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A VARIFOLD SOLUTION TO THE NONLINEAR EQUATION

OF MOTION OF A VIBRATING MEMBRANE

BY DAISUKE FUJIWARA AND SHOICHIRO TAKAKUWA

§ 1. Introduction.

Let Ω be a bounded domain in Rn with the boundary dΩ which is a
Lipschitz manifold. Then the equation of motion of a vibrating membrane is
as follows :

(1.1) D\u(t, x)-±Dj{DjU(t, x)(l+\Du{t, x)|2)"1/2} - 0 , x e f l ,
.7 = 1

where Dt denotes d/dt and D3 denotes d/dxJ} j=l, 2, •••, n. The initial and the
boundary conditions we shall consider are

(1.2) w(0, x)=uo(x), A " ( 0 , X)=U1(X)9

(1.3) u(f, x)=0 for x in dΩ.

If uo(x) and uλ{x) are sufficiently smooth, there exists a unique genuine
solution of (1.1), (1.2) and (1.3) for a short time interval, (cf. Kato [9] and
Shibata-Tsutsumi [10]). On the other hand, existence global in time of even a
weak solution is not proved in the case n>l.

The purpose of the present paper is to treat the above equation by virtue
of the theory of varifolds introduced by Almgren Jr. [2]. A varifold is a
generalization of the notion of a function and was successfully used in the
direct approach of the Plateau's problem. We shall define a generalized solution
of the equation (1.1) in terms of varifolds, which we call the varifold solution.
And we shall prove existence, global in time, of a varifold solution of (1.1), (1.2)
and (1.3). Thus this paper is closely related with the works of Tartar [11],
[12] and that of DiPerna [5].

Although a varifold solution is quite a weak notion, it satisfies a general-
ization of the Hamilton's principle:

(1.4)

under appropriate assumptions.
Before introducing a varifold solution, we shall formulate, in § 2, the notion

Received April 1, 1985

84



A SOLUTION TO THE NONLINEAR EQUATION 85

of a weak solution of (1.1) in terms of functions of bounded variations of
n-variables. (cf. De Giorgi [4] and Giusti [8]). This is interesting in itself and
will help us to treat varifold solutions.

§3 is devoted to the definition of the notion of a varifold solution of (1.1).
In §4 we prove existence, global in time, of a varifold solution of (1.1),

(1.2) and (1.3). This is done by the Ritz-Galerkin approximation method.
In §5 we show that the approximating sequence of Ritz-Galerkin method

coverges to a function u(t, x) of bounded variation in x.
In § 6, we shall prove that the global varifold solution can be identified with

u(t, x) if u(t, x) satisfies the energy conservation law. This will be done in
Theorem 4.

A generalization of Hamilton's principle is proved in § 7.
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Notations.

The following usual notations are used: If x and y are two vectors in Rk,
x y is the Euclidean inner product of x and y, and \x\ is the length of x. If
M i s a Radon measure on a σ-compact metric space X and φ is a continuous
function on X then

and spt M is the support of M. Mn denotes the Hausdorff measure of dimension
n. Let m^O be an integer. Then

Cm(Ω) denotes the space of functions of class Cm in Ω.
C'SL{Ω)={u^Cm{Ω); sptw is compact}.

If Y is a topological vector space and U is an open subset of Rk,

Cm{U, Y) stands for the space of F-valued functions of class Cm.
Cf(U, Y)={u£ΞCm(U, Y); sptw is compact}.
LP(U), 1^P^°°> denotes the space of ^-summable functions with respect

to the ^-dimensional Lebesgue measure Lk.
Wm'p(Ω)={u^Lp(Ω): DauGLp(Ω) for \a\
W^ p(Ω)=the closure of Cζ(Ω) in Wm>p(Ω).
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§ 2. A weak solution.

We shall denote by BV(Ω) the space of all functions of bounded variation
in the domain ΩdRn, i. e., u^BV(Ω) if and only if u^Lλ{Ω) and its gradient
Du—iDxU, D2u, •••, Dnu) in the sense of distributions is an #w-valued Radon
measure. (See Giusti [8] for the detailed theory.) We denote its total variation
measure by \Du\. Let U be an open subset of Ω. Then \Du\(U) is defined
by the equality

(2.1) \Du\(U)=sup I u div ψ(x)dx

where φ(x)=(ψ1(x), •••, φn(x))^Cl(U; Rn) satisfies \φ{x)\^l for each x. Similarly
we can define the measure (l+\Du\)1/2 by the following equality:

(2.2) \ {ψo(x)+u div ψ(x)}dx

where φ(x)^Cι

0(U; Rn) and φo(x)^Cl(U) such that

φo(x)2jr\φ(x)\2£l for each I G [ / .

If ue=CKΩ), then

[\Du\=^Q\Du(x)\dx, and

The latter equals the area of the hypersurface y = u(x), the graph of u(x), in
the space ΩxR. If u(x)^BV(Ω), then we can define its boundary value (the
trace of u) γu to dΩ. γu belongs to L\dΩ). Let g^C\Rn;Rn). Then we
have the Green-Stokes formula

(2.3) \u div g dx = -\ Dwg+\
JΩ JΩ Jd

ru
dΩ

where n is the unit outer normal to dΩ.
If u(=BV(Ω), then E={(x, y)^ΩxR: u{x)>y) is the subgraph of u. The

characteristic function XE(x, y) of E is a function of bounded variation on every
bounded open subset of ΩxR. DXE is an /^+1-valued Radon measure on ΩxR.
We know that spt\DXE\ddE.
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For p>0, we set B(x, y; p)={(z, w)^RnxR: \z-x\2+\ w-y\2<p2}. Then
the reduced boundary d*E of E is the set of all points (x, y)^ΩxR with the
following properties:

(i) [ \DXE\>0 for each p.
JB(x,yp)

(ii) The limit v(x, y)=lim vp(x, y) exists, where
p^O

\ DXE
JB(x,ι •> v(2.4) vp(χ, y),

\DXE\
JB(x,y p)

and

It is known that \DXE\(ΩxR\d*E)=0 and that for each Borel subset A of
ΩxR

(2.5) \DXE\(A)=JCn(Ar\d*E),

(2.6) J D Z ^

The vector v(x, y) is considered to be the unit inner normal at (x, y)^d*E to
d*£ in a generalized sense. In fact, if u^C\Ω) then spt | -DX̂  | = the graph of
u, and

(2.7) vj(x, u(x))=Dju(x)a+\Du(x)\*)-v\ ; = 1, 2, - , 7 2 ,

If a function w(ί, x) is of bounded variation with respect to %Gβ for each
fixed t, then the subgraph of u(t, *) will be denoted by E(t). Notations DXEU),
and v(f; x> y) etc. have obvious meanings.

DEFINITION 2.1. Let ω be an open subset of Ω and (α, ft) be a time interval.
Then a function w(ί, %)eLίoc((α, ft)xω) is said to be a £?F-solution of the
equation (1.1) in (α, ft)Xω if w(ί, x) is a function of bounded variation with
respect to x^ω for any fixed ίe(α, ft) and it satisfies the equation

(2.8) \bdt\ \Dlψ(t, x)u(t, x)+ Σ D,φ(t, x)vj(t; x, y)\

Xvn+I(t;x,

for any function ψ(f, x)^C%((a, b)Xω).

As to the initial-boundary value problem (1.1), (1.2) and (1.3) we use the
following definition.

DEFINITION 2.2. Assume that uo^BV(Ω) and u^L^Ω). Let T>0 be any
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number. Then a function u(t, x)^L\0C{RxΩ) is called a βF-solution of the
equations (1.1), (1.2) and (1.3) for Ό^t<T if the following conditions hold:

(i) For each t^R, u(f, x) is a function of bounded variation with respect to
x such that γu—Q.
(ii) For each φ{t, x)e£ 2([0, T); C0(Ω))r\C&0, T); C'\Ω)) vanishing near t=T,
we have

(2.9) \Tdt\ \D\φ{t, x)u(t, x)+ Σ Djψ(t, x)vj(t x, y))vn+ι{t x, y) \ DXEm \
JO JΩxR I j=l J

Jtφ(O, x)uQ(x)dx .

If u(t, x)eC1([0, T)xΩ), then the above definition coincides with the usual
definition of a weak solution.

§3. Definition of a varifold solution.

Let G=G(n + l, n) be the Grassmann manifold of all n-dimensional vector
subspaces of Rn+1. Let 5 e G be an n-dimensional vector subspace in Rn+1.
Then we denote the unit normal to S by V ( S ) = ( I Ί ( 5 ) , •••, vn+1(S)). We choose
v(S) so that vw+i(S)^0. If v»+i(S)=0, then v(S) is not unique. We call the set
irr(G)={SeG: vn+1(S)=0} the set of irregularity. Functions vn+1(S) and
^n+i(5)v/S), y = l , 2, •• , n , are single-valued continuous functions on G. A
point of ΩxRxG is denoted by (*, y, S).

A varifold (an n-varifold, more precisely), V(x, y, S) is a positive Radon
measure on ΩxRxG. (See Allard [1] for detailed discussions).

Example 3.1. If u^BV{Ω), then w (or the graph of u, more precisely) is
identified with a varifold V(x, y, S) in the following manner: For any
φ(x, y, S)EΞCO(ΩXRXG),

(3.1) f ψ(x, y, S)dV(x, y, S)=\ φ(x, y, Tzn{x>y){d*E))\DXE\,

where TanUiy)d*E is the tangent hyperplane at (x, y) to the reduced boundary
d*E. We call this identification canonical.

Keeping this example in mind, we can introduce the following

DEFINITION 3.1. Let ω be an open subset of Ω. A varifold V(t; x, y, S)
depending on a parameter ίe(α, b) is called a varifold solution of the equation
(1.1) for {a, b)XωdRxΩ if and only if the following two conditions hold:

(3.2) [bdt[ dV{t',x,y,S)<oo.
J a Jωx-G

And the equality
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*(3.3) O=[*df( D\φ{t, x)yvn+1(S)dV(t; x, y, S)
J a JωxRxG

+ \"dt\ {±Djψ(t, x)Vj(S)Vn+1(S)}dV(t;x, y, S)
J a JωxRxGKj=l J

holds for any function ψ(t, x) in C™((a, b)Xω).

Corresponding to Definition 2.2 we introduce the following

DEFINITION 3.3. Let T be a positive number. A varifold V(t;x,y,S)
depending on a parameter ί e β is called a varifold solution of the equation
(1.1) and (1.2) for [0, T) if and only if the following two conditions hold:

(3.4) [Tdt[ dV(t;x, y,
JO JωxRxG

And the equality

(3.5) \Tdt\n D\ψ{t, x)yvn+1(S)dV(t; x, y, S)
JO JΩxRxG

; x, y, S)

tφφ, x)uQ{x)dx

holds for any function ψ(t, x) in £2([0, T); C0(Ω))Γ\C([0, T); C\Ω)) vanishing
near t=T.

If a varifold solution V(t;x, y, S) can be canonically identified with a
function u(t, x) of bounded variation as in Example 3.1, then u(t, x) is a BV-
solution of (1.1) and (1.3). This is because

(3.6) \Ω»Rxβ

D2tφ(f> χϊyvn+i(S)dV(t; x, y , S)

= \ D\φ{t, x)u(t, x)vn+1(t;χ,y)\D1EU) \,
J iJ x R

and

(3.7) \ΩxRxa

DΨ{t> x)»λS)»«+i(S)dV(ϊ; x, y, S)

= \ Djψ(t, x)V]{t x, y)vn+1(t x, y)\D1EW\.

§4. Existence of a global varifold solution.

Now we state the main theorem.
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THEOREM 1. Assume that uo^Wl'2(Ω) and ux^L\Ω). Then there exists a
varifold solution V(t; x, y, S) of (1.1) and (1.2), that is, V(t; x, y, S) satisfies
(3.2) and (3.3) for any T>0.

Proof is done by the Ritz-Galerkin method, which occupies the rest of this
section.

Let <pk(x), k = l, 2, •••, be the normalized eigen-functions of the Dirichlet
problem in Ω:

(4.1) -Δφk{x)=λkψk{x)

φk(x)=0 if

The system {ψkί^i forms a complete ortho-normal system in L2(Ω). For m—
1, 2, —, we put

m

Pmf(χ)=Έi(f,ψk)ψlί(χ).

The rn-th approximate solution of (1.1) is of the form

(4.2) um(t, x ) = Σ i α ? ( O 0 * W

and satisfies the equation

(4.3) pjD2

tu
m(t, x)-t,Dj(DjUm(t9 x)(l+\Dum(t, x)| 2)- 1 / 2)}=0,

(4.4) um(0, x)=PmuQ, Dtu
m(0, x)=Pmu1.

This is equivalent to the system of equations

(4.5) Dlant)+p^QDjφk(x){Djun(t, x)(l+\Dum(t, x)\2)^2}dx=0 ,

(4.6) αΓ(0, x) = (uo, φk), Dtα?(0, x)=(uu φk),

for k = l, 2, •••, m.

PROPOSITION 4.1. The m-th approximate solution um(t, x) exists for all

Proof. Let i4m(ί)=(flΓ(ί), α?(ί), —, «m(0). Then the correspondence

3u™{t, x)(l+\Dum(t,

is u n i f o r m l y L i p s c h i t z c o n t i n u o u s for k — 1, 2, •••, m, a n d j ~ l , 2, •••, n. T h i s
p r o v e s P r o p o s i t i o n .

P R O P O S I T I O N 4.2. ( E n e r g y e s t i m a t e ) . For m = l , 2, •••,
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(4,7) j\Ω

lDtUm{t> * ) l 2 d*+j o ( l+l0κ m ( f , x)\Ύ/2dx

=Ύ\O ' P m i ί i { x ) ' 2 d x + L ( 1 + ! D P * U * W i2) i/2c/χ

//i particular,

(4.8)

(4.9) M=

Proof. Multiply both sides of (4.3) by Dtu
m(t, x) and integrate with respect

to x. Then

This and the initial condition (4.4) give (4.7).

To prove (4.8) we note that I \Pmuι{x)\2dx^X \ uλ(x)\2dx and that

i DPmu0(x) 12Y'2dx ^ {J β(l+1 DPmu0(x) 12

Since ^^ satisfies (4.1), we have

{ m

x = ( - J P m M o , «o)= ( , ψ

^ Έλjiu,,, ψkγ=-(Δu0, uo) = \ \Duβ\
tdx.

This proves (4.8) and (4.9).

For each m = l , 2, 3, •••, the function ww(ί, x) is of class C00. We identify
this with a varifold Vm(t; x, y, S) as in the Example 3.1 of §3. We rewrite
(4.3) and (4.4) in terms of Vm(t; x, y, S). Let φ{t)^C\R) vanishing near t=T.
Then we multiply both sides of (4.3) by φ{t)ψk(x), k^m. After integration by
parts we have

(4.10)

= Γdί D\φ{t)[φk{x)um{t, x)dx

t φ(t)\ Σ Drfk(x)DjUm(t, xXlJr\Dum(t, x)\2)~1/2dx .
JΩ j=i
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On the other hand, we have, by definition,

^Ωψk(x)um(t, x)dx = -\jΩχBχoψk(x)yvn+1(S)dVm(t; x, y, S)

and

^ΩD3φk{x){DjU

m{t, x)(l+\Dum(t, x)I«)-»*}d*

= -\Ω^B^β

DiψMvAS)vn+i{S)dVm{f, x, y, S).

Therefore Vm(t;x, y, S) satisfies the following equation:

(4.11) ^Dlφ(f)dt^0χRχgφt{x)yvn+1(S)dV'(f; x, y, S)

+ \Γφ(t)dt[ \ Σ Dtft(.x)v}{S)vn+1(S)}dV~(t; x, y, S)
JO JίJxRxG K j=l )

where k — 1, 2, •••, m and φ(t) is an arbitrary function in C\{R) vanishing near
t=T.

We wish to choose a subsequence {m/}d{m} so that lim Vm'(t x, y, S)

exists. In fact we have

PROPOSITION 4.3. There exist a subset Rx of R, subsequence {mr) of {m}
and a van fold V(t; x, y, S) depending on a parameter t^R± with the following
properties: L1(R\R1)=0 and

(4.12) Γ φ(t)dt\ ξ(x, y, S)dV(t; x, y, S)
J-oo JΩXRXG

= lim Γ φ{t)dt\ ξ(x, y, S)dVm'(t; x, y, S),

for any φ(t)^L\R) and ξ(x, y, S)^C0(ΩxRxG). We have

(4.13) f dV(t;x, y,S)^M.
jΩxRxG

Proof. Let M be the constant in (4.9). Then we note that

[ dVn(t;x, y, S)=\ dJίn

JΩxRxG J{y = um(t,x)}

= [ (l+\Dum(t, x)\2)1/2dx
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If ξ(x, y, S)ςΞC0(ΩxRxG) then

<ξ, Vm(t)>=\ ξ{x, y, S)dVm(t; x, y, S)
jΩxRxG

is a bounded function of t, because we have the estimate

(4.14) |< ί , Vm(t)>\^Mπmx\ξ(x, y, S)\.

We consider the family of mappings C0(ΩxRxG)^ξ-><ζf Vm(t)>^L°°(R). The
estimate (4.14) implies that this family of mappings is equicontinuous and that
for each ξ the image of mappings is relatively compact in the weak* topology
of L°°(R). We can apply the Ascoli-Arzela theorem because C0(ΩxRxG) is
separable. And there exists a subsequence {Vm'(t; x, y, S)}m> such that

(4.15) wMim<£, Vn'(φ = f(t; ξ)
771' -*oo

exists in L°°(R) for each ξ. It is clear that /(f ;£)^0 if ξ^O. And we have

(4.16) ||/(f;£)||Loo^Mmax|£(x, y, S)\.

The function f(t ξ) may not be defined for t in an exceptional set of
Li-measure 0 and this exceptional set may depend on ξ. To avoid this incon-
venience we choose a good representative V(t;ξ) of f(t;ξ) as a function of t:
We define

(4.17) V(t; ξ)= lim ^ - Γ + V ( ί &dt.

This exists and is equal to f(t;ξ) at L ralmost every t^R if ξ is fixed. Let
{?*}~=i be a countable dense subset of C0(ΩxRxG). Then the set

R1={t^R: V(t;ξk) exists and is finite for all k)

is measurable and L1(R\R1)=0.
We claim that V(t; ξ) exists for all ξ^C0(ΩxRxG) and for t^R,. In fact,

for any ε>0, there exists a function ξk such that

(4.18) \ξ(x, y, S)-ζk(x, y,S)\<ε for any (x, y, S)^ΩxRxG .

Then we have for each

(4.19)

The last estimate follows from (4.16) and (4.18). Hence
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V(t; ί»)-eglim inf~(t+*/(

I rt+h
rglimsup^- f(

Since ε is arbitrary,

Πm - U ' + A f ( t ;ξ)dt=V(t;ξ)
Λ-H-0 2/i Jt-fc

exists at every ίe/21 #

If ί e B j , then it follows from (4.16) and (4.17) that

\V(t;ξ)\^Mmax\ξ(x, y, S)\.

This implies that the correspondence ζ->V(t;ξ), t^Rlf defines a Radon measure
V(t; x, y, S) such that

RχGξ(x, y, ϊ>)dV{t; x, y, b).

We know that V(f;ξ)^O if ξ^O. Therefore V(t; x, y, S) is a varifold. Clearly
we have

(4.20) f dV(t;x, y,S)<M.
jQxRxG —

Equality (4.15) leads us to the equality

u/Mim<ff Vm'(φ=<ξ, V(φ

as an element of L°°(R). This proves Proposition.

End of the Proof of Theorem 1. We complete the proof of Theorem 1 by
showing that the varifold V(t;x, y, S) satisfies the equality (3.3). We choose
the subsequence {mr} as in Proposition 4.3 and denote it as {m} in the following
for the sake of brevity. Take φ(t)^C2(R) which vanishes near t—T. Then
D2

tφ(t)^L\R). On the other hand, we know that ψj(x)yvn+1(S)^CQ(ΩxRxG).
Therefore the above Proposition 4.3 asserts that

(4.21) l i m Γ ^ ω ^ ί Φk(x)yι>n+i(S)dVn(t; x, y, S)
m-oojo jQxRχGΓ

=^Diφ(t)dt^θχΛraφt(x)yvn+1(S)dV(t;x, y, S).

Similarly we have

(4.22) \im\Tφ(i)dt[ ΣD34,k(x)vj(S)pn&1(S)dVm(t;x, y, S)
m-»oojo JΩxRxG j=i

; x, y, S),Έ
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because φ^L\R) and Djψk{x)vj(S)vn+1{S)^C0(ΩxRxG). Letting m go to w in
(4.11), and using (4.21) and (4.22), we have

(4.23) \TD\φ(t)dt\n φk(x)yvn+1(S)dV(t; x, y, S)
Jθ J Ω x-RxG

t; x} y, S)£

for k = l,2, . Since functions of the form φ(t)ψk(x) are total in the space
C\tO, T); C0(Ω))r\C(l0, T)]C\Ω)), the equality (3.5) follows from (4.23). Inequal-
ity (3.4) is a consequence of (4.13). This proves our theorem.

§5. Convergence of um(t, x) in the 5F-space.

As we have proved the global existence of a varifold solution, we wish to
identify V(t; x, y, S) with a graph of a function. A graph of a function is,
measure theoretically, a special case of an n-rectifiable subset of ΩxR. Thus
we can state our problem in the following form:

(Q) Can one identify the vanfold solution V(t; x, y, S) of the preceding section
with an Hn rectifiable subset of ΩxR for all t ?

Unfortunately we did not succeed in giving answer to this fundamental
question. Of course the most probable candidate of the i/^-rectifiable subset of
ΩxR is the graph of the function u{t, x)—\\mum{ty x) if the limit exists. In

ra->oo

the present section, we prove that u(t, #)=lim um(t, x) actually exists in the
TO-oo

space BV{Ω). We shall discuss the relationship of V(t; x, y, S) and u(t, x) in
the next section.

In the following we choose the subsequence {m'} as in Proposition 4.3 and
denote it by {m} for the sake of brevity. For any fixed t^R the sequence
{um(t, x)} of 5F-functions are bounded because of Proposition 4.2.

PROPOSITION 5.1. There exists a subsequence {m"}(Z{m\ such that {um"(t, x)}

converges strongly, for any fixed t, to a function u(t, x) in LV(Ω), l^p< r-,

and that {Dum\t, x)} converges to Du(t, x) with respect to the w*-topology of
measures. u(t, *)<^BV(Ω) for fixed t^R. The function u{t, x) is a Lipschitz
continuous function of t with values in L2(Ω).

Proof. Since
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um(t, x) = \ Dsu
m(s, x)ds+uo(x),

Jo

we have

\\un{t, x

For any t, f'ejβ,

\O. 1) \\U \ΐ , *J — U [T, *)\\L2(Ω) == \ ^ s ^ w , Xjas

Hence t-^{um{t, *)}eL2(£?) is an equicontinuous family. The Ascoli-Arzela the-
orem enables us to choose a subsequence {um"(t, x)} such that

u -lim um\t, *) = u(t, *) in L2(β)

exists for each t^R. As a consequence of this and (5.1), we have

(5.2) \\u(t', *)-u(t,

Therefore u(t, *) is an L2(fl)-valued Lipschitz continuous function.
We know from Proposition 4.2 that {um\t, x)\ is a bounded set in BV(Ω).

Since the inclusion BV(Ω)dLp(Ω), l^p< -, is a compact map, every sub-
n — 1

sequence of {um\t, x)} contains a subsequence which converges strongly to
u(f, *) in LP(Ω) because {um\t, *)} converges weakly to u(t, *) in L2(Ω). This
implies that {um\t, x)} converges to u(t, *) strongly in LP(Ω). It is clear that
u(t, *)<^BV(Ω) for each t. For ; = 1, 2, •••, n, {DjUm\t} *)} converges to £)̂ M(ί, *)
in the sense of distribution. Therefore {Djum'(t, *)} converges to Z>/w(f, *) in
the sense of ii;*-topology of measures.

Remark 5.2. We expect that u(f, x) above is a jBF-solution of the equation
(1.1). However we failed in proving it. We shall prove later in Theorem 4 that
u(t, x) is a Z?F-solution if it satisfies the energy conservation law.

We let Em(t) and J.f(x, y) denote the subgraph of um(t, x) and its character-
istic function, respectively. Similarly E(t) and Xt(x, y) stand for the subgraph
of u(t, x) and its characteristic function, respectively.

COROLLARY 5.3. We may choose the subsequence m" so that {DXΐ"} converges
to DXt in the w*-topology of measures.

Proof. Let ψ(x, y)^C^(ΩxR). Then

{Xf\χ, y)-Uχ> y))φ(χ, y)dχdy
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m"(t,χ)

<,« φ { x ' y ) d y

x, y)\[ \um\t, x)-u{t, x)\dx .

As a consequence of this and Proposition 5.1, {If") converges to Xt in the sense
of distribution. Hence {DXf") converges to Dlt in the sense of distribution.
This implies that {DXf} converges to DXt in the w/*-topology of measures,
because \DXf\ are bounded.

For the sake of brevity we denote {m} instead of {m"}.

PROPOSITION 5.4. There exists a set R2dR and a function R2Ξ$t->Dtu(t, *)
e L 2 ( β ) such that L1(β\JB2)=0 and

(5.3) f Dtu(t, x)φ(x)dx=limh-1\[ u(t+h, x)φ(x)dx-\ u{t, x)ψ{x)dx\
JΩ h-*o \jΩ JΩ J

exists for all φ^.L\Ω) and t^R2. At Lγ-almost all t we have

(5.4) \\Dtu(t, *

For any T>0, Dtu(t, x) is the weak limit of {Dtu
m(t, x)\m in the space

L2((0, T)xΩ).

Proof. For any ψ^L2(Ω), we put

F(t, φ)=limh~1\\ u(t+h, x)φ(x)dx — \ u{t, x)φ(x)dx\
h^o [JΩ jΩ J

if the right hand side exists. As a result of (5.1), we have

(5.5)

Let {ξk(x)}t=i be a countable dense subset of L2(Ω). Then by virtue of (5.5),
we see that there exists a set R2aR such that L1(R\R2)=0 and F(t, ξk) exists
at t(ΞR2 and k = l, 2, •••, .

We claim that for any φ^L\Ω), F{t, φ) exists at all t^R2. In fact for
given φ(=L\Ω) and ε>0, there exists ξk such that

Applying (5.5) to φ—ξk, we have

(5.6) h-^uU+h, x)ξk(x)dx-\Qu(t, x)ξk(x)dx}-ε

x-\jΩu(t} x)φ(x)dxj
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If ίeΛ2, then

F(t, ζ^-ε^limmfh-'W u(t+h, x)ψ(x)dx-[ u(t, x)ώ(x)dx\
m-»oo (jΩ jΩ )

"1!? u(t+h, x)φ(x)dx — [ u(t, x)ψ(x)dx\
\jΩ JΩ J

Since ε is arbitrary, F(t, φ) exists.
From the estimate (5.5), we have

\F(t, φ ) \ S ψ

F(t, φ) is a continuous linear functional of φ^L\Ω). Therefore there exists
Dtu(t, *)EL2(fl) such that

\QDtu(t, x)φ(x)dx = F(t,ψ).

By definition we have

(5.7) jflM(ί, x)φ{x)dx-\Qu0(x)φ(x)dx=^ds\QDMs, x)φ{x)dx .

Let v(x)=Dtu(t, x). Then

1 f ί + Λ C

iMli2(β)=:lim— dτ\ Dτu(τ, x)v(x)dx
Λ-»o 2 A Jt-h JΩ

= lim- Jr r{f M(ί+A, ^MJCMΛ: —f z/(ί—A, x)t;(x)ίίx}

=lim limTrrJi um(t+h, x)v(x)dx-\ um(t-h, x)v(x)dx\

1 f ί+Λ f

=lim limTΓ^l I Dτu
m(τ, x)v{x)dx dτ

Λ.̂ 0 m->oo 2A J ί-ΛJβ

at Lx almost all t. Therefore

at Lralmost all t.
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The energy inequality (4.8) implies that for any T>0, {Dtu
m(t, x)} is

bounded in L2((0, T)xΩ). Let {Dtu
m'(t, x)} be any weakly convergent sub-

sequence of {Dtu
m(t, x)} and let w(t, x) be its limit. Then

\um'(t, x)ψ(x)dx-\pmfuo(x)ψ(x)dx = \tds\Dsu
m'(s) x)φ{x)dx .

J Ω J Ω J o J Ω

Taking the limit of this as m'—>oo, we have

I u(t, x)φ(x)dx — \ uo(x)φ(x)dx = \ ds\ w(s, x)φ(x)dx .

If follows from this and (5.7) that Dtu(t, x) — w(t, x) at almost every (t, x).
This proves Proposition 5.4.

§ 6. Varifold solution and B V function.

In this section we discuss the relationship of the varifold solution V(t; x, y, S)
of §4 and the BV-ίunction u(t, x) given in §5. We prove that the varifold
V(t; x, y, S) can be identified with the graph of the function u(t, x) if u(t, x)
satisfies the energy conservation law. For the sake of brevity we denote {m"\
by {m}.

DEFINITION 6.1. As in Allard [1], we define the weight measure \\V(t)\\ of
the varifold V(t x, y, S) by the equality

(6.1) [n φ(xt y)d\\V(t)\\ = \n Φ(x, y)dV(t; x, y, S)

for any φ(x, y) in C0(ΩxR). Similarly, for ; = 1, 2, •••, n + 1, we define the
measure ||V(0Liλ,-|| by the equality

(6.2) ( φ(x, y)d\\V(t)L_Vj\\ = \n ψ(x, y)v3{S)dV\t x, y, S).
JΩxR JΩxRy-G

As in §5 we denote by E(t) and Em(t) the subgraphs of u(t, x) and um(t, x),
respectively. And we denote by lt and If the characteristic functions of E{t)
and Em(t), respectively. Then

PROPOSITION 6.2. (i) For each φ^L\R) and for any ψ(x, y)^C0(ΩxR),
we have

(6.3)

(ii) There exists a subset R3 of R with the following properties'
=0 and for any t^R3 and φ^C0(ΩxR), we have
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(6.4) liminff φ(x, y)\Dlf\
m-»co jΩxR

^\ ψ(x, y)d\\V(t)\\^\imsup\ ψ(x, y)\Dlf\.
JΩxR m->oo JΩxR

(Hi) For any open subset BdΩxR and any compact set KdB, we have

(6.5)

for
(iv) Assume that B is a bounded open subset of ΩxR. Assume further thai

for some t^Rz

(6.6) \im\ DX?\(B) exists
m-*co

and

(6.7)

Then

(6.8)

Proof, (i) Using Proposition 4.3, we have

(6.9) ( φ(t)dt\n φ(x, y)d\\V(t)\\
J R J U x R

=limf φ(t)dt\ ψ(x, y)dVm(t; x, y, S)
m^oojR jΩ xR

=limί φ{t)dt\ φ{x, y)\DXT\.

This proves (i).
Proof of (ii). Let {ξk(x, y)}t=i be a countable dense subset of C0(ΩxR).

We have from Proposition 4.2 that

Π ^ - m a x | f * ( x , 3OIM.

The right hand side is independent of 771. Take φ^L\R) so that φ(t)^O. Then
Fatou's lemma gives

(6.10) ί
JR
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^liminήJ>(t)dt\ΩχJk(x, y)dVm(t; x, y, S)

= \ φ(t)dt[ ξk(x, y)d\\V(t)\\ .
J R JIJ x R

Similarly we can prove

(β.ii)

As a consequence of (6.10) and (6.11), there exists a subset R3dR with the
following properties: L1(R\R3)=z0 and we have

(6.12) liminfί ξk(x, y)\DX?\<\ ζk{x, y)d\\V(t)\\
m->oo JΩxR JΩxR

^limsupί ξh(x, y)\Dlf\,
m-»oo jΩxR

for each t^R3 and for all k = l, 2, •••, . Since {ξk}k is dense in C0(ΩxR), (6.4)
holds for any <p^C0(ΩxR) and ίeJB3.

(iii) Let ψ^C0(B) be a function such that 0^ψ(x, y)^l and φ(x, y)—l on
K. Let t^Rz. Then we have from (6.4) that

(6.13) limmflDXf |(7Ό^liminfί φ(x, y)\DX?\.

S\ φ(x, y)d\\V(t)\\
J iJx Rx R

Similarly, we show that

(6.14) ( ψ(x, y)d\\V(t)\\^hmsup\ φ(x, y)\Dlf\
J ίJx R τtι ->oo J Ω x R

^lim sup I Dlΐ \ (B).
ra-*oo

(6.13) and (6.14) proves (iii).
(iv) Let Bu B2, -" be a sequence of open subsets of ΩxR satisfying

Γ\t=iBk=B. Then we have from (iii) and (6.6) that

(6.15) \\V(t)\\(Bk)>\immf\DXr\(Bmim$up\DX?\(B)>\\V(t)\\(B),
ra-»oo m-oo

for k = l, 2, •••,. As a consequence of the assumption (6.7), we see that
lim^oc||y(ί)ll(S*)=IIVr(0ll(5). It follows from this and (6.15) that \imm^\DX?\(B)
= 117(011(5). (iv) is proved.

PROPOSITION 6.3. // ί e β 8 , then

(6.16) \DXt\(B)^\\V(t)KB)
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for any open subset BcΩxR. If for some BczΩxR

(6.17) \im\DXT\(B)=\DXt\(B),
7/1 ->oo

then

(6.18) \\V(t)KB)=\DXt\(B).

Proof. Assume that φ(x, y)^C0{B; Rn+1) and \φ(χ, y)\ g l . Then from
Proposition 6.2, we have

(6.19) lί φ{x, ;y)Z»t |=liminf \ ψ(x, y)DX
I J B ra-»oo J B

gliminfί |0(x, )̂M-

Taking supremum with respect to φ, we have (6.16).
If (6.17) holds, then

\DXt\(B)^\\V(t)\\(B)^nmsup\DX?\(B)=\DXt\(B).
m-*oo

(6.18) holds in this case.

PROPOSITION 6.4. There exists a subset RάdR such that L 1 ( β \ β 4 ) = 0 and

(6.20)

/or ίe jβ 4 αnύί ψ^C0{ΩxR). In particular, for any t^RA and φ^C0{Ω), we have

(6.21) -\Qφ(x)dx=\Qφ(x)d\\V(t)Lvn+1\\ .

Proof. Let {f^(x, 3̂ )}?L=i be a countable dense subset of C0(ΩxR). Then
Proposition 5.1 asserts that for any ξk and

(6.22) limί f,(x, y)Dn+1X?=\ ξk(x, y)Dn+1Xt.

Let φ<BL\R). Then multiplying (6.22) by φ{t) and integrating with respect to
t, we have
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(6.23) ί φ(t)dt\ ξk{x, y)Dn+1Xt
JR JΩxR

= limf φ(t)dt\n ξk(x, y)vn+1(S)dVm(t; x, y, S).
m-^ooJR JΩxRxG

Applying Proposition 4.3 to the right hand side of (6.23), we have

( Φ(t)dt[ ξk{x, y)Dn+1Xt

J R JΩxR

= \ φ(t)dί\n ξk(x, y)vn+1(S)dV(t x, y, S).
JR JΩXRXG

Therefore there exists a subset RAdR such that L1(R\Ri)=0 and

',X, y, S)

for k — l, 2, •••, and ί £ β 4 . Since {ξk)k is dense in C0(ΩxR), this proves (6.20)
for any ψ^C0(ΩxR).

If φ^Co(Ω), then

(x)Dn+1Xtlim\

This together with (6.20) proves (6.21).

PROPOSITION 6.5. Let (t0, tj be an open interval and B be an open subset of
ΩxR. Assume that

(6.24) [ dV(t; x, y, S)=0 for all ίe(ί 0 , ίi).
Jβxirr(G)

Then there exists a subset Nd(t0, ίi) such that Lί(N)=0 and

(6.25) ( ψ(x, y)DJXt = \n ψ{x, ^)d | |F(ί)L^| | , ; = 1, 2, - , n ,
j ΩxR j ΩxR

for any ίe(ί 0 > Q\N and

Proof. Let {ξk}k be a countable dense subset of C0(B). Let

Ijk(t) = \ ξk{x, y)d\\V{t)L_vj\\.
J B

Then (6.24) implies that

/,*(0=lim/J»(0,
ε-»0
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where

/J*(0=( £k(χ, y>j(S)ζε(vn+1(S))dV(t; x, y> S)
JB

and ζ β (r)=l for | τ | ^ ε and ζ β (τ)=e- 1 | r | for ε ^ M ^ O . Since v/S)ζβ(vn+1(S)) is
a continuous function of S, we can apply Proposition 4.3 to Ijk(t). Hence for
any ^ G L ^ O , tj we have

(6.26) [^φWjMdt^Um l i m f V w t £*(*, ^)^(S)ζ.(p»+i(S))ί/FΛ(ί; *, y, S)
J ί 0 e-*0 m-oojί 0

r JBxG

t; x, y, S)+lim lim Jfim,
0 ε->0 m-*oo

where

(6.27) /Λ«=ΓV(O*( Sax, y)vj(S){U»n+i(S))-l}dVm(t; x, y, S).

Using Proposition 5.1, we have

(6.28) li

ξk{x, y)D3lf
B

(

On the other hand,

(6.29) lim 1/ΛJ^limΓ110(βI<Zf( \ξk{x, y)\ {l-ζs(vn+1(S))}dVm(t; x, y, S)
m-»oo TO-*ooJί0 JBxG

\ξk(x, y)\{l-ζe(vn+1(S))}dV(t;x, y, S).\ \ φ ( ) \ \
Jί 0 JBxG

Therefore using (6.26), (6.27) and (6.28), we have

\\hφ(t)Ijk(t)dt-\Hφ(t)dt\ ξk(x, y)D1lt

^ l i m s u p Γ ' l ^ O l ώ ί \ξk(x, y)\ {l-ζ.(yn+1(S))}dV(ί; x, >, S)
ε-oo J ί 0

 Γ JBxG

because of (6.24). Since φ(t) is arbitrary, there exists a subset Nk of R of
measure 0 such that

[ , * = l, 2, - . , » ,
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for any ίe(ί 0 , ii)\A/*. Since {ξk}k is dense in C0(B), we have (6.25) for any
ψ£ΞCo(B) and for fe=(f0,

We can state relationship of spt F(ί; #, 3;, S) and the graph of u(t, x). Let
π:ΩxRxG-*ΩxR be the projection. We call the set

the set of irregularity of V(t). In this terminology we can see from propositions
above the following

THEOREM 2. π(spt F(O)\irr(F(ί))Cspt I Dlt \ ad*E(t).

Proof of this Theorem is clear from Proposition 6.4 and 6.5.

The next proposition gives the direct relationship of the varifold V(t; x, y, S)
and the graph of u(t, x). We denote by B(x, p) the open ball of radius p>0
centered at x in Ω.

PROPOSITION 6.6. Let V(t; x, y, S) be the vanfold solution of §4 and u(t, x)
be as above. Then at Ln+1-almost all (t, x)^RxΩ,

(6.30) u(t, Λ:)=lim up(t, x),

where

yd\\V(t)l^vn+ι\\
/r on /4. \ jB(x, p)xR
( 6 3 1 ) U M' X)= LjBix7p))

Proof. Let μ be the Radon measure on Ω defined by the equality

μ(B)=\ u(t, x)dx .
J B

Then we have, at L^-almost all x,

(6.32) u{t, *)=lim μ{B(x, p))/Ln{B{x, p)).

On the other hand, for any ψ(x)^C0(Ω), we have from Proposition 6.4 that

f u(f, x)ψ(x)dx=\im\ um(t, x)ψ{x)dx
J Ω vi -co J Ω

yψ(x)Dn+1X?

= - f yφ(x)d\\V(t)L.vn+1\\.
J Ωx R
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This means that

(6.33) μ(B(x, p)) = -

Combining (6.32) and (6.33), we have (6.30) and (6.31).

As a consequence of Proposition 6.6 we may think that u(t, x) represents
the position of the membrane described by the varifold V(t; x, y, S). Therefore

(6.34) ^Q\Dtu{t, x)\2dx

represents the energy of motion. Similarly we can consider

(6.35) f dV(t;x, y,S)-\Ω\
JΩxRxG

as the potential energy.

THEOREM 3. (Energy inequality). Let u(t, x) be as in Proposition 5.1. Then
Dtu(t, * ) G L 2 ( G ) for Lγ-almost every t and we have

(6.36) - ί ( \DtuV> x)\*dx + [ dV(t) x, y, S)^
I JΩ JΩxRxG

where M is as in Proposition 4.9. // uo^W2+n/2'2(Ω)Γ\Wl2(Ω), then we have

(6.37) i-f \Dtu(t, x)\2dx + \ dV(t; x, y, S)
ZJΩ JΩxRxG

Proof. Using (4.8), we have

(6.38) ^Q\Dtu(t, x)\2dx + \\V(t)\\(ΩxR)

^^r\ \Dtu
m(t, x)\2dxJ

Γ\imsup\DXT\(ΩxR)
Z JΩ

If uo(x) is of class W2+nl2'\Ω)Γ\W\>2(Ω), then Sobolev's imbeding theorem
asserts that DPmu0(x) converges to Duo(x) uniformly. This yields that

(6.39) lim( a+\DPmUo(x)\2)1/2dx = \ (1+ \Duo(x)\2)1/2dx .
m-oojβ JΩ

Applying this to (4.7), we can prove (6.37).
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Next we prove

LEMMA 6.7. Let B be an open subset of ΩxR. Assume that for Lx-almost
all ίe=(f0, U)

(6.40) \DXt\{B)=\ιm\DXT\(B).
771 -»oo

Assume further that

(6.41) [ dV(t; x, y, S)=0 for almost all ίe(ί 0 , U).
JBxirr(G)

Then at almost all t<^(t0, ί j , the vanfold V(t;x, y, S) is canonically identified
with the function u(t, x) in B. Let ω be an open subset of Ω. Assume that
(6.40) and (6.41) hold for B=ωXR. Then u(t, x) is a BV-solutwn of (1.1) in
(to, ίi)Xω.

Proof. We have only to prove the first part of the Proposition. We put

B(x, y;p)={(w,z)tΞΩxR: \ w-x\2+\z-y\2<p2}.

For any continuous function a(S) of S^G, we consider

(6.42) Vf'v(a)=\]m\ a(S)dV(t; x, y, S)/\\V{t)\\{B{x, y p))
p-*0 JB(X, y , p)

for almost all t. This exists at ||F(/)||-almost every (x, y). (cf. 3.3 of Allard

[1].)
The mapping C(G)^a~>Vf'y(a)^R defines a positive Radon measure Vf>y(S)

on G, that is,

(6.43) Vf'y(a) = \ a(S)dVf'y(S).
JG

It is clear from the definition that

(6.44) f dVf'y(S)=-l
JG

and that for any ψ^C0(ΩxR)

(6.45) \ ψ(x, y)a(S)dV(t;x, y, S)
JΩXRXG

We cannot apply (6.45) to a(S)=v}(S), j — 1, 2, •••, n, because Vj(S) is not
continuous on G. We claim that if spt</> is contained in B, then equality

(6.46) [ ψ(x, y)v3{S)dV(t; x, y, S) = \ ψ(x, y)\\ V}

jBx-G JB KJ G
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holds, where fy(S)=i^(S) for SeG\irr(G) and fy(S)=0 for Seirr(G).
We prove the claim. Let ε be an arbitrary positive number and ζε(t) be

the function used in the proof of Proposition 6.5. Then

(6.47) \ ψ(x, y)vj(S)dV(f;x, y, S)
J 5x G

= ( φ(x,y)ΰ,(S)dV{t;x,y,S)
J B~x G

= l i m j s χ β 0 U , y)vj(S)^(.vn+1{S))dV(.t; x, y, S).

Since vj{S)ζt(vn+1(,S)) is a continuous function of S, we can apply (6.45) to the
right hand side of (6.47). Thus we have

\ ψ(x, y)vj(S)dV(t;x, y,S)
J Bx G

=lim[ ψ(x, y)(\ ^(S)ζε(vn+1(S))dVf "(S))d\\V(t)\\
ΐ->0 J B \j G /

=\Bφ(χ> y)(\Qΰj(S)dVϊ y(S))d\\v(t)\\.

We have proved the claim (6.46).

Next we wish to prove that

(6.48) vj(t; x, y)=^GVj(S)dVf'y(S)} ; = 1, 2, - , n + 1,

for almost all t and ||V(OI|-almost every (x, y)^B. In fact combining Proposition
6.5 and (6.46), we have

(6.49) f φ(x, y)v3{t) x, y)\DXt\ = \ φ{x, y)DJlt
J B J B

= \ φ{x, y)d\\V(t)^v}\\
J B

= [ φ(x, y)vj(S)dV(t;x, y,S)
J BxG

As a consequence of (6.49), for any (x, y)^B and for sufficiently small ρ>0,
we have
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(6.50) ( vj(l;x, y)\DXt\
JB(x, y; p)

= \
jB(x,y;

p)\JG

For each (x, y)^B and almost all t, we can choose a sequence of positive

numbers {pk}ΐ=i, such that

(6.51) l i m p ^ O

and

(6.52) \\V(t)\\(dB(x, y;pk))=0, k=l, 2, - , .

By virtue of Proposition 6.3 and (6.52), we have

\DXt\(dB(x, y;pk))=0, fe = l, 2,

This and assumption (6.40) imply that

\DXt\(B(x, y;pk))=\im\DXT\{B(x, y,pk))
m-*oo

(cf. Giusti [6]). Using Proposition 6.2 (iv), we see that

(6.53) \Dlt\{B{x, y;pk))=\\VmWx, y;pk)), k = l, 2,

This together with (6.50) yields that

(6.54) f vj(t;x, y)\DXt\/\DXt\(B{x, y ) p k ) )
JBix, y pk)

= [ ( ( US)dVf'HS))d\\V(t)\\/\\V(t)\\(B(x, y ; p k ) ) .

Let k tend to oo and take the limit of (6.54). Then (6.51) and Besicovitch's
theorem (cf. [3] or [5]) give (6.48).

Applying the next Lemma 6.8 to (6.48), we conclude that

(6.55) ^(S)=^( ί ;x , y)

at VI^-almost all SCΞG. If S^S' then £; (S)^£ ;(S0. Thus (6.55) implies that

spt Vf' ^ o n e point^Tan,,, yd*E{t).

And for each a^C(G), we have

(6.56) \ a(S)dVf>y(S)=a(TanXιyd*E(t)).
JG

It follows from (6.56), (6.45), (6.53) and Besicovitch's theorem that for any
), we have
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(6.57) [ φ(x, y,S)dV(t;x, y,S)
JBxG

= \ <p{x,y,Tznx,yd*E{t))d\\V{t)\\
J BxG

= ί ψ(x, y,Tanx,yd*E(t))\DXt\.
J BxG

Therefore V(t; x, y, S) is canonically identified with the graph of u{t, x). Lemma
6.7 has been proved upto the following Lemma 6.8.

LEMMA 6.8. Let P be a probability measure on a space X. Let v{x) be an
Rn-valued function which is integrable with respect to P. Let

v=\ v(x)dP(x).

Assume that \v(x)\^l and M = l . Then v=v(x) at P-almost every x.

Proof is clear.

THEOREM 4. Assume that u^L\Ω) and uo^W2+n/2'2{Ω). Assume further
that the function u(t, x) of Proposition 5.1 satisfies the energy conservation law
for ίe(f0, ίi), i.e.,

(6.58) U\Dtu(t, x)\2dx + \n \DXt\

Let a) be any open subset of Ω such that

(6.59) ( dVit x, y, S)=0
JωxRxirr(G)

for atmost all ίe(ί 0 , ίi). Then at Lx-almost all ίe(ί 0 , t^), the van fold solution
V(t; x, y, S) is canonically identified with the graph of the function u(ft x) at
Mn+1-almost every (x, y)^ωXR and u{t, x) is the solution of (1.1) in (t0, t^Xω.

Proof. Let

Then the proof of (6.37) asserts that

(6.60) lim Mm= - H I Ul(x) 12dx + \ 11+ I Duo(x) \ 2)1/2dx .
m-oo Z JΩ JΩ

We have from (4.7)
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(6.61) Mm=

The assumption (6.58) means that

(6.62) U\Dtu(t, x)\2dx+[ \DXt\
Δ JΩ JΩxR

=lim{4-( \Dtu
m(t, x)\*dx + [ \DIT\\.

m^oo I Z JΩ JΩxR J

Since

(6.63) [ \Dtu(t, x)\2dx^limsup[ \Dtu
m(t, x)\2dx

JΩ m-*oo JΩ

(6.64) [ ILWJ^limsupf \DX?\,

the equality (6.62) asserts that equalities hold in both (6.63) and (6.64), namely,
we have

(6.65) \\Dtu(t, x)\2dx=\im\n\Dtu
m(t, x)\*dx

jΩ m-*oojΩ

and

(6.66) [ \DXt\=lim[ \DX?\.
JΩxR JΩxR

Therefore, the set ΩxR itself satisfies the condition (6.40) of Lemma 6.7. As
the consequence of Lemma 6.7, we can prove Theorem 4.

§ 7. Generalized Hamilton's principle.

So far we have treated the special varifold solution V(t; x, y, S) constructed
in § 4. In the present section we treat any varifold solution W(t x, y, S) of
(1.1) satisfying additional conditions which will be given below. And we prove
that a generalized Hamilton's principle holds for such a good varifold solution.

We define measures ||W(i)l_vJ, j — l, 2, •••, n + 1, on ΩxR by the following
formula: For any Borel set ΛdΩxR

(7.1) IIW(0LpJ(i4)=f Vj(S)dW(t; x, y, S)
J AxG

in just the same way as in §6. In analogy with Proposition 6.6, we put, for
and

(7.2) ιv(ΐ, * )=l im u/p(f, x),

where
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(7.3) wf(t,x) = \ yd\\W(t)L.vn+1\\/\ d\\W(t)l_vn+1\\ .

We call w(t, x) the position of the membrane. It follows from Besicovitch's
theorem that w(t, x) exists almost every x with respect to the measure

We call

the energy of motion if it is finite. Similarly, we may call

( dW(t;x, y,S)-\Ω\=\ dW(t)\\-\Ω\
JΩxRxG JΩxR

the potential energy.
We assume that the following conditions hold for the varifold solution

W(t;x,y,S):
(Al) The position function w{t, x) is a function of bounded variation in Ω

for a fixed t^R and sρt||WΓ(ί)L^n+illc3*F(ί), where F(t) is the subgraph of the
function w(t, x).

(A2) Dtw(f, X)ΪΞL\Ω) for each t and

(7.4) \Tdt[ ^-\Dtw{t, x)\2dx + \Tdt\ dW(t; x, y, S)<oo.
Jo JΩ Z Jo JΩxRxG

(A3) For each ψ(x)^C0{Ω)

(7.5) - f φ(x)d\\W(t)L_vn+1\\ = \ Mx)dx.
JΩxR JΩ

The last equality expresses a generalization of the law of conservation of
mass. As we have proved in §6, the varifold solution V(t; x, y, S) constructed
in § 4 has all these properties.

If W(t; x, y, S) satisfies all of these conditions, then we consider the action

(7.6) A(JV)=\Tdt\nhDMt, x)\2dx-\Tdt{[ dW(t; x, y, S)-\Ω\\,
JO JΩ I Jo [JΩxRxG J

and we shall show that W is a critical point of this action functional, i. e.,

(7.7) 3.4(17)=0.

To state this fact more precisely we introduce admissible functions φ(t, x)
such that

φφ, x)=Dtψφ, x)=0, φ(T, x)=Dtψ(T, x)=0

and φ(t, x)\dΩ—0 Then for each σ^R we can define a diffeomorphism

(7.8) η{σ)\ flxβafc y)->(x, y+σφ(t, x))(=ΩxR.
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This induces a map η(σ)# of varifolds, which is defined by the equality

(7.9) <η(σhW(t), ψ>

^ x)> Dη(σ)S)\AnDη(σ)\dW(t; x, y, S).

(cf. Allard [1], §3.2), where Dη(σ) is the differential of the map -η(σ) and
/\nDη{σ) is its n-exterior product. The precise formulation of the generalized
Hamilton's principle is

THEOREM 5. Assume that W(t; x, y, S) is a varifold solution of the equations
(1.1) and (1.2) and that it satisfies the assumptions (Al), (A2) and (A3). Then

(7.10) -j^

Proof. We first calculate the position wa(t, x) corresponding to the varifold
η(σ)*W(t;xf y, S), that is,

(7.11) wσ(t, x)=\im w%t, x),

where

( yvn+i{S)d(η(σ)*W(t;z, y, S))

(7.12) w%t9 x)^Jl^H^G __ .
Vn+i(S)d(r)(σ)*W(t;z, y, S))

JB(x,p)xRxG

We have for any x e f l and io>0,

(7.13) ( yvn+i(S)d(η(σ)*W(t;z, y, S))
J B(x, p) xRxG

= ( (y+σφ(t, z))vn+1(Dη(σ)S)\AnDη(σ)]dW(t;lz, y, S).
JB(x, |θ) xRxG

Using assumptions (Al) and (A3), we see that this is equal to

(7.14) j a ( β p)xRxa(u(t> z)+eψit, z))vn+1{Dη{σ)S)\/VDη{σ)\dW{t; z, y, S).

Similarly, we have

(7.15) ( vn+ι(S)d{η{σ),W{t;z,y,S))
JB(x, p) xRxG

W(t;z, y, S).

It follows from (7.11), (7.12), (7.13), (7.14) and Besicovitch's theorem that

(7.16) wσ(t, x) = w(J, x)J

Γσφ(t, x),
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at almost every x^Ω with respect to the measure μ such that for any Borel
subset BdΩ

μ(B)^BχRχGVn+1(Dr](σ)S)\AnDη(σ)\dW(t;x, y} S).

We claim that (7.16) holds at Lw-almost all x in Ω. To prove this we shall
show that an n-dimensional vector subspace S e G satisfies vn+1(Dη(σ)S)—0 if
and only if vn + 1(S)=0. Assume that vn+1(S)Φθ. Then we can choose a basis
Vi, vt, —, vn of S so that v1=e1+β1en+1, V2^=e2+β2en+1, •••, vn=en+βnen+u

where et, z=l, 2, •••, n, is the unit vector parallel to the * Γ axis and en+1 is

the unit vector parallel to the y-axis. Since Dη(σ)Vi=ei+(βi+σ-~—φ(f, x))en+u

we have

with some ^ G Λ ^ ' T . This implies that vn+1(Dη(σ)S)Φθ. Similarly we can
prove that vn+1(Dη(σ)S)=0 if vn + 1(S)=0.

Since \AnDη{σ)\ never vanishes, we see that

O=μ(B)=^BχR^vn+1(Dη(σ)S)\AnDη(σ)\dW(t;x, y, S)

if and only if

Ln(B)=\ vn+i(S)dW(t;x9y,S)=0.
JβxβxG

This proves that (7.16) holds for Ln-almost every x in Ω. Thus we have

(7.17) A{η{σ)*W)=^dt^o\DMt, x)+σDtφ(t, x)\*dx

dσ
We now calculate the variation —;—A(r)(σ)*W)\a=Q- First we have

dσ

( 7 1 8 ) •

; x, y, S).

Next we describe the variation of the second term of the right hand side of
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(7.17). Let ή(x, y)=Dση(σ)(x, y)\σ=o=(O, 0, •••, ψ(t, x)) be the vector field which
is the tangent at σ=0 to the 1-ρarameter family of diffeomorphisms η(σ). We
know that (cf. Allard [1], §3.3)

(7.19) -J^\ΩxRxG

d{7]{σ)*W){t; x> y> S)'

Σ Dkψ(t, x)vk{S)vn+1(S)dW{f, x, y, S).
ΩxRxβ k=i

Consequently

(7.20) -^-{A{η{σ)*W))\σ=<s

= \Tdt\ Γήφ{t, x)yvn+1(S)dW(t; x, y, S)
Jo JΩXRXG

+ \Tdt[n Σ Dkψ(t, x)vk{S)vn+1{S)dW{t x, y, S).
JO JΩxRxG k=l

Since W{t; x, y, S) is a varifold solution of (1.1), (1.3) and ^(0, x) = Dtφ(0, x)=0,
the right hand side vanishes by virtute of (3.3). We have

Theorem β is proved.
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