\left\langle x \mid x^{2}=1\right\rangle$, and $C_{m} \times_{\phi} C_{2}$ with $\phi: C_{2} \rightarrow$ Aut $\left(C_{m}\right)$, $\phi(1)=I d, \phi(x)=\psi, \phi(y)=y^{(m / 2)-1}$. In this situation $a=(x, 1), a b=(1, y)$ and G is so $C_{m} \rtimes C_{2} . \quad D / \operatorname{ker} \theta$ is a Riemann surface of genus g and $b^{2}=(a b)^{m / 2}$ gives the hyperellipticity.
IV. $\Gamma^{\prime}:(0,[2,5,6]), g=9,\left|G_{1}\right|=60, \alpha=0, \beta=1$. The signature of Γ_{1} is $\left(0,\left[2^{(20)}\right]\right)$ and θ_{1} is defined by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1} .
$$

satisfying $x^{2}=y^{5}=(x y)^{3}=1, G_{1}$ being so A_{5}. Now θ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1},
$$

with $a^{2}=b^{5}=(a b)^{6}=1$, and $(a b)^{3}=(b a)^{3}$. By $[1, \mathrm{f} .76] G$ is the quotient of the group 2[6]5 by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi=(a b)^{3}$.
V. $\Gamma^{\prime}:(0,[2,6,8]), g=6,\left|G_{1}\right|=24, \alpha=0, \beta=1, \gamma=1$. The signature of Γ_{1} is $\left(0,\left[2^{(14)}\right]\right)$ and θ_{1} is defined by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1} .
$$

with $x^{2}=y^{3}=(x y)^{4}=1$. So G_{1} is S_{4}. Now the epimorphism θ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1} .
$$

satisfying $a^{2}=b^{6}=(a b)^{8}=1$, and, as above, $b^{3}=(a b)^{4} . \quad G$ is the group $\langle 3,4 \mid 2 ; 2\rangle$ $\cong S_{4} \times C_{2}[1, \mathrm{p} .72], X$ is a hyperelliptic surface and $\phi=b^{3}=(a b)^{4}$.
VI. $\quad \Gamma^{\prime}:(0,[2,6,10]), g=15,\left|G_{1}\right|=60, \alpha=0, \beta=1, \gamma=1 . \quad \Gamma_{1}$ has signature ($0,\left[2^{(322}\right]$) and the epimorphism θ_{1} is defined by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1},
$$

with $x^{2}=y^{3}=(x y)^{5}=1$, and G_{1} is A_{5}. The epimorphism θ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1}
$$

with $a^{2}=b^{6}=(a b)^{10}=1$ and $b^{3}=(a b)^{5} . \quad G$ is the group $\langle 3.5 \mid 2 ; 2\rangle \cong A_{5} \times C_{2}[1$, p. 72]. X is a hyperelliptic surface and $\phi=b^{3}=(a b)^{5}$.
VII. $\Gamma^{\prime}:(0,[3,4,4]), g=5,\left|G_{1}\right|=24, \alpha=1$. In this case the signature of Γ_{1} is $\left(0,\left[2^{(12)}\right]\right)$. The epimorphism θ_{1} is defined by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1},
$$

with $x^{3}=y^{2}=(x y)^{4}=1$, and G_{1} is S_{4}. The epimorphism θ is given by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1},
$$

with $a^{3}=b^{4}=(a b)^{4}=1$, and $a b^{2}=b^{2} a . \quad G$ is the quotient of the group $3[4] 4$ ($[1, \mathrm{p} .76]$) by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi=b^{2}$.
VIII. $\quad \Gamma^{\prime}:(0,[3,4,5]), g=14,\left|G_{1}\right|=60 . \quad \Gamma_{1}$ has signature $\left(0,\left[2^{(30)}\right]\right)$ and θ_{1} is given by

$$
\theta_{1}\left(x_{1}\right)=x, \quad \theta_{1}\left(x_{2}\right)=y, \quad \theta_{1}\left(x_{3}\right)=(x y)^{-1},
$$

satisfying $x^{3}=y^{2}=(x y)^{5}=1$. We have $G_{1}=A_{5}$ and θ is defined by

$$
\theta\left(x_{1}\right)=a, \quad \theta\left(x_{2}\right)=b, \quad \theta\left(x_{3}\right)=(a b)^{-1},
$$

with $a^{3}=b^{4}=(a b)^{5}=1$ and $a b^{2}=b^{2} a . \quad G$ is the quotient of the group $3[4] 5$ ($[1, \mathrm{p} .76]$) by adding the relation "the central element has order two". X is a hyperelliptic surface and $\phi=b^{2}$.

Observe that in all cases I-VIII Γ^{\prime} is a triangle group and so its Teichmüller space has dimension 0 . Besides, the epimorphism θ is unique modulo Aut (Γ^{\prime}) and Aut (G). Hence, using [2, §3], the surface $D / \operatorname{ker} \theta$ is unique in each case, up to conformal equivalence.

Corollary. If X is a hyperelliptic Riemann surface of genus $g>3$ with \mid Aut $(X) \mid>8(g-1)$, then X is symmetric.

Proof.
Cases I and III come from [10, note in p. 24 and th. 4, resp.], and case II from [11, p. 46]. In cases IV-VIII, since $a \rightarrow a^{-1}, b \rightarrow b^{-1}$ is an automorphism of the group, it follows from [10, th. 2] that X is symmetric.

The authors wish to thank the referee for his helpful suggestions.

References

[1] Coxeter, H.S. M., and Moser, W.O. J., "Generators and relations for discrete groups". Ergeb. der Math., 14. Springer. Berlin, etc. 1980 (4th ed.).
[2] Harvey, W. J., "On branch locı in Teichmüller space". Trans. Amer. Math. Soc. 153 (1971), 387-399.
[3] Hurwitz, A., "Über algebraische Gebilde mit eindeutigen Transformationen in sich". Math. Ann. 41 (1893), 403-442.
[4] Kuribayashi, A., "On analytic families of compact Riemann surfaces with nontrivial automorphisms". Nagoya Math. J. 28 (1966), 119-165.
[5] Kuribayashi, I., "Hyperelliptic AM curves of genus three and associated representations". Preprint.
[6] Macbeath, A. M., "Discontınuous groups and birational transformations". Proc. Dundee Summer School 1961, 59-75.
[7] Maclachlan, C., "A bound for the number of automorphisms of a compact Riemann surface". J. London Math. Soc. 44 (1969), 265-272.
[8] Maclachlan, C., Maximal normal Fuchsian groups. IIl. J. Math. 15 (1971), 104113.
[9] Maclachlan, C., Smooth coverings of hyperelliptic surfaces. Quart. J. Math. Oxford. (2) 22 (1971), 117-123.
[10] Singerman, D., Symmetries of Riemann surfaces with large automorphism group. Math. Ann. 210 (1974), 17-32.
[11] Singerman, D., Symmetries and pseudo-symmetries of hyperelliptic "isurfaces. Glasgow Math. J. 21 (1980), 39-49.
[12] Wiman, A., Über die hyperelliptischen Curven und diejenigen vom_Geschlechte $p=3$, welche eindeutigen Transformationen in sich zulassen, Bihang Kongl. Svenska Vetenskapsakademiens Handlingar, Stockholm 1895-96.

E. Bujalance and E. Martínez
Departmento de Matemática Fundamental
Facultad de Ciencias
U.N.E.D.
28040 Madrid-Spain
J. J. Etayo
Departmento de Geometria y Topologia
Facultad de C. Matemáticas
Universidad Complutense
28040 Madrid-Spain

[^0]: * Partially supported by "Comisión Asesora de Investigación Científica y Técnica". Received July 30, 1986.

