A VARIFOLD SOLUTION TO THE NONLINEAR EQUATION OF MOTION OF A VIBRATING MEMBRANE

By Daisuke Fujiwara and Shoichiro Takakuwa

§ 1. Introduction.

Let Ω be a bounded domain in \mathbb{R}^n with the boundary $\partial\Omega$ which is a Lipschitz manifold. Then the equation of motion of a vibrating membrane is as follows:

$$(1.1) \hspace{1cm} D_t^2 u(t, x) - \sum_{j=1}^n D_j \{ D_j u(t, x) (1 + |Du(t, x)|^2)^{-1/2} \} = 0 \; , \qquad x \in \mathcal{Q} \; ,$$

where D_t denotes $\partial/\partial t$ and D_j denotes $\partial/\partial x_j$, $j=1, 2, \dots, n$. The initial and the boundary conditions we shall consider are

(1.2)
$$u(0, x) = u_0(x), \quad D_t u(0, x) = u_1(x),$$

(1.3)
$$u(t, x) = 0 \quad \text{for } x \text{ in } \partial \Omega.$$

If $u_0(x)$ and $u_1(x)$ are sufficiently smooth, there exists a unique genuine solution of (1.1), (1.2) and (1.3) for a short time interval. (cf. Kato [9] and Shibata-Tsutsumi [10]). On the other hand, existence global in time of even a weak solution is not proved in the case n>1.

The purpose of the present paper is to treat the above equation by virtue of the theory of varifolds introduced by Almgren Jr. [2]. A varifold is a generalization of the notion of a function and was successfully used in the direct approach of the Plateau's problem. We shall define a generalized solution of the equation (1.1) in terms of varifolds, which we call the varifold solution. And we shall prove existence, global in time, of a varifold solution of (1.1), (1.2) and (1.3). Thus this paper is closely related with the works of Tartar [11], [12] and that of DiPerna [5].

Although a varifold solution is quite a weak notion, it satisfies a generalization of the Hamilton's principle:

(1.4)
$$\delta \int_0^T dt \int_{\Omega} \left\{ \frac{1}{2} |D_t u(t, x)|^2 - (1 + |Du(t, x)|^2)^{1/2} \right\} dx = 0$$

under appropriate assumptions.

Before introducing a varifold solution, we shall formulate, in § 2, the notion

Received April 1, 1985

of a weak solution of (1.1) in terms of functions of bounded variations of n-variables. (cf. De Giorgi [4] and Giusti [8]). This is interesting in itself and will help us to treat varifold solutions.

§ 3 is devoted to the definition of the notion of a varifold solution of (1.1). In § 4 we prove existence, global in time, of a varifold solution of (1.1), (1.2) and (1.3). This is done by the Ritz-Galerkin approximation method.

In § 5 we show that the approximating sequence of Ritz-Galerkin method coverges to a function u(t, x) of bounded variation in x.

In § 6, we shall prove that the global varifold solution can be identified with u(t, x) if u(t, x) satisfies the energy conservation law. This will be done in Theorem 4.

A generalization of Hamilton's principle is proved in §7.

Table of contents

- § 1. Introduction.
- § 2. A weak solution.
- § 3. Definition of a varifold solution.
- § 4. Existence of a global varifold solution.
- § 5. Convergence in the space of BV-functions.
- § 6. The varifold solution and the BV-function.
- § 7. Generalized Hamilton's principle.

Notations.

The following usual notations are used: If x and y are two vectors in \mathbb{R}^k , $x \cdot y$ is the Euclidean inner product of x and y, and |x| is the length of x. If M is a Radon measure on a σ -compact metric space X and ψ is a continuous function on X then

$$\langle M, \psi \rangle = \int_X \psi(x) dM(x)$$

and spt M is the support of M. \mathcal{H}_n denotes the Hausdorff measure of dimension n. Let $m \ge 0$ be an integer. Then

 $\mathcal{C}^m(\Omega)$ denotes the space of functions of class \mathcal{C}^m in Ω . $\mathcal{C}^m_0(\Omega) = \{u \in \mathcal{C}^m(\Omega); \text{ spt } u \text{ is compact}\}.$

If Y is a topological vector space and U is an open subset of \mathbb{R}^k ,

 $\mathcal{C}^{m}(U, Y)$ stands for the space of Y-valued functions of class \mathcal{C}^{m} .

 $C_0^m(U, Y) = \{u \in C^m(U, Y); \text{ spt } u \text{ is compact}\}.$

 $L^p(U)$, $1 \le p \le \infty$, denotes the space of *p*-summable functions with respect to the *k*-dimensional Lebesgue measure L_k .

 $W^{m,p}(\Omega) = \{ u \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \text{ for } |\alpha| \leq m \}.$

 $W_0^{m,p}(\Omega)$ = the closure of $C_0^{\infty}(\Omega)$ in $W^{m,p}(\Omega)$.

Acknowledgement: 1) The authors would like to express their sincere gratitude to Professors Atsushi Inoue, Takaaki Nishida and Yoshihiro Shibata for fruitful discussions. Professor Inoue directed author's attention to the Ritz-Galerkin method. Without his aid $\S 3$ would have been completely different from the present form. Thanks to Professor Nishida's criticism about the errorneous statement of the energy equality in the first report [7], we can correct the error of $\lceil 7 \rceil$.

2) Main results of the paper have already been announced briefly in [7].

§ 2. A weak solution.

We shall denote by $BV(\Omega)$ the space of all functions of bounded variation in the domain $\Omega \subset \mathbb{R}^n$, i. e., $u \in BV(\Omega)$ if and only if $u \in L^1(\Omega)$ and its gradient $Du = (D_1u, D_2u, \dots, D_nu)$ in the sense of distributions is an \mathbb{R}^n -valued Radon measure. (See Giusti [8] for the detailed theory.) We denote its total variation measure by |Du|. Let U be an open subset of Ω . Then |Du|(U) is defined by the equality

(2.1)
$$|Du|(U) = \sup \left| \int_{\Omega} u \operatorname{div} \, \psi(x) dx \right|,$$

where $\psi(x)=(\psi_1(x), \dots, \psi_n(x))\in \mathcal{C}_0^1(U; \mathbf{R}^n)$ satisfies $|\psi(x)|\leq 1$ for each x. Similarly we can define the measure $(1+|Du|)^{1/2}$ by the following equality:

(2.2)
$$(1+|Du|)^{1/2}(U) = \sup \left| \int_{\Omega} \{ \phi_0(x) + u \text{ div } \phi(x) \} dx \right|,$$

where $\phi(x) \in \mathcal{C}_0^1(U; \mathbf{R}^n)$ and $\phi_0(x) \in \mathcal{C}_0^1(U)$ such that

$$\psi_0(x)^2 + |\psi(x)|^2 \le 1$$
 for each $x \in U$.

If $u \in \mathcal{C}^1(\Omega)$, then

$$\int_{\mathcal{Q}} |Du| = \int_{\mathcal{Q}} |Du(x)| \, dx \text{ , and } \int_{\mathcal{Q}} (1 + |Du|)^{1/2} = \int_{\mathcal{Q}} (1 + |Du(x)|)^{1/2} dx \text{ .}$$

The latter equals the area of the hypersurface y=u(x), the graph of u(x), in the space $\Omega \times \mathbf{R}$. If $u(x) \in BV(\Omega)$, then we can define its boundary value (the trace of u) γu to $\partial \Omega$. γu belongs to $L^1(\partial \Omega)$. Let $g \in \mathcal{C}^1(\mathbf{R}^n; \mathbf{R}^n)$. Then we have the Green-Stokes formula

(2.3)
$$\int_{\Omega} u \operatorname{div} g \, dx = -\int_{\Omega} Du \cdot g + \int_{\partial\Omega} \gamma u \, g \cdot \vec{n} \, d\mathcal{H}_{n-1},$$

where \vec{n} is the unit outer normal to $\partial \Omega$.

If $u \in BV(\Omega)$, then $E = \{(x, y) \in \Omega \times \mathbf{R} : u(x) > y\}$ is the subgraph of u. The characteristic function $\chi_E(x, y)$ of E is a function of bounded variation on every bounded open subset of $\Omega \times \mathbf{R}$. $D\chi_E$ is an \mathbf{R}^{n+1} -valued Radon measure on $\Omega \times \mathbf{R}$. We know that $\operatorname{spt} |D\chi_E| \subset \partial E$.

For $\rho > 0$, we set $B(x, y; \rho) = \{(z, w) \in \mathbb{R}^n \times \mathbb{R} : |z-x|^2 + |w-y|^2 < \rho^2\}$. Then the reduced boundary $\partial^* E$ of E is the set of all points $(x, y) \in \Omega \times \mathbb{R}$ with the following properties:

(i)
$$\int_{B(x, y \cdot \rho)} |D \chi_E| > 0$$
 for each ρ .

(ii) The limit $\nu(x, y) = \lim_{\rho \to 0} \nu_{\rho}(x, y)$ exists, where

(2.4)
$$\nu_{\rho}(x, y) = \frac{\int_{B(x, y - \rho)} D\chi_{E}}{\int_{B(x, y - \rho)} |D\chi_{E}|}$$

and

$$|\nu(x, y)| = 1$$
.

It is known that $|D\mathcal{X}_E|(\Omega\times R\setminus \partial^*E)=0$ and that for each Borel subset A of $\Omega\times R$

$$(2.5) |D\chi_E|(A) = \mathcal{H}_n(A \cap \partial^* E),$$

$$(2.6) D\chi_{E} = \nu |D\chi_{E}|.$$

The vector $\nu(x, y)$ is considered to be the unit inner normal at $(x, y) \in \partial^* E$ to $\partial^* E$ in a generalized sense. In fact, if $u \in \mathcal{C}^1(\Omega)$ then $\operatorname{spt} |D \chi_E|$ = the graph of u, and

(2.7)
$$\nu_{j}(x, u(x)) = D_{j}u(x)(1+|Du(x)|^{2})^{-1/2}, \quad j=1, 2, \dots, n,$$

$$\nu_{n+1}(x, u(x)) = -(1+|Du(x)|^{2})^{-1/2}.$$

If a function u(t, x) is of bounded variation with respect to $x \in \Omega$ for each fixed t, then the subgraph of u(t, *) will be denoted by E(t). Notations $D\chi_{E(t)}$, and $\nu(t; x, y)$ etc. have obvious meanings.

Definition 2.1. Let ω be an open subset of Ω and (a,b) be a time interval. Then a function $u(t,x) \in L^1_{loc}((a,b) \times \omega)$ is said to be a BV-solution of the equation (1.1) in $(a,b) \times \omega$ if u(t,x) is a function of bounded variation with respect to $x \in \omega$ for any fixed $t \in (a,b)$ and it satisfies the equation

(2.8)
$$\int_{a}^{b} dt \int_{\omega \times \mathbf{R}} \left\{ D_{t}^{2} \psi(t, x) u(t, x) + \sum_{j=1}^{n} D_{j} \psi(t, x) \nu_{j}(t; x, y) \right\}$$
$$\times \nu_{n+1}(t; x, y) |D \chi_{E(t)}| = 0$$

for any function $\phi(t, x) \in C_0^{\infty}((a, b) \times \omega)$.

As to the initial-boundary value problem (1.1), (1.2) and (1.3) we use the following definition.

DEFINITION 2.2. Assume that $u_0 \in BV(\Omega)$ and $u_1 \in L^2(\Omega)$. Let T > 0 be any

number. Then a function $u(t, x) \in L^1_{loc}(\mathbb{R} \times \Omega)$ is called a *BV*-solution of the equations (1.1), (1.2) and (1.3) for $0 \le t < T$ if the following conditions hold:

- (i) For each $t \in \mathbb{R}$, u(t, x) is a function of bounded variation with respect to x such that $\gamma u = 0$.
- (ii) For each $\psi(t, x) \in \mathcal{C}^2([0, T); \mathcal{C}_0(\Omega)) \cap \mathcal{C}([0, T); \mathcal{C}^2(\Omega))$ vanishing near t = T, we have

(2.9)
$$\int_{0}^{T} dt \int_{\Omega \times \mathbf{R}} \left\{ D_{t}^{2} \psi(t, x) u(t, x) + \sum_{j=1}^{n} D_{j} \psi(t, x) \nu_{j}(t; x, y) \right\} \nu_{n+1}(t; x, y) | D \chi_{E(t)} |$$

$$= - \int_{\Omega} \psi(0, x) u_{1}(x) dx + \int_{\Omega} D_{t} \psi(0, x) u_{0}(x) dx .$$

If $u(t, x) \in C^1([0, T) \times \Omega)$, then the above definition coincides with the usual definition of a weak solution.

§ 3. Definition of a varifold solution.

Let G=G(n+1, n) be the Grassmann manifold of all n-dimensional vector subspaces of \mathbb{R}^{n+1} . Let $S \in G$ be an n-dimensional vector subspace in \mathbb{R}^{n+1} . Then we denote the unit normal to S by $\nu(S)=(\nu_1(S), \cdots, \nu_{n+1}(S))$. We choose $\nu(S)$ so that $\nu_{n+1}(S) \leq 0$. If $\nu_{n+1}(S)=0$, then $\nu(S)$ is not unique. We call the set $\mathrm{irr}(G)=\{S \in G: \nu_{n+1}(S)=0\}$ the set of irregularity. Functions $\nu_{n+1}(S)$ and $\nu_{n+1}(S)\nu_j(S)$, $j=1, 2, \cdots, n$, are single-valued continuous functions on G. A point of $\Omega \times \mathbb{R} \times G$ is denoted by (x, y, S).

A varifold (an *n*-varifold, more precisely), V(x, y, S) is a positive Radon measure on $\Omega \times R \times G$. (See Allard [1] for detailed discussions).

Example 3.1. If $u \in BV(\Omega)$, then u (or the graph of u, more precisely) is identified with a varifold V(x, y, S) in the following manner: For any $\phi(x, y, S) \in \mathcal{C}_0(\Omega \times \mathbf{R} \times G)$,

(3.1)
$$\int_{\mathcal{Q}\times\mathbf{R}\times\mathcal{G}} \phi(x, y, S) dV(x, y, S) = \int_{\partial^*E} \phi(x, y, \operatorname{Tan}_{(x, y)}(\partial^*E)) |D\chi_E|,$$

where $\operatorname{Tan}_{(x,y)}\partial^* E$ is the tangent hyperplane at (x,y) to the reduced boundary $\partial^* E$. We call this identification canonical.

Keeping this example in mind, we can introduce the following

DEFINITION 3.1. Let ω be an open subset of Ω . A varifold V(t; x, y, S) depending on a parameter $t \in (a, b)$ is called a varifold solution of the equation (1.1) for $(a, b) \times \omega \subset R \times \Omega$ if and only if the following two conditions hold:

(3.2)
$$\int_a^b dt \int_{m \times G} dV(t; x, y, S) < \infty.$$

And the equality

(3.3)
$$0 = \int_{a}^{b} dt \int_{\omega \times R \times G} D_{t}^{2} \psi(t, x) y \nu_{n+1}(S) dV(t; x, y, S)$$

$$+ \int_{a}^{b} dt \int_{\omega \times R \times G} \left\{ \sum_{i=1}^{n} D_{j} \psi(t, x) \nu_{j}(S) \nu_{n+1}(S) \right\} dV(t; x, y, S)$$

holds for any function $\psi(t, x)$ in $C_0^{\infty}((a, b) \times \omega)$.

Corresponding to Definition 2.2 we introduce the following

DEFINITION 3.3. Let T be a positive number. A varifold V(t; x, y, S) depending on a parameter $t \in \mathbf{R}$ is called a varifold solution of the equation (1.1) and (1.2) for [0, T) if and only if the following two conditions hold:

(3.4)
$$\int_0^T dt \int_{\omega \times \mathbf{R} \times G} dV(t; x, y, S) < \infty.$$

And the equality

(3.5)
$$\int_{0}^{T} dt \int_{\Omega \times R \times G} D_{t}^{2} \phi(t, x) y \nu_{n+1}(S) dV(t; x, y, S)$$

$$+ \int_{0}^{T} dt \int_{\Omega \times R \times G} \left\{ \sum_{j=1}^{n} D_{j} \phi(t, x) \nu_{j}(S) \nu_{n+1}(S) \right\} dV(t; x, y, S)$$

$$= - \int_{\Omega} \phi(0, x) u_{1}(x) dx + \int_{\Omega} D_{t} \phi(0, x) u_{0}(x) dx$$

holds for any function $\phi(t, x)$ in $\mathcal{C}^2([0, T); \mathcal{C}_0(\Omega)) \cap \mathcal{C}([0, T); \mathcal{C}^2(\Omega))$ vanishing near t=T.

If a varifold solution V(t; x, y, S) can be canonically identified with a function u(t, x) of bounded variation as in Example 3.1, then u(t, x) is a BV-solution of (1.1) and (1.3). This is because

(3.6)
$$\int_{\Omega \times R \times G} D_t^2 \phi(t, x) y \nu_{n+1}(S) dV(t; x, y, S)$$
$$= \int_{\Omega \times R} D_t^2 \phi(t, x) u(t, x) \nu_{n+1}(t; x, y) |D \chi_{E(t)}|,$$

and

(3.7)
$$\int_{\Omega \times \mathbf{R} \times G} D_{j} \phi(t, x) \nu_{j}(S) \nu_{n+1}(S) dV(t; x, y, S)$$
$$= \int_{\Omega \times \mathbf{R}} D_{j} \phi(t, x) \nu_{j}(t; x, y) \nu_{n+1}(t; x, y) |D \chi_{E(t)}|.$$

§ 4. Existence of a global varifold solution.

Now we state the main theorem.

THEOREM 1. Assume that $u_0 \in W_0^{1/2}(\Omega)$ and $u_1 \in L^2(\Omega)$. Then there exists a varifold solution V(t; x, y, S) of (1.1) and (1.2), that is, V(t; x, y, S) satisfies (3.2) and (3.3) for any T > 0.

 ${\it Proof}$ is done by the Ritz-Galerkin method, which occupies the rest of this section.

Let $\psi_k(x)$, $k=1, 2, \cdots$, be the normalized eigen-functions of the Dirichlet problem in Ω :

(4.1)
$$-\Delta \psi_k(x) = \lambda_k \psi_k(x), \quad x \in \Omega,$$

$$\psi_k(x) = 0 \quad \text{if} \quad x \in \partial \Omega.$$

The system $\{\psi_k\}_{k=1}^{\infty}$ forms a complete ortho-normal system in $L^2(\Omega)$. For $m=1,2,\cdots$, we put

$$P_m f(x) = \sum_{k=1}^{m} (f, \, \phi_k) \phi_k(x)$$
.

The m-th approximate solution of (1.1) is of the form

(4.2)
$$u^{m}(t, x) = \sum_{k=1}^{m} a_{k}^{m}(t) \phi_{k}(x)$$

and satisfies the equation

$$(4.3) P_m \Big\{ D_t^2 u^m(t, x) - \sum_{j=1}^n D_j(D_j u^m(t, x) (1 + |Du^m(t, x)|^2)^{-1/2}) \Big\} = 0,$$

(4.4)
$$u^m(0, x) = P_m u_0, \quad D_t u^m(0, x) = P_m u_1.$$

This is equivalent to the system of equations

(4.5)
$$D_t^2 a_k^m(t) + \sum_{i=1}^n \int_{\Omega} D_j \psi_k(x) \{ D_j u^m(t, x) (1 + |Du^m(t, x)|^2)^{-1/2} \} dx = 0,$$

(4.6)
$$a_k^m(0, x) = (u_0, \psi_k), \quad D_t a_k^m(0, x) = (u_1, \psi_k),$$

for $k=1, 2, \dots, m$.

PROPOSITION 4.1. The m-th approximate solution $u^m(t, x)$ exists for all $t \in \mathbb{R}$.

Proof. Let $A_m(t)=(a_1^m(t), a_2^m(t), \cdots, a_m^m(t))$. Then the correspondence

$$A_m(t) \to F_{jk}(A^m) = \int_{\Omega} D_j \psi_k(x) D_j u^m(t, x) (1 + |Du^m(t, x)|^2)^{-1/2} dx$$

is uniformly Lipschitz continuous for $k=1, 2, \dots, m$, and $j=1, 2, \dots, n$. This proves Proposition.

PROPOSITION 4.2. (Energy estimate). For $m=1, 2, \dots$,

(4.7)
$$\frac{1}{2} \int_{\Omega} |D_t u^m(t, x)|^2 dx + \int_{\Omega} (1 + |Du^m(t, x)|^2)^{1/2} dx$$

$$= \frac{1}{2} \int_{\Omega} |P_m u_1(x)|^2 dx + \int_{\Omega} (1 + |DP_m u_0(x)|^2)^{1/2} dx .$$

In particular,

(4.8)
$$\frac{1}{2} \int_{\Omega} |D_t u^m(t, x)|^2 dx + \int_{\Omega} (1 + |Du^m(t, x)|^2)^{1/2} dx \leq M,$$

where

(4.9)
$$M = \frac{1}{2} \int_{\Omega} |u_1(x)|^2 dx + (|\Omega| + ||u_0||_{W^{1,2}(\Omega)})^{1/2} |\Omega|^{1/2}.$$

Proof. Multiply both sides of (4.3) by $D_t u^m(t, x)$ and integrate with respect to x. Then

$$D_{t}\left\{\frac{1}{2}\int_{\Omega}|D_{t}u^{m}(t, x)|^{2}dx+\int_{\Omega}(1+|Du^{m}(t, x)|^{2})^{1/2}dx\right\}=0.$$

This and the initial condition (4.4) give (4.7).

To prove (4.8) we note that $\int |P_m u_1(x)|^2 dx \le \int |u_1(x)|^2 dx$ and that

$$\int_{\Omega} (1 + |DP_m u_0(x)|^2)^{1/2} dx \leq \left\{ \int_{\Omega} (1 + |DP_m u_0(x)|^2) dx \right\}^{1/2} |\Omega|^{1/2}.$$

Since ψ_k satisfies (4.1), we have

$$\int_{\Omega} |DP_{m}u_{0}(x)|^{2} dx = (-\Delta P_{m}u_{0}, u_{0}) = \sum_{j=1}^{m} \lambda_{k}(u_{0}, \psi_{k})^{2}$$

$$\leq \sum_{k=1}^{\infty} \lambda_{j}(u_{0}, \psi_{k})^{2} = -(\Delta u_{0}, u_{0}) = \int_{\Omega} |Du_{0}|^{2} dx.$$

This proves (4.8) and (4.9).

For each $m=1, 2, 3, \cdots$, the function $u^m(t, x)$ is of class \mathcal{C}^{∞} . We identify this with a varifold $V^m(t; x, y, S)$ as in the Example 3.1 of § 3. We rewrite (4.3) and (4.4) in terms of $V^m(t; x, y, S)$. Let $\phi(t) \in \mathcal{C}^2(\mathbf{R})$ vanishing near t=T. Then we multiply both sides of (4.3) by $\phi(t)\phi_k(x)$, $k \leq m$. After integration by parts we have

(4.10)
$$\phi(0) \int_{\Omega} u_{1}(x) \psi_{k}(x) dx - D_{t} \phi(0) \int_{\Omega} u_{0}(x) \psi_{k}(x) dx$$

$$= \int_{0}^{T} dt \ D_{t}^{2} \phi(t) \int_{\Omega} \psi_{k}(x) u^{m}(t, x) dx$$

$$+ \int_{0}^{T} dt \ \phi(t) \int_{\Omega} \sum_{j=1}^{n} D_{j} \psi_{k}(x) D_{j} u^{m}(t, x) (1 + |Du^{m}(t, x)|^{2})^{-1/2} dx .$$

On the other hand, we have, by definition,

$$\int_{\mathcal{Q}} \phi_k(x) u^m(t, x) dx = - \int_{\mathcal{Q} \times \mathbf{R} \times \mathcal{G}} \phi_k(x) y \nu_{n+1}(S) dV^m(t; x, y, S)$$

and

$$\begin{split} &\int_{\Omega} D_{j} \phi_{k}(x) \{ D_{j} u^{m}(t, x) (1 + |Du^{m}(t, x)|^{2})^{-1/2} \} dx \\ &= - \int_{\Omega \times R \times G} D_{j} \phi_{k}(x) \nu_{j}(S) \nu_{n+1}(S) dV^{m}(t; x, y, S) \,. \end{split}$$

Therefore $V^m(t; x, y, S)$ satisfies the following equation:

(4.11)
$$\int_{0}^{T} D_{t}^{2} \phi(t) dt \int_{\Omega \times \mathbf{R} \times G} \psi_{k}(x) y \nu_{n+1}(S) dV^{m}(t; x, y, S)$$

$$+ \int_{0}^{T} \phi(t) dt \int_{\Omega \times \mathbf{R} \times G} \left\{ \sum_{j=1}^{n} D_{j} \psi_{k}(x) \nu_{j}(S) \nu_{n+1}(S) \right\} dV^{m}(t; x, y, S)$$

$$= - \int_{\Omega} \phi(0) u_{1}(x) \psi_{k}(x) dx + \int_{\Omega} D_{t} \phi(0) u_{0}(x) \psi_{k}(x) dx ,$$

where $k=1, 2, \dots, m$ and $\phi(t)$ is an arbitrary function in $\mathcal{C}_0^2(\mathbf{R})$ vanishing near t=T.

We wish to choose a subsequence $\{m'\}\subset \{m\}$ so that $\lim_{m'\to\infty}V^{m'}(t;x,y,S)$ exists. In fact we have

PROPOSITION 4.3. There exist a subset R_1 of R, subsequence $\{m'\}$ of $\{m\}$ and a varifold V(t; x, y, S) depending on a parameter $t \in R_1$ with the following properties: $L_1(R \setminus R_1) = 0$ and

(4.12)
$$\int_{-\infty}^{\infty} \phi(t)dt \int_{\mathcal{Q} \times \mathbf{R} \times G} \xi(x, y, S) dV(t; x, y, S)$$
$$= \lim_{m' \to \infty} \int_{-\infty}^{\infty} \phi(t)dt \int_{\mathcal{Q} \times \mathbf{R} \times G} \xi(x, y, S) dV^{m'}(t; x, y, S),$$

for any $\phi(t) \in L^1(\mathbf{R})$ and $\xi(x, y, S) \in \mathcal{C}_0(\Omega \times \mathbf{R} \times G)$. We have

$$(4.13) \qquad \qquad \int_{\mathcal{Q} \times \mathbf{R} \times \mathbf{G}} dV(t; x, y, S) \leq M.$$

Proof. Let M be the constant in (4.9). Then we note that

$$\int_{\mathcal{Q}\times\mathbf{R}\times\mathbf{G}} dV^{m}(t; x, y, S) = \int_{\{y=u^{m}(t, x)\}} d\mathcal{H}_{n}$$

$$= \int_{\mathcal{Q}} (1+|Du^{m}(t, x)|^{2})^{1/2} dx$$

$$\leq M.$$

If $\xi(x, y, S) \in C_0(\Omega \times R \times G)$ then

$$\langle \xi, V^m(t) \rangle = \int_{O \times R \times G} \xi(x, y, S) dV^m(t; x, y, S)$$

is a bounded function of t, because we have the estimate

$$(4.14) |\langle \xi, V^m(t) \rangle| \leq M \max |\xi(x, y, S)|.$$

We consider the family of mappings $\mathcal{C}_0(\Omega \times \mathbf{R} \times G) \ni \xi \to \langle \xi, V^m(t) \rangle \in L^\infty(\mathbf{R})$. The estimate (4.14) implies that this family of mappings is equicontinuous and that for each ξ the image of mappings is relatively compact in the weak* topology of $L^\infty(\mathbf{R})$. We can apply the Ascoli-Arzela theorem because $\mathcal{C}_0(\Omega \times \mathbf{R} \times G)$ is separable. And there exists a subsequence $\{V^{m'}(t; x, y, S)\}_{m'}$ such that

(4.15)
$$w^*-\lim_{m\to\infty}\langle \xi, V^{m'}(t)\rangle = f(t; \xi)$$

exists in $L^{\infty}(\mathbf{R})$ for each ξ . It is clear that $f(t;\xi)\geq 0$ if $\xi\geq 0$. And we have

$$(4.16) || f(t; \xi)||_{L^{\infty}} \leq M \max |\xi(x, y, S)|.$$

The function $f(t;\xi)$ may not be defined for t in an exceptional set of L_1 -measure 0 and this exceptional set may depend on ξ . To avoid this inconvenience we choose a good representative $V(t;\xi)$ of $f(t;\xi)$ as a function of t: We define

(4.17)
$$V(t;\xi) = \lim_{h \to 0} \frac{1}{2h} \int_{t_h}^{t+h} f(t;\xi) dt.$$

This exists and is equal to $f(t; \xi)$ at L_1 -almost every $t \in \mathbb{R}$ if ξ is fixed. Let $\{\xi_k\}_{k=1}^{\infty}$ be a countable dense subset of $\mathcal{C}_0(\Omega \times \mathbb{R} \times G)$. Then the set

$$R_1 = \{t \in R : V(t; \xi_k) \text{ exists and is finite for all } k\}$$

is measurable and $L_1(\mathbf{R} \setminus \mathbf{R}_1) = 0$.

We claim that $V(t; \xi)$ exists for all $\xi \in \mathcal{C}_0(\Omega \times R \times G)$ and for $t \in R_1$. In fact, for any $\varepsilon > 0$, there exists a function ξ_k such that

$$(4.18) |\xi(x, y, S) - \xi_k(x, y, S)| < \varepsilon \text{for any } (x, y, S) \in \Omega \times R \times G.$$

Then we have for each $t \in \mathbf{R}_1$

(4.19)
$$\frac{1}{2h} \left| \int_{t-h}^{t+h} f(t; \xi) dt - \int_{t-h}^{t+h} f(t; \xi_k) dt \right|$$

$$\leq \frac{1}{2h} \int_{t-h}^{t+h} |f(t; \xi - \xi_k)| dt$$

$$\leq M \varepsilon.$$

The last estimate follows from (4.16) and (4.18). Hence

$$\begin{split} V(t\,;\,\xi_{\,k}) - \varepsilon & \leq \liminf_{h \to +0} \frac{1}{2h} \int_{t-h}^{t+h} f(t\,;\,\xi) dt \\ & \leq \limsup_{h \to +0} \frac{1}{2h} \int_{t-h}^{t+h} f(t\,;\,\xi) dt \leq V(t\,;\,\xi_{\,k}) + \varepsilon \end{split}$$

Since ε is arbitrary,

$$\lim_{h \to +0} \frac{1}{2h} \int_{t-h}^{t+h} f(t; \xi) dt = V(t; \xi)$$

exists at every $t \in R_1$.

If $t \in \mathbf{R}_1$, then it follows from (4.16) and (4.17) that

$$|V(t;\xi)| \leq M \max |\xi(x, y, S)|$$
.

This implies that the correspondence $\xi \rightarrow V(t; \xi)$, $t \in \mathbb{R}_1$, defines a Radon measure V(t; x, y, S) such that

$$V(t;\xi) = \int_{\mathcal{Q} \times \mathbf{R} \times \mathbf{G}} \xi(x, y, S) dV(t; x, y, S).$$

We know that $V(t;\xi) \ge 0$ if $\xi \ge 0$. Therefore V(t;x,y,S) is a varifold. Clearly we have

$$\int_{\Omega \times \mathbf{R} \times G} dV(t; x, y, S) \leq M.$$

Equality (4.15) leads us to the equality

$$w^*$$
- $\lim_{m'\to\infty}\langle \xi, V^{m'}(t)\rangle = \langle \xi, V(t)\rangle$

as an element of $L^{\infty}(\mathbf{R})$. This proves Proposition.

End of the Proof of Theorem 1. We complete the proof of Theorem 1 by showing that the varifold V(t; x, y, S) satisfies the equality (3.3). We choose the subsequence $\{m'\}$ as in Proposition 4.3 and denote it as $\{m\}$ in the following for the sake of brevity. Take $\phi(t) \in \mathcal{C}^2(\mathbf{R})$ which vanishes near t = T. Then $D_t^2 \phi(t) \in L^1(\mathbf{R})$. On the other hand, we know that $\phi_j(x) y \nu_{n+1}(S) \in C_0(\Omega \times \mathbf{R} \times G)$. Therefore the above Proposition 4.3 asserts that

(4.21)
$$\lim_{m \to \infty} \int_{0}^{T} D_{t}^{2} \phi(t) dt \int_{\Omega \times R \times G} \phi_{k}(x) y \nu_{n+1}(S) dV^{m}(t; x, y, S)$$
$$= \int_{0}^{T} D_{t}^{2} \phi(t) dt \int_{\Omega \times R \times G} \phi_{k}(x) y \nu_{n+1}(S) dV(t; x, y, S).$$

Similarly we have

(4.22)
$$\lim_{m \to \infty} \int_{0}^{T} \phi(t)dt \int_{\Omega \times R \times G} \sum_{j=1}^{n} D_{j} \psi_{k}(x) \nu_{j}(S) \nu_{n+1}(S) dV^{m}(t; x, y, S)$$

$$= \int_{0}^{T} \phi(t)dt \int_{\Omega \times R \times G} \sum_{j=1}^{n} D_{j} \psi_{k}(x) \nu_{j}(S) \nu_{n+1}(S) dV(t; x, y, S),$$

because $\phi \in L^1(\mathbf{R})$ and $D_j \psi_k(x) \nu_j(S) \nu_{n+1}(S) \in \mathcal{C}_0(\Omega \times \mathbf{R} \times G)$. Letting m go to ∞ in (4.11), and using (4.21) and (4.22), we have

(4.23)
$$\int_{0}^{T} D_{t}^{2} \phi(t) dt \int_{\Omega \times R \times G} \psi_{k}(x) y \nu_{n+1}(S) dV(t; x, y, S)$$

$$+ \int_{0}^{T} \phi(t) dt \int_{\Omega \times R \times G} \sum_{j=1}^{n} D_{j} \psi_{k}(x) \nu_{j}(S) \nu_{n+1}(S) dV(t; x, y, S)$$

$$= - \int_{\Omega} \phi(0) u_{1}(x) \psi_{k}(x) dx + \int_{\Omega} D_{t} \phi(0) u_{0}(x) \psi_{k}(x) dx ,$$

for $k=1, 2, \cdots$. Since functions of the form $\phi(t)\psi_k(x)$ are total in the space $\mathcal{C}^2([0, T); \mathcal{C}_0(\Omega)) \cap \mathcal{C}([0, T); \mathcal{C}^2(\Omega))$, the equality (3.5) follows from (4.23). Inequality (3.4) is a consequence of (4.13). This proves our theorem.

§ 5. Convergence of $u^m(t, x)$ in the BV-space.

As we have proved the global existence of a varifold solution, we wish to identify V(t; x, y, S) with a graph of a function. A graph of a function is, measure theoretically, a special case of an n-rectifiable subset of $\Omega \times R$. Thus we can state our problem in the following form:

(Q) Can one identify the varifold solution V(t; x, y, S) of the preceding section with an H_n rectifiable subset of $\Omega \times R$ for all t?

Unfortunately we did not succeed in giving answer to this fundamental question. Of course the most probable candidate of the H_n -rectifiable subset of $\Omega \times R$ is the graph of the function $u(t, x) = \lim_{m \to \infty} u^m(t, x)$ if the limit exists. In the present section, we prove that $u(t, x) = \lim_{m \to \infty} u^m(t, x)$ actually exists in the space $BV(\Omega)$. We shall discuss the relationship of V(t; x, y, S) and u(t, x) in the next section.

In the following we choose the subsequence $\{m'\}$ as in Proposition 4.3 and denote it by $\{m\}$ for the sake of brevity. For any fixed $t \in \mathbf{R}$ the sequence $\{u^m(t, x)\}$ of BV-functions are bounded because of Proposition 4.2.

PROPOSITION 5.1. There exists a subsequence $\{m''\} \subset \{m\}$ such that $\{u^{m'}(t, x)\}$ converges strongly, for any fixed t, to a function u(t, x) in $L^p(\Omega)$, $1 \leq p < \frac{n}{n-1}$, and that $\{Du^{m'}(t, x)\}$ converges to Du(t, x) with respect to the w^* -topology of measures. $u(t, *) \in BV(\Omega)$ for fixed $t \in \mathbf{R}$. The function u(t, x) is a Lipschitz continuous function of t with values in $L^2(\Omega)$.

Proof. Since

$$u^{m}(t, x) = \int_{0}^{t} D_{s} u^{m}(s, x) ds + u_{0}(x),$$

we have

$$||u^{m}(t, x)||_{L^{2}(\Omega)} \leq t \sup ||D_{s}u^{m}(s, *)||_{L^{2}(\Omega)} + ||u_{0}||_{L^{2}(\Omega)}$$

$$\leq (2M)^{1/2}t + ||u_{0}||_{L^{2}(\Omega)}.$$

For any $t, t' \in \mathbb{R}$,

(5.1)
$$||u^m(t', *) - u^m(t, *)||_{L^2(\Omega)} \le ||\int_t^{t'} D_s u^m(s, x) ds|| \le (2M)^{1/2} |t' - t|.$$

Hence $t \to \{u^m(t, *)\} \in L^2(\Omega)$ is an equicontinuous family. The Ascoli-Arzela theorem enables us to choose a subsequence $\{u^{m'}(t, x)\}$ such that

$$w\text{-}\lim_{m^*\to\infty}u^{m^*}\!(t,\,*)\!=\!u(t,\,*)\qquad\text{in}\quad L^2(\varOmega)$$

exists for each $t \in \mathbb{R}$. As a consequence of this and (5.1), we have

(5.2)
$$||u(t', *) - u(t, *)||_{L^{2}(\Omega)} \leq (2M)^{1/2} |t' - t|.$$

Therefore u(t, *) is an $L^2(\Omega)$ -valued Lipschitz continuous function.

We know from Proposition 4.2 that $\{u^{m'}(t, x)\}$ is a bounded set in $BV(\Omega)$.

Since the inclusion $BV(\Omega) \subset L^p(\Omega)$, $1 \leq p < \frac{n}{n-1}$, is a compact map, every subsequence of $\{u^{m'}(t,\,x)\}$ contains a subsequence which converges strongly to $u(t,\,*)$ in $L^p(\Omega)$ because $\{u^{m'}(t,\,*)\}$ converges weakly to $u(t,\,*)$ in $L^p(\Omega)$. This implies that $\{u^{m'}(t,\,x)\}$ converges to $u(t,\,*)$ strongly in $L^p(\Omega)$. It is clear that $u(t,\,*) \in BV(\Omega)$ for each t. For $j=1,\,2,\,\cdots$, n, $\{D_ju^{m'}(t,\,*)\}$ converges to $D_ju(t,\,*)$ in the sense of distribution. Therefore $\{D_ju^{m'}(t,\,*)\}$ converges to $D_ju(t,\,*)$ in the sense of w^* -topology of measures.

Remark 5.2. We expect that u(t, x) above is a BV-solution of the equation (1.1). However we failed in proving it. We shall prove later in Theorem 4 that u(t, x) is a BV-solution if it satisfies the energy conservation law.

We let $E_m(t)$ and $\chi_t^m(x, y)$ denote the subgraph of $u^m(t, x)$ and its characteristic function, respectively. Similarly E(t) and $\chi_t(x, y)$ stand for the subgraph of u(t, x) and its characteristic function, respectively.

COROLLARY 5.3. We may choose the subsequence m'' so that $\{DX_t^{m'}\}$ converges to DX_t in the w^* -topology of measures.

Proof. Let $\psi(x, y) \in C_0^{\infty}(\Omega \times \mathbb{R})$. Then

$$\left| \int_{\Omega \times \mathbf{R}} (\mathbf{X}_t^{m''}(x, y) - \mathbf{X}_t(x, y)) \phi(x, y) dx dy \right|$$

$$\begin{split} &= \left| \int_{\Omega} \! dx \int_{u(t,x)}^{u^{m'}(t,x)} \! \phi(x,y) dy \right| \\ &\leq & \max |\phi(x,y)| \int_{\Omega} |u^{m'}(t,x) - u(t,x)| dx \; . \end{split}$$

As a consequence of this and Proposition 5.1, $\{\chi_t^{m'}\}$ converges to χ_t in the sense of distribution. Hence $\{D\chi_t^{m'}\}$ converges to $D\chi_t$ in the sense of distribution. This implies that $\{D\chi_t^{m'}\}$ converges to $D\chi_t$ in the w^* -topology of measures, because $\|D\chi_t^{m'}\|$ are bounded.

For the sake of brevity we denote $\{m\}$ instead of $\{m''\}$.

PROPOSITION 5.4. There exists a set $R_2 \subset R$ and a function $R_2 \ni t \to D_t u(t, *) \in L^2(\Omega)$ such that $L_1(R \setminus R_2) = 0$ and

(5.3)
$$\int_{\Omega} D_t u(t, x) \phi(x) dx = \lim_{h \to 0} h^{-1} \left\{ \int_{\Omega} u(t+h, x) \phi(x) dx - \int_{\Omega} u(t, x) \phi(x) dx \right\}$$

exists for all $\phi \in L^2(\Omega)$ and $t \in \mathbb{R}_2$. At L_1 -almost all t we have

(5.4)
$$||D_t u(t, *)||_{L^2(\Omega)} \leq \limsup_{m \to \infty} ||D_t u^m(t, *)||_{L^2(\Omega)}.$$

For any T>0, $D_tu(t, x)$ is the weak limit of $\{D_tu^m(t, x)\}_m$ in the space $L^2((0, T)\times\Omega)$.

Proof. For any $\phi \in L^2(\Omega)$, we put

$$F(t, \phi) = \lim_{h \to 0} h^{-1} \left\{ \int_{\Omega} u(t+h, x) \phi(x) dx - \int_{\Omega} u(t, x) \phi(x) dx \right\}$$

if the right hand side exists. As a result of (5.1), we have

(5.5)
$$\left| h^{-1} \left\{ \int_{\Omega} u(t+h, x) \psi(x) dx - \int_{\Omega} u(t, x) \psi(x) dx \right\} \right| \leq (2M)^{1/2} \|\psi\|_{L^{2}(\Omega)}.$$

Let $\{\xi_k(x)\}_{k=1}^{\infty}$ be a countable dense subset of $L^2(\Omega)$. Then by virtue of (5.5), we see that there exists a set $R_2 \subset R$ such that $L_1(R \setminus R_2) = 0$ and $F(t, \xi_k)$ exists at $t \in R_2$ and $k = 1, 2, \dots$,.

We claim that for any $\phi \in L^2(\Omega)$, $F(t, \phi)$ exists at all $t \in \mathbb{R}_2$. In fact for given $\phi \in L^2(\Omega)$ and $\varepsilon > 0$, there exists ξ_k such that

$$\|\xi_k - \psi\|_{L^2(\Omega)} < \varepsilon/(4M)^{1/2}$$
.

Applying (5.5) to $\psi - \xi_k$, we have

$$(5.6) h^{-1}\left\{\int_{\Omega} u(t+h, x)\xi_{k}(x)dx - \int_{\Omega} u(t, x)\xi_{k}(x)dx\right\} - \varepsilon$$

$$\leq h^{-1}\left\{\int_{\Omega} u(t+h, x)\psi(x)dx - \int_{\Omega} u(t, x)\psi(x)dx\right\}$$

$$\leq h^{-1}\Bigl\{\int_{\varOmega} u(t+h,\;x)\xi_k(x)dx - \int_{\varOmega} u(t,\;x)\xi_k(x)dx\Bigr\} + \varepsilon\;.$$

If $t \in \mathbf{R}_2$, then

$$\begin{split} F(t,\,\xi_{\,k}) - \varepsilon & \leq \liminf_{m \to \infty} \, h^{-1} \Big\{ \int_{\mathcal{Q}} u(t+h,\,x) \phi(x) dx - \int_{\mathcal{Q}} u(t,\,x) \phi(x) dx \Big\} \\ & \leq \limsup_{m \to \infty} \, h^{-1} \Big\{ \int_{\mathcal{Q}} u(t+h,\,x) \phi(x) dx - \int_{\mathcal{Q}} u(t,\,x) \phi(x) dx \Big\} \\ & \leq F(t,\,\xi_{\,k}) + \varepsilon \,. \end{split}$$

Since ε is arbitrary, $F(t, \phi)$ exists.

From the estimate (5.5), we have

$$|F(t, \phi)| \leq (2M)^{1/2} ||\phi||_{L^2(\Omega)}$$
.

 $F(t, \phi)$ is a continuous linear functional of $\phi \in L^2(\Omega)$. Therefore there exists $D_t u(t, *) \in L^2(\Omega)$ such that

$$\int_{\Omega} D_t u(t, x) \phi(x) dx = F(t, \phi).$$

By definition we have

$$\int_{\Omega} u(t, x) \psi(x) dx - \int_{\Omega} u_0(x) \psi(x) dx = \int_0^t ds \int_{\Omega} D_s u(s, x) \psi(x) dx.$$

Let $v(x) = D_t u(t, x)$. Then

$$\begin{split} \|v\|_{L^{2}(\varOmega)}^{2} &= \lim_{h \to 0} \frac{1}{2h} \int_{t-h}^{t+h} d\tau \int_{\varOmega} D_{\tau} u(\tau, x) v(x) dx \\ &= \lim_{m \to \infty} \frac{1}{2h} \left\{ \int_{\varOmega} u(t+h, x) v(x) dx - \int_{\varOmega} u(t-h, x) v(x) dx \right\} \\ &= \lim_{h \to 0} \lim_{m \to \infty} \frac{1}{2h} \left\{ \int_{\varOmega} u^{m}(t+h, x) v(x) dx - \int_{\varOmega} u^{m}(t-h, x) v(x) dx \right\} \\ &= \lim_{h \to 0} \lim_{m \to \infty} \frac{1}{2h} \int_{t-h}^{t+h} \int_{\varOmega} D_{\tau} u^{m}(\tau, x) v(x) dx d\tau \\ &\leq \lim_{h \to 0} \frac{1}{2h} \int_{t-h}^{t+h} \left(\limsup_{m \to \infty} \|D_{t} u^{m}(\tau, *)\|_{L^{2}(\varOmega)} \|v\|_{L^{2}(\varOmega)} \right) d\tau \\ &\leq \|v\|_{L^{2}(\varOmega)} \limsup_{m \to \infty} \|D_{t} u(t, *)\|_{L^{2}(\varOmega)} \end{split}$$

at L_1 almost all t. Therefore

$$||v||_{L^{2}(\Omega)} \leq \limsup_{m \to \infty} ||D_{t}u^{m}(t, *)||_{L^{2}(\Omega)}$$

at L_1 -almost all t.

The energy inequality (4.8) implies that for any T>0, $\{D_t u^m(t, x)\}$ is bounded in $L^2((0, T)\times \Omega)$. Let $\{D_t u^{m'}(t, x)\}$ be any weakly convergent subsequence of $\{D_t u^m(t, x)\}$ and let w(t, x) be its limit. Then

$$\int_{\Omega} u^{m'}(t, x) \phi(x) dx - \int_{\Omega} P_{m'} u_0(x) \phi(x) dx = \int_0^t ds \int_{\Omega} D_s u^{m'}(s, x) \phi(x) dx.$$

Taking the limit of this as $m' \rightarrow \infty$, we have

$$\int_{\Omega} u(t, x) \phi(x) dx - \int_{\Omega} u_0(x) \phi(x) dx = \int_0^t ds \int_{\Omega} w(s, x) \phi(x) dx.$$

If follows from this and (5.7) that $D_t u(t, x) = w(t, x)$ at almost every (t, x). This proves Proposition 5.4.

\S 6. Varifold solution and BV function.

In this section we discuss the relationship of the varifold solution V(t; x, y, S) of § 4 and the BV-function u(t, x) given in § 5. We prove that the varifold V(t; x, y, S) can be identified with the graph of the function u(t, x) if u(t, x) satisfies the energy conservation law. For the sake of brevity we denote $\{m''\}$ by $\{m\}$.

DEFINITION 6.1. As in Allard [1], we define the weight measure ||V(t)|| of the varifold V(t; x, y, S) by the equality

(6.1)
$$\int_{Q \times \mathbf{R}} \phi(x, y) d\|V(t)\| = \int_{Q \times \mathbf{R} \times G} \phi(x, y) dV(t; x, y, S)$$

for any $\phi(x, y)$ in $C_0(\Omega \times R)$. Similarly, for $j=1, 2, \dots, n+1$, we define the measure $\|V(t) \perp \nu_j\|$ by the equality

(6.2)
$$\int_{\Omega \times \mathbf{R}} \phi(x, y) d \|V(t) \perp \nu_j\| = \int_{\Omega \times \mathbf{R} \times G} \phi(x, y) \nu_j(S) dV(t; x, y, S).$$

As in §5 we denote by E(t) and $E_m(t)$ the subgraphs of u(t, x) and $u^m(t, x)$, respectively. And we denote by \mathcal{X}_t and \mathcal{X}_t^m the characteristic functions of E(t) and $E_m(t)$, respectively. Then

PROPOSITION 6.2. (i) For each $\phi \in L^1(\mathbf{R})$ and for any $\psi(x, y) \in \mathcal{C}_0(\Omega \times \mathbf{R})$, we have

(6.3)
$$\int_{\mathbf{R}} \phi(t)dt \int_{\Omega \times \mathbf{R}} \phi(x, y) d\|V(t)\| = \lim_{m \to \infty} \int_{\mathbf{R}} \phi(t)dt \int_{\Omega \times \mathbf{R}} \phi(x, y) |DX_{t}^{m}|.$$

(ii) There exists a subset R_3 of R with the following properties: $L_1(R \setminus R_3)$ =0 and for any $t \in R_3$ and $\phi \in C_0(\Omega \times R)$, we have

(6.4)
$$\lim_{m \to \infty} \inf \int_{\Omega \times \mathbf{R}} \psi(x, y) |D\mathfrak{X}_{t}^{m}|$$

$$\leq \int_{\Omega \times \mathbf{R}} \psi(x, y) d\|V(t)\| \leq \lim_{m \to \infty} \sup \int_{\Omega \times \mathbf{R}} \psi(x, y) |D\mathfrak{X}_{t}^{m}|.$$

(iii) For any open subset $B \subset \Omega \times R$ and any compact set $K \subset B$, we have

(6.5)
$$\limsup_{m \to \infty} |D\mathfrak{X}_t^m|(B) \ge ||V(t)||(B) \ge \liminf_{m \to \infty} |D\mathfrak{X}_t^m|(K)$$

for $t \in \mathbf{R}_3$.

(iv) Assume that B is a bounded open subset of $\Omega \times R$. Assume further that for some $t \in R_3$

(6.6)
$$\lim_{m \to \infty} |DX_{\iota}^{m}|(B) \quad exists$$

and

(6.7)
$$||V(t)||(\partial B)=0$$
.

Then

(6.8)
$$||V(t)||(B) = \lim_{m \to \infty} |D\chi_t^m|(B).$$

Proof. (i) Using Proposition 4.3, we have

(6.9)
$$\int_{R} \phi(t)dt \int_{\Omega \times R} \psi(x, y) d\|V(t)\|$$

$$= \lim_{m \to \infty} \int_{R} \phi(t)dt \int_{\Omega \times R} \psi(x, y) dV^{m}(t; x, y, S)$$

$$= \lim_{m \to \infty} \int_{R} \phi(t)dt \int_{\Omega \times R} \psi(x, y) |DX^{m}_{t}|.$$

This proves (i).

Proof of (ii). Let $\{\xi_k(x, y)\}_{k=1}^{\infty}$ be a countable dense subset of $\mathcal{C}_0(\Omega \times R)$. We have from Proposition 4.2 that

$$\int \xi_k(x, y) |DX_t^m| \ge -\max |\xi_k(x, y)| M.$$

The right hand side is independent of m. Take $\phi \in L^1(\mathbf{R})$ so that $\phi(t) \ge 0$. Then Fatou's lemma gives

(6.10)
$$\int_{\mathbf{R}} \phi(t) dt \Big(\liminf_{m \to \infty} \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) |DX_{t}^{m}| \Big)$$

$$\leq \liminf_{m \to \infty} \int_{\mathbf{R}} \phi(t) dt \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) |DX_{t}^{m}|$$

$$\leq \liminf_{m \to \infty} \int_{\mathbf{R}} \phi(t) dt \int_{\mathcal{Q} \times \mathbf{R}} \xi_k(x, y) dV^m(t; x, y, S)$$
$$= \int_{\mathbf{R}} \phi(t) dt \int_{\mathcal{Q} \times \mathbf{R}} \xi_k(x, y) d\|V(t)\|.$$

Similarly we can prove

$$(6.11) \qquad \int_{\mathbf{R}} \phi(t) dt \int_{\mathcal{Q} \times \mathbf{R}} \xi_k(x, y) d\|V(t)\| \leq \int_{\mathbf{R}} \phi(t) dt \lim_{m \to \infty} \sup_{\mathcal{Q} \times \mathbf{R}} \xi_k(x, y) |D\mathfrak{X}_t^m|.$$

As a consequence of (6.10) and (6.11), there exists a subset $R_3 \subset R$ with the following properties: $L_1(R \setminus R_3) = 0$ and we have

(6.12)
$$\liminf_{m \to \infty} \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) |D \chi_{t}^{m}| \leq \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) d \|V(t)\|$$
$$\leq \lim_{m \to \infty} \sup_{\Omega \times \mathbf{R}} \xi_{k}(x, y) |D \chi_{t}^{m}|,$$

for each $t \in \mathbb{R}_3$ and for all $k=1, 2, \dots$, . Since $\{\xi_k\}_k$ is dense in $\mathcal{C}_0(\Omega \times \mathbb{R})$, (6.4) holds for any $\phi \in \mathcal{C}_0(\Omega \times \mathbb{R})$ and $t \in \mathbb{R}_3$.

(iii) Let $\phi \in \mathcal{C}_0(B)$ be a function such that $0 \le \phi(x, y) \le 1$ and $\phi(x, y) = 1$ on K. Let $t \in \mathbf{R}_3$. Then we have from (6.4) that

(6.13)
$$\lim_{m \to \infty} \inf |DX_{t}^{m}|(K) \leq \lim_{m \to \infty} \inf \int_{\mathcal{Q} \times \mathbf{R}} \psi(x, y) |DX_{t}^{m}|.$$
$$\leq \int_{\mathcal{Q} \times \mathbf{R}} \psi(x, y) d\|V(t)\|$$
$$\leq \|V(t)\|(B).$$

Similarly, we show that

(6.14)
$$\int_{\Omega \times \mathbf{R}} \psi(x, y) d\|V(t)\| \leq \limsup_{m \to \infty} \int_{\Omega \times \mathbf{R}} \psi(x, y) |D\mathfrak{X}_{t}^{m}|$$

$$\leq \limsup_{m \to \infty} |D\mathfrak{X}_{t}^{m}|(B).$$

(6.13) and (6.14) proves (iii).

(iv) Let B_1 , B_2 , \cdots be a sequence of open subsets of $\Omega \times R$ satisfying $\bigcap_{k=1}^{\infty} B_k = \bar{B}$. Then we have from (iii) and (6.6) that

$$(6.15) \qquad \qquad \|V(t)\|(B_k) \geqq \liminf_{m \to \infty} |D\mathfrak{X}_t^m|(\bar{B}) \geqq \limsup_{m \to \infty} |D\mathfrak{X}_t^m|(B) \geqq \|V(t)\|(B) \text{ ,}$$

for $k=1, 2, \cdots$,. As a consequence of the assumption (6.7), we see that $\lim_{k\to\infty} \|V(t)\|(B_k) = \|V(t)\|(B)$. It follows from this and (6.15) that $\lim_{m\to\infty} |D\chi_t^m|(B) = \|V(t)\|(B)$. (iv) is proved.

Proposition 6.3. If $t \in \mathbb{R}_3$, then

$$(6.16) |D\chi_t|(B) \leq ||V(t)||(B)$$

for any open subset $B \subset \Omega \times R$. If for some $B \subset \Omega \times R$

(6.17)
$$\lim_{m \to \infty} |DX_t^m|(B) = |DX_t|(B),$$

then

(6.18)
$$||V(t)||(B) = |D\chi_t|(B).$$

Proof. Assume that $\psi(x, y) \in \mathcal{C}_0(B; \mathbf{R}^{n+1})$ and $|\psi(x, y)| \leq 1$. Then from Proposition 6.2, we have

(6.19)
$$\left| \int_{B} \psi(x, y) D \chi_{t} \right| = \liminf_{m \to \infty} \left| \int_{B} \psi(x, y) D \chi_{t}^{m} \right|$$

$$\leq \liminf_{m \to \infty} \int_{B} |\psi(x, y)| |D \chi_{t}^{m}|$$

$$\leq \int_{B} |\psi(x, y)| d \|V(t)\|$$

$$\leq \|V(t)\| (B).$$

Taking supremum with respect to ϕ , we have (6.16). If (6.17) holds, then

$$|D\mathfrak{X}_t|(B) \leq ||V(t)||(B) \leq \limsup_{m \to \infty} |D\mathfrak{X}_t^m|(B) = |D\mathfrak{X}_t|(B).$$

(6.18) holds in this case.

PROPOSITION 6.4. There exists a subset $R_4 \subset R$ such that $L_1(R \setminus R_4) = 0$ and

$$(6.20) \qquad \int_{\Omega \times \mathbf{R}} \psi(x, y) D_{n+1} \chi_t = \int_{\Omega \times \mathbf{R}} \psi(x, y) d \|V(t) \perp \nu_{n+1}\|$$

for $t \in R_4$ and $\phi \in C_0(\Omega \times R)$. In particular, for any $t \in R_4$ and $\phi \in C_0(\Omega)$, we have

(6.21)
$$- \int_{O} \phi(x) dx = \int_{O} \phi(x) d\|V(t) \perp \nu_{n+1}\|.$$

Proof. Let $\{\xi_k(x, y)\}_{k=1}^{\infty}$ be a countable dense subset of $\mathcal{C}_0(\mathcal{Q} \times \mathbf{R})$. Then Proposition 5.1 asserts that for any ξ_k and $t \in \mathbf{R}$

(6.22)
$$\lim_{m\to\infty}\int_{\mathcal{Q}\times\mathbf{R}}\boldsymbol{\xi}_k(x,\ y)D_{n+1}\boldsymbol{\chi}_t^m = \int_{\mathcal{Q}\times\mathbf{R}}\boldsymbol{\xi}_k(x,\ y)D_{n+1}\boldsymbol{\chi}_t.$$

Let $\phi \in L^1(\mathbf{R})$. Then multiplying (6.22) by $\phi(t)$ and integrating with respect to t, we have

(6.23)
$$\int_{\mathbf{R}} \phi(t)dt \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) D_{n+1} \chi_{t}$$

$$= \lim_{m \to \infty} \int_{\mathbf{R}} \phi(t)dt \int_{\Omega \times \mathbf{R}} \xi_{k}(x, y) D_{n+1} \chi_{t}^{m}$$

$$= \lim_{m \to \infty} \int_{\mathbf{R}} \phi(t)dt \int_{\Omega \times \mathbf{R} \times \Omega} \xi_{k}(x, y) \nu_{n+1}(S)dV^{m}(t; x, y, S).$$

Applying Proposition 4.3 to the right hand side of (6.23), we have

$$\begin{split} &\int_{R} \phi(t) dt \int_{\Omega \times R} \xi_{k}(x, y) D_{n+1} \chi_{t} \\ &= \int_{R} \phi(t) dt \int_{\Omega \times R \times G} \xi_{k}(x, y) \nu_{n+1}(S) dV(t; x, y, S) \,. \end{split}$$

Therefore there exists a subset $R_4 \subset R$ such that $L_1(R \setminus R_4) = 0$ and

$$\int_{\mathcal{Q}\times \mathbf{R}} \boldsymbol{\xi}_{k}(x, y) D_{n+1} \boldsymbol{\chi}_{t} = \int_{\mathcal{Q}\times \mathbf{R}\times \mathbf{G}} \boldsymbol{\xi}_{k}(x, y) \nu_{n+1}(S) dV(t; x, y, S)$$

for $k=1, 2, \dots$, and $t \in \mathbb{R}_4$. Since $\{\xi_k\}_k$ is dense in $\mathcal{C}_0(\Omega \times \mathbb{R})$, this proves (6.20) for any $\phi \in \mathcal{C}_0(\Omega \times \mathbb{R})$.

If $\phi \in \mathcal{C}_0(\Omega)$, then

$$\int_{\mathcal{Q}} \phi(x) D_{n+1} \chi_t = \lim_{m \to \infty} \int_{\mathcal{Q}} \phi(x) D_{n+1} \chi_t^m = -\int_{\mathcal{Q}} \phi(x) dx .$$

This together with (6.20) proves (6.21).

PROPOSITION 6.5. Let (t_0, t_1) be an open interval and B be an open subset of $\Omega \times \mathbf{R}$. Assume that

(6.24)
$$\int_{B\times yr(G)} dV(t; x, y, S) = 0 \quad \text{for all} \quad t \in (t_0, t_1).$$

Then there exists a subset $N \subset (t_0, t_1)$ such that $L_1(N) = 0$ and

for any $t \in (t_0, t_1) \setminus N$ and $\phi \in C_0(B)$.

Proof. Let $\{\xi_k\}_k$ be a countable dense subset of $\mathcal{C}_0(B)$. Let

$$I_{jk}(t) = \int_{B} \xi_{k}(x, y) d\|V(t) \perp \nu_{j}\|.$$

Then (6.24) implies that

$$I_{jk}(t) = \lim_{\varepsilon \to 0} I_{jk}^{\varepsilon}(t)$$
,

where

$$I_{jk}^{\epsilon}(t) = \int_{B} \xi_{k}(x, y) \nu_{j}(S) \zeta_{\epsilon}(\nu_{n+1}(S)) dV(t; x, y, S)$$

and $\zeta_{\varepsilon}(\tau)=1$ for $|\tau| \geq \varepsilon$ and $\zeta_{\varepsilon}(\tau)=\varepsilon^{-1}|\tau|$ for $\varepsilon \geq |\tau| \geq 0$. Since $\nu_{\jmath}(S)\zeta_{\varepsilon}(\nu_{n+1}(S))$ is a continuous function of S, we can apply Proposition 4.3 to $I_{jk}^{\varepsilon}(t)$. Hence for any $\phi \in L^1(t_0, t_1)$ we have

$$(6.26) \qquad \int_{t_0}^{t_1} \phi(t) I_{jk}(t) dt = \lim_{\varepsilon \to 0} \lim_{m \to \infty} \int_{t_0}^{t_1} \phi(t) dt \int_{B \times G} \xi_k(x, y) \nu_j(S) \zeta_{\varepsilon}(\nu_{n+1}(S)) dV^m(t; x, y, S)$$

$$= \lim_{m \to \infty} \int_{t_0}^{t_1} \phi(t) dt \int_{B \times G} \xi_k(x, y) \nu_j(S) dV^m(t; x, y, S) + \lim_{\varepsilon \to 0} \lim_{m \to \infty} \int_{jkm}^{\varepsilon} \eta_j(s) ds \int_{B \times G} \xi_k(x, y) \nu_j(S) dV^m(t; x, y, S) dV^m(s) ds \int_{B \times G} \xi_k(x, y) \nu_j(S) dv ds \int_{B \times G} \xi_k(x, y) dv ds \int$$

where

(6.27)
$$J_{jkm}^{\varepsilon} = \int_{t_0}^{t_1} \phi(t) dt \int_{B \times G} \xi_k(x, y) \nu_j(S) \{ \zeta_{\varepsilon}(\nu_{n+1}(S)) - 1 \} dV^m(t; x, y, S) .$$

Using Proposition 5.1, we have

(6.28)
$$\lim_{m \to \infty} \int_{t_0}^{t_1} \phi(t) dt \int_{B \times G} \xi_k(x, y) \nu_j(S) dV^m(t; x, y, S)$$

$$= \lim_{m \to \infty} \int_{t_0}^{t_1} \phi(t) dt \int_{B} \xi_k(x, y) D_j \chi_l^m$$

$$= \int_{t_0}^{t_1} \phi(t) dt \int_{B} \xi_k(x, y) D_j \chi_l.$$

On the other hand,

(6.29)
$$\lim_{m \to \infty} |J_{jkm}^{\varepsilon}| \leq \lim_{m \to \infty} \int_{t_0}^{t_1} |\phi(t)| dt \int_{B \times G} |\xi_k(x, y)| \left\{ 1 - \zeta_{\varepsilon}(\nu_{n+1}(S)) \right\} dV^m(t; x, y, S)$$
$$\leq \int_{t_0}^{t_1} |\phi(t)| dt \int_{B \times G} |\xi_k(x, y)| \left\{ 1 - \zeta_{\varepsilon}(\nu_{n+1}(S)) \right\} dV(t; x, y, S).$$

Therefore using (6.26), (6.27) and (6.28), we have

because of (6.24). Since $\phi(t)$ is arbitrary, there exists a subset N_k of \mathbf{R} of L_1 measure 0 such that

$$\int_{B} \xi_{k}(x, y) d\|V(t) \perp \nu_{j}\| = \int_{B} \xi_{k}(x, y) D_{j} \chi_{t}, \qquad k = 1, 2, \dots, n,$$

for any $t \in (t_0, t_1) \setminus N_k$. Since $\{\xi_k\}_k$ is dense in $\mathcal{C}_0(B)$, we have (6.25) for any $\phi \in \mathcal{C}_0(B)$ and for $t \in (t_0, t_1) \setminus \bigcup_k N_k$.

We can state relationship of spt V(t; x, y, S) and the graph of u(t, x). Let $\pi: \Omega \times R \times G \to \Omega \times R$ be the projection. We call the set

$$\operatorname{irr}(V(t)) = \pi(\operatorname{spt} V(t) \cap \Omega \times R \times \operatorname{irr}(G))$$

the set of irregularity of V(t). In this terminology we can see from propositions above the following

THEOREM 2. $\pi(\operatorname{spt} V(t)) \setminus \operatorname{irr}(V(t)) \subset \operatorname{spt} |DX_t| \subset \partial^* E(t)$.

Proof of this Theorem is clear from Proposition 6.4 and 6.5.

The next proposition gives the direct relationship of the varifold V(t; x, y, S) and the graph of u(t, x). We denote by $B(x, \rho)$ the open ball of radius $\rho > 0$ centered at x in Ω .

PROPOSITION 6.6. Let V(t; x, y, S) be the varifold solution of § 4 and u(t, x) be as above. Then at L_{n+1} -almost all $(t, x) \in \mathbb{R} \times \Omega$,

(6.30)
$$u(t, x) = \lim_{\rho \to 0} u_{\rho}(t, x),$$

where

(6.31)
$$u_{\rho}(t, x) = \frac{-\int_{B(x, \rho) \times \mathbb{R}} y \, d\|V(t) \| \nu_{n+1}\|}{L_{n}(B(x, \rho))}.$$

Proof. Let μ be the Radon measure on Ω defined by the equality

$$\mu(B) = \int_{B} u(t, x) dx.$$

Then we have, at L_n -almost all x,

(6.32)
$$u(t, x) = \lim_{\rho \to 0} \mu(B(x, \rho)) / L_n(B(x, \rho)).$$

On the other hand, for any $\psi(x) \in \mathcal{C}_0(\Omega)$, we have from Proposition 6.4 that

$$\begin{split} \int_{\Omega} u(t, x) \phi(x) dx = & \lim_{m \to \infty} \int_{\Omega} u^{m}(t, x) \phi(x) dx \\ = & -\lim_{m \to \infty} \int_{\Omega \times \mathbf{R}} y \phi(x) D_{n+1} \chi_{t}^{m} \\ = & -\int_{\Omega \times \mathbf{R}} y \phi(x) D_{n+1} \chi_{t} \\ = & -\int_{\Omega \times \mathbf{R}} y \phi(x) d \|V(t) \| \mathbf{v}_{n+1} \| . \end{split}$$

This means that

(6.33)
$$\mu(B(x, \rho)) = -\int_{B(x, \rho) \times R} y \, d\|V(t) \perp \nu_{n+1}\|.$$

Combining (6.32) and (6.33), we have (6.30) and (6.31).

As a consequence of Proposition 6.6 we may think that u(t, x) represents the position of the membrane described by the varifold V(t; x, y, S). Therefore

(6.34)
$$\frac{1}{2} \int_{\Omega} |D_t u(t, x)|^2 dx$$

represents the energy of motion. Similarly we can consider

(6.35)
$$\int_{\mathcal{Q} \times \mathbf{R} \times \mathcal{G}} dV(t; x, y, S) - |\mathcal{Q}|$$

as the potential energy.

THEOREM 3. (Energy inequality). Let u(t, x) be as in Proposition 5.1. Then $D_t u(t, *) \in L^2(\Omega)$ for L_1 -almost every t and we have

(6.36)
$$\frac{1}{2} \int_{\mathcal{Q}} |D_t u(t, x)|^2 dx + \int_{\mathcal{Q} \times \mathbf{R} \times G} dV(t; x, y, S) \leq M,$$

where M is as in Proposition 4.9. If $u_0 \in W^{2+n/2, 2}(\Omega) \cap W_0^{1, 2}(\Omega)$, then we have

(6.37)
$$\frac{1}{2} \int_{\Omega} |D_{t}u(t, x)|^{2} dx + \int_{\Omega \times \mathbf{R} \times G} dV(t; x, y, S)$$

$$\leq \frac{1}{2} \int_{\Omega} |u_{1}(x)|^{2} dx + \int_{\Omega} (1 + |Du_{0}(x)|^{2})^{1/2} dx.$$

Proof. Using (4.8), we have

(6.38)
$$\frac{1}{2} \int_{\Omega} |D_{t}u(t, x)|^{2} dx + ||V(t)||(\Omega \times \mathbf{R})$$

$$\leq \frac{1}{2} \int_{\Omega} |D_{t}u^{m}(t, x)|^{2} dx + \limsup_{m \to \infty} |D\mathfrak{X}_{t}^{m}|(\Omega \times \mathbf{R})$$

$$\leq M.$$

If $u_0(x)$ is of class $W^{2+n/2,2}(\Omega) \cap W_0^{1,2}(\Omega)$, then Sobolev's imbeding theorem asserts that $DP_m u_0(x)$ converges to $Du_0(x)$ uniformly. This yields that

(6.39)
$$\lim_{m\to\infty} \int_{\Omega} (1+|DP_m u_0(x)|^2)^{1/2} dx = \int_{\Omega} (1+|Du_0(x)|^2)^{1/2} dx.$$

Applying this to (4.7), we can prove (6.37).

Next we prove

LEMMA 6.7. Let B be an open subset of $\Omega \times R$. Assume that for L₁-almost all $t \in (t_0, t_1)$

$$(6.40) |D\chi_t|(B) = \lim_{m \to \infty} |D\chi_t^m|(B).$$

Assume further that

(6.41)
$$\int_{B\times \operatorname{Irr}(G)} dV(t; x, y, S) = 0 \quad \text{for almost all} \quad t \in (t_0, t_1).$$

Then at almost all $t \in (t_0, t_1)$, the varifold V(t; x, y, S) is canonically identified with the function u(t, x) in B. Let ω be an open subset of Ω . Assume that (6.40) and (6.41) hold for $B = \omega \times R$. Then u(t, x) is a BV-solution of (1.1) in $(t_0, t_1) \times \omega$.

Proof. We have only to prove the first part of the Proposition. We put $B(x, y; \rho) = \{(w, z) \in \Omega \times R : |w-x|^2 + |z-y|^2 < \rho^2\}.$

For any continuous function $\alpha(S)$ of $S \in G$, we consider

$$(6.42) \hspace{1cm} V_t^{x,y}(\alpha) = \lim_{\rho \to 0} \int_{B(x,y,\rho)} \alpha(S) dV(t;x,y,S) / \|V(t)\| (B(x,y;\rho))$$

for almost all t. This exists at ||V(t)||-almost every (x, y). (cf. 3.3 of Allard [1].)

The mapping $\mathcal{C}(G) \ni \alpha \to V_t^{x,y}(\alpha) \in \mathbb{R}$ defines a positive Radon measure $V_t^{x,y}(S)$ on G, that is,

$$(6.43) V_t^{x,y}(\alpha) = \int_{\mathcal{G}} \alpha(S) dV_t^{x,y}(S).$$

It is clear from the definition that

$$(6.44) \qquad \qquad \int_{G} dV_{t}^{x, y}(S) = 1$$

and that for any $\phi \in \mathcal{C}_0(\Omega \times \mathbf{R})$

(6.45)
$$\int_{\mathcal{Q}\times\mathbf{R}\times\mathbf{G}} \phi(x, y) \alpha(S) dV(t; x, y, S)$$

$$= \!\! \int_{\mathcal{Q}\times\mathbf{R}} \!\! \phi(x, y) \! \Big(\!\! \int_{\mathcal{G}} \!\! \alpha(S) dV_t^{x,y}(S) \Big) \! d \|V(t)\| \, .$$

We cannot apply (6.45) to $\alpha(S) = \nu_j(S)$, $j=1, 2, \dots, n$, because $\nu_j(S)$ is not continuous on G. We claim that if spt ϕ is contained in B, then equality

(6.46)
$$\int_{B\times G} \phi(x, y) \nu_j(S) dV(t; x, y, S) = \int_{B} \phi(x, y) \left\{ \int_{G} \widetilde{\nu}_j(S) dV_t^{x, y}(S) \right\} d\|V(t)\|$$

holds, where $\mathfrak{V}_{j}(S) = \nu_{j}(S)$ for $S \in G \setminus irr(G)$ and $\mathfrak{V}_{j}(S) = 0$ for $S \in irr(G)$.

We prove the claim. Let ε be an arbitrary positive number and $\zeta_{\varepsilon}(t)$ be the function used in the proof of Proposition 6.5. Then

(6.47)
$$\int_{B\times G} \psi(x, y) \nu_j(S) dV(t; x, y, S)$$

$$= \int_{B\times G} \psi(x, y) \widetilde{\nu}_j(S) dV(t; x, y, S)$$

$$= \lim_{\varepsilon \to 0} \int_{B\times G} \psi(x, y) \nu_j(S) \zeta_{\varepsilon}(\nu_{n+1}(S)) dV(t; x, y, S).$$

Since $\nu_j(S)\zeta_{\varepsilon}(\nu_{n+1}(S))$ is a continuous function of S, we can apply (6.45) to the right hand side of (6.47). Thus we have

$$\begin{split} &\int_{B\times G} \psi(x, y) \nu_{j}(S) dV(t; x, y, S) \\ &= \lim_{\varepsilon \to 0} \int_{B} \psi(x, y) \Big(\int_{G} \nu_{j}(S) \zeta_{\varepsilon}(\nu_{n+1}(S)) dV_{t}^{x, y}(S) \Big) d\|V(t)\| \\ &= \int_{B} \psi(x, y) \Big(\int_{G} \widetilde{\nu}_{j}(S) dV_{t}^{x, y}(S) \Big) d\|V(t)\|. \end{split}$$

We have proved the claim (6.46).

Next we wish to prove that

(6.48)
$$\nu_{j}(t; x, y) = \int_{G} \tilde{\nu}_{j}(S) dV_{t}^{x, y}(S), \quad j = 1, 2, \dots, n+1,$$

for almost all t and ||V(t)||-almost every $(x, y) \in B$. In fact combining Proposition 6.5 and (6.46), we have

$$(6.49) \qquad \int_{B} \phi(x, y) \nu_{j}(t; x, y) |D\chi_{t}| = \int_{B} \phi(x, y) D_{j}\chi_{t}$$

$$= \int_{B} \phi(x, y) d\|V(t) \perp \nu_{j}\|$$

$$= \int_{B \times G} \phi(x, y) \nu_{j}(S) dV(t; x, y, S)$$

$$= \int_{B} \phi(x, y) \left\{ \int_{G} \tilde{\nu}_{j}(S) dV_{t}^{x, y}(S) \right\} d\|V(t)\|.$$

As a consequence of (6.49), for any $(x, y) \in B$ and for sufficiently small $\rho > 0$, we have

(6.50)
$$\int_{B(x,y;\rho)} \nu_{j}(t;x,y) |D\mathfrak{X}_{t}|$$

$$= \int_{B(x,y;\rho)} \left(\int_{\sigma} \widetilde{\nu}_{j}(S) dV_{t}^{x,y}(S) \right) d\|V(t)\|.$$

For each $(x, y) \in B$ and almost all t, we can choose a sequence of positive numbers $\{\rho_k\}_{k=1}^{\infty}$, such that

$$\lim_{k \to \infty} \rho_k = 0$$

and

(6.52)
$$||V(t)||(\partial B(x, y; \rho_k))=0, k=1, 2, \dots, .$$

By virtue of Proposition 6.3 and (6.52), we have

$$|DX_t|(\partial B(x, y; \rho_k))=0, \quad k=1, 2, \dots, .$$

This and assumption (6.40) imply that

$$|DX_t|(B(x, y; \rho_k)) = \lim_{m \to \infty} |DX_t^m|(B(x, y; \rho_k))$$

(cf. Giusti [6]). Using Proposition 6.2 (iv), we see that

(6.53)
$$|DX_t|(B(x, y; \rho_k)) = ||V(t)||(B(x, y; \rho_k)), \qquad k=1, 2, \dots, .$$

This together with (6.50) yields that

(6.54)
$$\int_{B(x,y;\rho_{k})} \nu_{j}(t;x,y) |DX_{t}| / |DX_{t}| (B(x,y;\rho_{k}))$$

$$= \int_{B(x,y,\rho_{k})} \left(\int_{G} \tilde{\nu}_{j}(S) dV_{t}^{x,y}(S) \right) d\|V(t)\| / \|V(t)\| (B(x,y;\rho_{k})).$$

Let k tend to ∞ and take the limit of (6.54). Then (6.51) and Besicovitch's theorem (cf. [3] or [5]) give (6.48).

Applying the next Lemma 6.8 to (6.48), we conclude that

$$(6.55) \tilde{\nu}_i(S) = \nu_i(t; x, y)$$

at $V_t^{x,\,y}$ -almost all $S{\in}G$. If $S{\neq}S'$ then $\widetilde{\nu}_j(S){\neq}\widetilde{\nu}_j(S')$. Thus (6.55) implies that $\operatorname{spt} V_t^{x,\,y}{=}\operatorname{one\ point}{=}\operatorname{Tan}_{x,\,y}\widehat{\partial}^*E(t)\,.$

And for each $\alpha \in C(G)$, we have

(6.56)
$$\int_{C} \alpha(S) dV_{t}^{x,y}(S) = \alpha(\operatorname{Tan}_{x,y} \partial^{*}E(t)).$$

It follows from (6.56), (6.45), (6.53) and Besicovitch's theorem that for any $\phi \in C_0(B \times G)$, we have

(6.57)
$$\int_{B\times G} \psi(x, y, S) dV(t; x, y, S)$$

$$= \int_{B\times G} \psi(x, y, \operatorname{Tan}_{x, y} \partial^* E(t)) d\|V(t)\|$$

$$= \int_{B\times G} \psi(x, y, \operatorname{Tan}_{x, y} \partial^* E(t)) |D\mathfrak{X}_t|.$$

Therefore V(t; x, y, S) is canonically identified with the graph of u(t, x). Lemma 6.7 has been proved upto the following Lemma 6.8.

LEMMA 6.8. Let P be a probability measure on a space X. Let v(x) be an \mathbb{R}^n -valued function which is integrable with respect to P. Let

$$v = \int_{X} v(x) dP(x)$$
.

Assume that $|v(x)| \le 1$ and |v| = 1. Then v = v(x) at P-almost every x.

Proof is clear.

THEOREM 4. Assume that $u_1 \in L^2(\Omega)$ and $u_0 \in W^{2+n/2,2}(\Omega)$. Assume further that the function u(t, x) of Proposition 5.1 satisfies the energy conservation law for $t \in (t_0, t_1)$, i.e.,

(6.58)
$$\frac{1}{2} \int |D_t u(t, x)|^2 dx + \int_{\Omega \times R} |DX_t|$$
$$= \frac{1}{2} \int_{\Omega} |u_1(x)|^2 dx + \int_{\Omega} (1 + |Du_0(x)|^2)^{1/2} dx.$$

Let ω be any open subset of Ω such that

(6.59)
$$\int_{\mathbf{m} \times \mathbf{R} \times \mathrm{Irr}(G)} dV(t; x, y, S) = 0$$

for atmost all $t \in (t_0, t_1)$. Then at L_1 -almost all $t \in (t_0, t_1)$, the varifold solution V(t; x, y, S) is canonically identified with the graph of the function u(t, x) at \mathcal{H}_{n+1} -almost every $(x, y) \in \omega \times \mathbf{R}$ and u(t, x) is the solution of (1.1) in $(t_0, t_1) \times \omega$.

Proof. Let

$$M_m = \frac{1}{2} \int_{\Omega} |P_m u_1(x)|^2 dx + \int_{\Omega} (1 + |DP_m u_0(x)|^2)^{1/2} dx.$$

Then the proof of (6.37) asserts that

(6.60)
$$\lim_{m \to \infty} M_m = \frac{1}{2} \int_{0} |u_1(x)|^2 dx + \int_{0} (1 + |Du_0(x)|^2)^{1/2} dx.$$

We have from (4.7)

(6.61)
$$M_m = \frac{1}{2} \int_{\mathcal{Q}} |D_t u^m(t, x)|^2 dx + \int_{\mathcal{Q} \times \mathbb{R}} |D \chi_t^m|.$$

The assumption (6.58) means that

(6.62)
$$\frac{1}{2} \int_{\Omega} |D_{t}u(t, x)|^{2} dx + \int_{\Omega \times \mathbf{R}} |D\mathfrak{X}_{t}|$$

$$= \lim_{m \to \infty} \left\{ \frac{1}{2} \int_{\Omega} |D_{t}u^{m}(t, x)|^{2} dx + \int_{\Omega \times \mathbf{R}} |D\mathfrak{X}_{t}^{m}| \right\}.$$

Since

$$(6.63) \qquad \int_{\mathcal{Q}} |D_t u(t, x)|^2 dx \leq \limsup_{m \to \infty} \int_{\mathcal{Q}} |D_t u^m(t, x)|^2 dx$$

(6.64)
$$\int_{\mathcal{Q}\times\mathbf{R}} |D\chi_{t}| \leq \limsup_{m\to\infty} \int_{\mathcal{Q}\times\mathbf{R}} |D\chi_{t}^{m}|,$$

the equality (6.62) asserts that equalities hold in both (6.63) and (6.64), namely, we have

(6.65)
$$\int_{\Omega} |D_t u(t, x)|^2 dx = \lim_{m \to \infty} \int_{\Omega} |D_t u^m(t, x)|^2 dx$$

and

(6.66)
$$\int_{\mathcal{Q}\times R} |D\mathfrak{X}_t| = \lim_{t \to \infty} \int_{\mathcal{Q}\times R} |D\mathfrak{X}_t^m|.$$

Therefore, the set $\Omega \times R$ itself satisfies the condition (6.40) of Lemma 6.7. As the consequence of Lemma 6.7, we can prove Theorem 4.

§ 7. Generalized Hamilton's principle.

So far we have treated the special varifold solution V(t; x, y, S) constructed in § 4. In the present section we treat any varifold solution W(t; x, y, S) of (1.1) satisfying additional conditions which will be given below. And we prove that a generalized Hamilton's principle holds for such a good varifold solution.

We define measures $||W(t) \perp \nu_j||$, $j=1, 2, \dots, n+1$, on $\Omega \times R$ by the following formula: For any Borel set $A \subset \Omega \times R$

(7.1)
$$||W(t) \perp \nu_j||(A) = \int_{A \times G} \nu_j(S) dW(t; x, y, S)$$

in just the same way as in §6. In analogy with Proposition 6.6, we put, for $x \in \Omega$ and $t \in R$,

(7.2)
$$w(t, x) = \lim_{\rho \to 0} w_{\rho}(t, x)$$
,

where

(7.3)
$$w_{\rho}(t, x) = \int_{B(x, \rho) \times R} y d\|W(t) \perp \nu_{n+1}\| / \int_{B(x, \rho) \times R} d\|W(t) \perp \nu_{n+1}\| .$$

We call w(t, x) the position of the membrane. It follows from Besicovitch's theorem that w(t, x) exists almost every x with respect to the measure $\|W(t) \bigsqcup \nu_{n+1}\|$.

We call

$$\frac{1}{2}\int_{\Omega}|D_tw(t, x)|^2dx$$

the energy of motion if it is finite. Similarly, we may call

the potential energy.

We assume that the following conditions hold for the varifold solution W(t; x, y, S):

(A1) The position function w(t, x) is a function of bounded variation in Ω for a fixed $t \in \mathbf{R}$ and $\operatorname{spt} \|W(t) \sqcup \nu_{n+1}\| \subset \partial^* F(t)$, where F(t) is the subgraph of the function w(t, x).

(A2) $D_t w(t, x) \in L^2(\Omega)$ for each t and

(7.4)
$$\int_0^T dt \int_{\Omega} \frac{1}{2} |D_t w(t, x)|^2 dx + \int_0^T dt \int_{\Omega \times R \times G} dW(t; x, y, S) < \infty .$$

(A3) For each $\phi(x) \in \mathcal{C}_0(\Omega)$

$$(7.5) -\int_{\mathcal{Q}\times\mathbf{R}} \phi(x) d\|W(t) \perp \nu_{n+1}\| = \int_{\mathcal{Q}} \phi(x) dx.$$

The last equality expresses a generalization of the law of conservation of mass. As we have proved in \S 6, the varifold solution V(t; x, y, S) constructed in \S 4 has all these properties.

If W(t; x, y, S) satisfies all of these conditions, then we consider the action

(7.6)
$$A(W) = \int_0^T dt \int_{\Omega} \frac{1}{2} |D_t w(t, x)|^2 dx - \int_0^T dt \left\{ \int_{\Omega \times \mathbf{R} \times \mathbf{G}} dW(t; x, y, S) - |\Omega| \right\},$$

and we shall show that W is a critical point of this action functional, i. e.,

$$\delta A(W) = 0.$$

To state this fact more precisely we introduce admissible functions $\psi(t,x)$ $\in \mathcal{C}^2(\mathbf{R} \times \Omega)$ such that

$$\phi(0, x) = D_t \phi(0, x) = 0, \quad \phi(T, x) = D_t \phi(T, x) = 0$$

and $\psi(t, x)|_{\partial\Omega}=0$. Then for each $\sigma \in \mathbb{R}$ we can define a diffeomorphism

(7.8)
$$\eta(\sigma): \Omega \times \mathbf{R} \ni (x, y) \to (x, y + \sigma \phi(t, x)) \in \Omega \times \mathbf{R}.$$

This induces a map $\eta(\sigma)_{\sharp}$ of varifolds, which is defined by the equality

(7.9)
$$\langle \eta(\sigma)_{\sharp} W(t), \psi \rangle = \int_{\partial u D u \sigma} \psi(x, y + \sigma \psi(t, x), D \eta(\sigma) S) | \wedge^{n} D \eta(\sigma) | dW(t; x, y, S).$$

(cf. Allard [1], § 3.2), where $D\eta(\sigma)$ is the differential of the map $\eta(\sigma)$ and $\wedge^n D\eta(\sigma)$ is its *n*-exterior product. The precise formulation of the generalized Hamilton's principle is

THEOREM 5. Assume that W(t; x, y, S) is a varifold solution of the equations (1.1) and (1.2) and that it satisfies the assumptions (A1), (A2) and (A3). Then

(7.10)
$$\frac{d}{d\sigma} A(\eta(\sigma)_* W)|_{\sigma=0} = 0.$$

Proof. We first calculate the position $w^{\sigma}(t, x)$ corresponding to the varifold $\eta(\sigma)_{\sharp}W(t; x, y, S)$, that is,

(7.11)
$$w^{\sigma}(t, x) = \lim_{\sigma \to 0} w^{\sigma}_{\rho}(t, x) ,$$

where

$$(7.12) w_{\rho}^{\sigma}(t, x) = \frac{\int_{B(x, \rho) \times R \times G} y \nu_{n+1}(S) d(\eta(\sigma)_{\#}W(t; z, y, S))}{\int_{B(x, \rho) \times R \times G} \nu_{n+1}(S) d(\eta(\sigma)_{\#}W(t; z, y, S))}.$$

We have for any $x \in \Omega$ and $\rho > 0$,

$$(7.13) \int_{B(x,\rho)\times R\times G} y\nu_{n+1}(S)d(\eta(\sigma)_{\sharp}W(t;z,y,S))$$

$$= \int_{B(x,\rho)\times R\times G} (y+\sigma\psi(t,z))\nu_{n+1}(D\eta(\sigma)S)|\wedge^{n}D\eta(\sigma)|dW(t;z,y,S).$$

Using assumptions (A1) and (A3), we see that this is equal to

$$(7.14) \quad \int_{B(x,\,\rho)\times R\times G} (w(t,\,z) + \sigma \psi(t,\,z)) \nu_{n+1}(D\eta(\sigma)S) | \bigwedge^n D\eta(\sigma) | dW(t;\,z,\,y,\,S) .$$

Similarly, we have

(7.15)
$$\int_{B(x,\,\rho)\times R\times G} \nu_{n+1}(S) d(\eta(\sigma)_{\#}W(t\,;\,z,\,y,\,S))$$

$$= \int_{B(x,\,\rho)\times R\times G} \nu_{n+1}(D\eta(\sigma)S) |\wedge^{n} D\eta(\sigma)| dW(t\,;\,z,\,y,\,S).$$

It follows from (7.11), (7.12), (7.13), (7.14) and Besicovitch's theorem that

(7.16)
$$w^{\sigma}(t, x) = w(t, x) + \sigma \psi(t, x),$$

at almost every $x \in \Omega$ with respect to the measure μ such that for any Borel subset $B \subset \Omega$

$$\mu(B) = \int_{B \times B \times G} \nu_{n+1}(D\eta(\sigma)S) | \bigwedge^n D\eta(\sigma) | dW(t; x, y, S).$$

We claim that (7.16) holds at L_n -almost all x in Ω . To prove this we shall show that an n-dimensional vector subspace $S \in G$ satisfies $\nu_{n+1}(D\eta(\sigma)S)=0$ if and only if $\nu_{n+1}(S)=0$. Assume that $\nu_{n+1}(S)\neq 0$. Then we can choose a basis v_1, v_2, \cdots, v_n of S so that $v_1=e_1+\beta_1e_{n+1}, v_2=e_2+\beta_2e_{n+1}, \cdots, v_n=e_n+\beta_ne_{n+1}$, where e_i , $i=1,2,\cdots,n$, is the unit vector parallel to the x_i -axis and e_{n+1} is the unit vector parallel to the y-axis. Since $D\eta(\sigma)v_i=e_i+\left(\beta_i+\sigma\frac{\partial}{\partial x_i}\psi(t,x)\right)e_{n+1}$, we have

$$v_1 \wedge v_2 \wedge \cdots \wedge v_n = e_1 \wedge e_2 \cdots \wedge e_n + g \wedge e_{n+1}$$

with some $g \in \bigwedge^{n-1} \mathbf{R}^n$. This implies that $\nu_{n+1}(D\eta(\sigma)S) \neq 0$. Similarly we can prove that $\nu_{n+1}(D\eta(\sigma)S) = 0$ if $\nu_{n+1}(S) = 0$.

Since $| \wedge^n D\eta(\sigma) |$ never vanishes, we see that

$$0 = \mu(B) = \int_{B \times R \times G} \nu_{n+1}(D\eta(\sigma)S) | \wedge^n D\eta(\sigma) | dW(t; x, y, S)$$

if and only if

$$L_n(B) = \int_{B \times R \times G} \nu_{n+1}(S) dW(t; x, y, S) = 0.$$

This proves that (7.16) holds for L_n -almost every x in Ω . Thus we have

(7.17)
$$A(\eta(\sigma)_{\sharp}W) = \frac{1}{2} \int_{0}^{T} dt \int_{\Omega} |D_{t}w(t, x) + \sigma D_{t}\phi(t, x)|^{2} dx$$
$$- \int_{0}^{T} dt \int_{\Omega \times R \times G} d(\eta(\sigma)_{\sharp}W(t; x, y, S)) + |\Omega|.$$

We now calculate the variation $\frac{d}{d\sigma}A(\eta(\sigma)_*W)|_{\sigma=0}$. First we have

(7.18)
$$\frac{d}{d\sigma} \int_{0}^{T} dt \int_{\Omega} \frac{1}{2} |D_{t}w^{\sigma}(t, x)|^{2} dx \Big|_{\sigma=0}$$

$$= \frac{d}{d\sigma} \int_{0}^{T} dt \int_{\Omega} \frac{1}{2} |D_{t}w(t, x) + \sigma \phi(t, x)|^{2} dx \Big|_{\sigma=0}$$

$$= \int_{0}^{T} dt \int_{\Omega \times R \times G} w(t, x) D_{t}^{2} \phi(t, x) \nu_{n+1}(S) dW(t; x, y, S)$$

$$= \int_{0}^{T} dt \int_{\Omega \times R \times G} D_{t}^{2} \phi(t, x) y \nu_{n+1}(S) dW(t; x, y, S).$$

Next we describe the variation of the second term of the right hand side of

(7.17). Let $\dot{\eta}(x, y) = D_{\sigma} \eta(\sigma)(x, y)|_{\sigma=0} = (0, 0, \dots, \phi(t, x))$ be the vector field which is the tangent at $\sigma=0$ to the 1-parameter family of diffeomorphisms $\eta(\sigma)$. We know that (cf. Allard [1], §3.3)

(7.19)
$$\frac{d}{d\sigma} \int_{\Omega \times R \times G} d(\eta(\sigma)_* W)(t; x, y, S)|_{\sigma=0}$$

$$= \int_{\Omega \times R \times G} \sum_{k=1}^n D_k \psi(t, x) \nu_k(S) \nu_{n+1}(S) dW(t; x, y, S).$$

Consequently

(7.20)
$$\frac{d}{d\sigma} (A(\eta(\sigma)_{\#}W))|_{\sigma=0}$$

$$= \int_0^T dt \int_{\Omega \times R \times G} D_t^2 \psi(t, x) y \nu_{n+1}(S) dW(t; x, y, S)$$

$$+ \int_0^T dt \int_{\Omega \times R \times G} \sum_{k=1}^n D_k \psi(t, x) \nu_k(S) \nu_{n+1}(S) dW(t; x, y, S).$$

Since W(t; x, y, S) is a varifold solution of (1.1), (1.3) and $\phi(0, x) = D_t \phi(0, x) = 0$, the right hand side vanishes by virtute of (3.3). We have

$$\frac{d}{d\sigma} A(\eta(\sigma)_{\sharp} W)|_{\sigma=0} = 0.$$

Theorem 6 is proved.

REFERENCES

- [1] W.K. ALLARD, On the first variation of a varifold, Ann. of Math. vol. 95 (1972), 417-491.
- [2] F.J. Almgren, Jr., The theory of varifolds, Mimeographed notes, Princeton (1965).
- [3] A.S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions I, Proc. Cambridge Phil. Soc. vol. 41 (1945), 103-110. II vol. 42 (1946), 1-10.
- [4] E. De Giorgi, Su una teoria generale della misura (r-1)-dimendinale in uno spazio ad r dimensioni, Ann. Mat. Pura Appl. (4) vol. 36 (1954), 191-213.
- [5] R.J. DiPerna, Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal. vol. 82 (1983), 27-70.
- [6] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
- [7] D. FUJIWARA, A. INOUE AND S. TAKAKUWA, A varifold solution of nonlinear wave equation of a membrane, Proc. Japan Acad. Sci. vol. 60 (1984), 113-116.
- [8] E. GIUSTI, Minimal surfaces and functions of bounded variation, Notes on Pure Mathematics 10, Australian National University, Canberra (1977).
- [9] T. Kato, Linear and quasi-linear equations of evolution of hyperbolic type, C. I. M. E. vol. II (1976), 125-191.
- [10] Y. Shibata and Y. Tsutsumi, Local existence of C[∞]-solution for the initial-boundary value problem for fully nonlinear wave equation, (preprint).

- [11] L. TARTAR, Une nouvelle méthode de résolution d'équations aux dérivées partielles nonlinéaires, Lecture Notes in Mathematics, vol. 564, 13-25.
- [12] L. Tartar, Compensated compactness and applications to partial differential equations, in Research Notes in Mathematics, Nonlinear analysis and mechanics. Heriot-Watt Symposium, vol. 4, ed. R. J. Knops, Pitman Press, (1979).

DEPARTMENT OF MATHEMATICS TOKYO INSTITUTE OF TECHNOLOGY OH-OKAYAMA, MEGURO-KU, TOKYO 152 JAPAN DEPARTMENT OF MATHEMATICS
TOKYO METROPORITAN UNIVERSITY
FUKASAWA, SETAGAYA-KU, TOKYO 158
JAPAN