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1. Introduction.

Let (Ω, J,, P) be a probability measure space, X a real separable Banach
space and X* its topological dual space. In this paper we look into the relation
between the convergence of a sequence ( f j ^ i of random variables with values
in X (for short, random elements) and the convergence of the associated sequence
((ξn> fy)nzu f^X*> of real random variables. In [8], when X is a Hubert
space, the author has treated this problem for mean square convergence with
the aid of covariance operators or more specifically, with the aid of the relative
compactness of covariance operators with respect to the trace norm. In Chevet-
Chobanjan-Linde-Tarieladze [1, 10] they showed that covariance operators on
Banach spaces introduced in Vakhania [14] are nuclear operators which were
defined by Grothendieck [6]. This leads us to consider the following

PROPOSITION (A) ζn converges in L2(Ω X) if and only if the following two
conditions are satisfied:

(a) For each / G I * , <fn, /> converges in L2(Ω;R), where R is the real
line.

(b) The set {Rςn}of covariance operators is relatively compact with respect
to the nuclear norm.

This Proposition (A), however, is not valid in general. The purpose of this
paper is to find necessary and sufficient conditions on the structure of Banach
spaces in order that the Proposition (A) holds.

In section 2 we shall give some definitions and preliminary results. In
Section 3 we shall show that the Proposition (A) is not valid unless X is
isomorphic to a Hubert space. This result will be proved by an isomorphic
characterization of Hubert spaces which was obtained by Kwapieή [9]. In
Section 4 we shall also prove that the Proposition (A) holds only for Gaussian
random elements if and only if X is of type 2.
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text of this paper and gave him some useful comments.

2. Preliminaries.

Let I b e a real separable Banach space, Z * its topological dual space and
B(X) the Borel field of X. By a random element in X defined on a basic
probability space (Ω, Jί, P) we mean a measurable mapping ξ: (Ω, Jί)—>(X, 1B(X)).
Every random element ξ induces on (X, B(X)) the probability measure μ^P ζ'1

which is called its distribution. Let μ be a probability measure on X. The
characteristic functional of μ is defined by

/K/)=l exp{z<*, f)}μ(dx), / G Z *

We say that a sequence (μn)n^i of probability measures on Z converges weakly
if there exists a probability measure μ on X such that

\ ^(x)/iTO(d*)-M φ(x)μ{dx) as n->oo
J -X" J X

for every bounded continuous real function φ on X It is well known ([12]) that
the topology on probability measures determined by the above weak convergence is
metrizable by Prokhorov metric. A set {ξa} of random elements in X is said
to be uniformly tight if for each ε>0, there exists a compact subset Cε of X
such that

μξa(Cs)>l-ε for all a.

Let us recall that a subset A of a metric space is said to be relatively compact
if every sequence in A contains a convergent subsequence. According to [12]
the set {ζa} is uniformly tight if and only if the set {μξj is relatively compact
with respect to Prokhorov metric.

Denote by L2(Ω X) the Banach space of all random elements in X which
satisfy

£(ω)||2P(ώϋ)<oo,

where E denotes the expectation with respect to P. We shall also denote by
M(Ω X) the Frechet space of all random elements in X with the metric p
given by

We say that a sequence (ξn)n>i converges in probability if there exists a
ζeM(Ω; X) such that p(ζn, £)->0 as n-^co. It is well known that ξn converges
in probability to ξ if and only if, for each ε>0, jP(||£n—ίll^ε)—>0 as n->oo. Most
of the relations which exist among the various modes of convergence for real
random variables are also valid for random elements. For instance, almost sure
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convergence or convergence in L2(Ω X) imply convergence in probability, and
convergence in probability implies weak convergence, and hence uniform tightness.
When X is the real line we abbreviate L2(Ω;X) and M(Ω X) to L2{Ω) and
M(Ω) respectively. A random element ξ in X is said to be Gaussian if for each
/ e l * <£, /> is a (possibly degenerate) real Gaussian random variable on (Ω,
Jί, P). Every Gaussian random element belongs to L2(Ω X) (see Fernique [5]).

Let Xt Y be Banach spaces. A linear operator T : X—>Y is said to be nuclear
if it admits the representation

where / έ e l * , ^ G F and ΣϊUIIΛIIII^jfclK00. The greatest lower bound of the
sum Σ?=ill/*l| WyΛ <CXD taken over all possible representations of the operator T
is called the nuclear norm of T and denoted by v(T) (see [6]). We shall denote
by tn(X, Y) the Banach space of all nuclear operators from X into Y with the
nuclear norm v( ) A linear operator R:X*—>X is said to be positive if
<Rf, / > ^ 0 for all / G I * and symmetric if </?/, g> = <Rg, /> for all /,
According to [1, 10], for every ξ^L2(Ω; X) there exist a ra<?αn
and a covariance operator R%<E.71(X*3 X) such that

and

Then Rξ is positive and symmetric, and has the estimate

Let (γn)nzi be a sequence of independent standard Gaussian random variables.
A Banach space X is said to be of type 2 if for each sequence (xn)n^i in X with
the property Σ~=ill*7ilΓ<°°, the series Σ~=iΓτΛ is convergent a. s. (=almost
surely) and is said to be of cotype 2 if for each sequence (xn)n*i satisfying that
the series Σ™=iϊnXn is convergent a.s., we have always Σn=ill^nll2<o°. For
instance, the spaces lp, Lv (2SP<°°) are of type 2 and they are of cotype 2
when l^p^2. We know that if X is of type 2 and of cotype 2 then it is
isomorphic to a Hubert space (see [9]).

3. Characterization of Hubert spaces.

We now characterize Hubert spaces by mean square convergence of random
elements.

THEOREM 1. For a real separable Banach space X, the following assertions
(l)-(3) are equivalent:

(1) X is isomorphic to a Hilbert space.
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(2) For any subset K of mean-zero random elements in L2{Ω X), K is
relatively compact if {and only if) the following two conditions are satisfied

(a) For each f^X*, the set {<f, /> ξ^K] is relatively compact in L2{Ω).
(b) The set {Rζ; ζ^K} is relatively compact in m{X*, X).

(3) For any sequence {ζn)n>i of mean-zero random elements in L2{Ω X), ξn

converges if {and only if) the following two conditions are satisfied
(c) For each / e l * , <jξn, /> converges in L2{Ω).
(d) The set {Rξn} is relatively compact in m{X*, X).

We need the following two results to prove Theorem 1.

THEOREM Jί ([8; Proposition 1]). Let H be a real separable Hilbert space
with inner product (•,•)• A set KcL2{Ω H) is relatively compact if and only
if the following two conditions are satisfied:

(a) For each x^H, the set {{ξ, x); ξ^K} is relatively compact in L2{Ω).
(b) The set {mς; ξ^K} is relatively compact in H and the set {Rξ; ξ^K)

is relatively compact in Jl{H, H) {i. e. the space of all trace class operators on H).

The following lemma follows immediately from the definition of the nuclear
norm and we state it without proof.

LEMMA 1. Let X be a real separable Banach space and ξ^L2{Ω\ X). Then
we have for every

Proof of Theorem 1. The implication (1)=H2) follows from Theorem JC.
(2)=H3) It sufficies to show that ζn converges in L2{Ω X) if we assume con-
ditions (c) and (d). Since {ξn} satisfies the conditions (a) and (b) of the assump-
tion (2) we see that the set {ξn} is relatively compact in L2{Ω X). Now we
shall assume that ξn is not convergent. From this and the relative compactness
of the set {ξn} we can find two subsequences (ξn>) and (ξn.) converging in
L2{Ω;X) to distinct elements & and ξ2 respectively. Then from (c) it follows
that for each / E I * we have <£i(ω), /> — <£2(ω), /> a. s. On the other hand,
since X is separable, by the Hahn-Banach theorem we can find a countable
subset {gk} of X* which separates points in X. Then the standard argument
shows that there exists a P-null set TV such that, if ω&N, <£i(ω), ̂ ^ ( ^ ( ω ) , gk}
for all k^l. Thus £i=£ 2 a. s. and this is a contradiction.

(3)=H1): From the result of [9] we shall prove that X is of type 2 and of
cotype 2. First we prove that X is of type 2. Let {xι)i^1 be a sequence in X
such that

(3.1)

and we define mean-zero Gaussian random elements as follows:
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n

ι=l

where (fO^i is a sequence of independent standard Gaussian random variables.
Then by a routine calculation using the fact that

1 if t=j
(3.3)

0 if iφj
we have

RξJ=Έ<x»f>xt, /eX* (3.4)

Then (ξn)nzi satisfies the conditions (c) and (d) of the assumption (3). To see
this it is sufficient to show that «£ n , / » n S i is a Cauchy sequence in L2(Ω) for
every / e Z * and (Rςn)nai is also a Cauchy sequence in m(X*, X). By (3.3) we
have for each / G I * and all integers

E\<ξn, />-<£«, / > l 2 -

r, ^

= Σ <χ t,/> 2^ll/ll 2 Σ llxill2. (3.5)

On the other hand, by (3.4) we have for all n>?n^l

{Rtn-RtJf=%±+<Xuf>Xι.

Therefore from the definition of the nuclear norm we get

(3.6)

Thus by (3.1), (3.5) and (3.6) we see that «£ n , / » n s l and (Rξn)n*i are Cauchy
sequences in L2(Ω) and in Jl(X*, X) respectively. Therefore (fJnsi satisfies
conditions (c) and (d), so that ξn^Έi^ϊiXi converges in L2(Ω;X) by the
assumption (3). Consequently, using Itό-Nisio's theorem [7], Σ£=i?\^ is con-
vergent a. s., that is, X is of type 2.

Next we prove that X is of cotype 2. Assume that there exists a sequence
(xι)i^1 such that ΣS=iΓtχt is convergent a. s., but ΣΓ=ilUiH2=o°. If we set
β*=ΣJ=ill*tll2 then αfe->co and also Σ£=ilk*ll2/β£ — °°. Define a sequence (ζk)k*i
of independent mean-zero random elements in L2(Ω X) with distributions such
that

dk
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Then, by the Borel-Cantelli lemma, ζk does not converge to 0 a. s. so that

n= Σ ζ * diverges a. s. (3.7)

Let us consider the sequence ( f j ^ i of mean-zero Gaussian random elements
defined by (3.2). Then, since ξn—Σ?=i7ιXι is convergent a. s., by [3; Theorem
1] Rξn converges in ϋl(X*, X), and hence the set {RξJ is relatively compact in
U2(X*t X). On the other hand, from (3.4) and Lemma 1 we have for all

so that

, /> 2
is convergent. (3.8)

Now we show that (ηn)n>i defined by (3.7) satisfies the conditions (c) and (d) of
the assumption (3). To see this it sufficies to show that ((ηn, /» n *i is a
Cauchy sequence in L2(Ω) for every f^X* and the set {RVn} is relatively
compact in Jl(X*, X). A routine calculation using the fact that

0

shows that for each / G I * and all integers

E\<ηn, f>-<ηn, f>\2=E

— Σ

if t=j

if
(3.9)

Σ <
k — m + i

We see from (3.8) that {{ηn, f))n>i is a Cauchy sequence in L2(Ω). On the
other hand, by (3.4) and (3.9) it is easy to show that Rξn—RVn for all nΞ>l.
From this and the relative compactness of the set {RξJ, the set {RηJ must be
relatively compact in Όl(X*f X). Thus from the assumption (3) it follows that
^7i—Σ?=iζ* is convergent in L2(Ω X). Consequently, by Itδ-Nisio's theorem
[7], ΣS=iζfe is convergent a. s. and this contradicts (3.7). The proof is now
complete.

4. Characterization of Banach spaces of type 2.

We now turn to characterization of Banach spaces of type 2 by the con-
vergence in probability of (mean-zero) Gaussian random elements. Let X be
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a real separable Banach space. A subset G of X* is said to be total if G
separates points in X, that is, <x, g>=0 for all g^G implies x=0. Before
formulating Theorem 2 below we shall prove the following results of interest
in themselves.

LEMMA 2. Let {ζn)n>i be a sequence in M(Ω X). Then ξn converges in
probability if and only if the following two conditions are satisfied

(a) For each g^G, (ξn, g} converges in probability, where G is a total
subset of Z*.

(b) The set {ξn} is uniformly tight.

Proof. The proof of the necessity is obvious. We proceed by a variation
of an argument in [7 p. 38] in order to prove the sufficiency. Let us denote
the distributions of ξn—ζm by μmn, m, n ^ l . Then from (b) it is easy to show
that the set {μmn'> m, n^l} is uniformly tight. We shall now prove that ξn

converges in probability. Suppose to the contrary that there exist ε>0 and a
subsequence (μm>n') such that

μm'w(Bε)^l-ε for all m', n',

where Bε denotes the open ε-neighborhood of the origin in X. Since {μmn\ is
uniformly tight, we can assume that μm'U' converges weakly to a probability
measure μ on X, so that

μ(Bε)^hm inf μn'n'(Bs)^l-ε . (4.1)
m ' -»°o
n' -»co

On the other hand we have

ί^(/)=£[exp(ί<fn^-em^ /»], / e Γ . (4.2)

If we denote by S(G) the linear subspace spanned by G in X* then it is easy
from (a) to show that <£Λ'—£TO'> /> converges to 0 in probability for every
f^S(G). Consequently, letting m\ n'->oo in (4.2), we have fi(f) — l for every
/eS(G), so that μ concentrates at the origin in X by Perlman [11; Theorem
9]. This contradicts (4.1) and the proof is now complete.

COROLLARY 1. A set KcM(Ω X) is relatively compact if and only if the
following two conditions are satisfied:

(a) For each g^G, the set {<£, g}; ξ^K\ is relatively compact in M(Ω)t

where G is a total subset of X*.
(b) K is uniformly tight.

Proof. The proof of the necessity is obvious. To prove the sufficiency, let
(£n)τ»2i be an arbitrary sequence in K, and show that (ξn)nzi contains a sub-
sequence converging in probability. Since X is separable, by the Hahn-Banach
theorem we can get a countable total subset G of X*. By (a), using a diagonal
selection argument, we can find a subsequence (ξn>) such that for each
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<ίv> g> converges in probability. On the other hand, it is obvious from (b)
that the set {ξn>} is uniformly tight. Thus ξn> converges in probability since
(ξn>) satisfies the conditions (a) and (b) of Lemma 2. The proof is now complete.

We say that a Banach space X has the approximation property if, for every
compact set C in X and every ε>0, there is a continuous linear operator T :
X-+X of finite rank such that \\Tx—x\\^ε for every x e C . Though, by Enflo's
example, not all Banach spaces enjoy this property, many spaces, for instance,
lp> Lp (l^p^oo) and C[0, 1], have enough structure to allow this approxi-
mation by operators of finite rank. (See [6] and Diestel-Uhl [4].)

Let ξ and ξn, n = 1, 2, •••, be mean-zero Gaussian random elements. It is
known in [3] that limn^oov(Rςn—Rς)=0 if μξn converges weakly to μξ, but
the converse implication is not valid in general. However, we have the follow-
ing theorem which was given by Chevet.

THEOREM C ([2]). For a real separable Banach space X which has the
approximation property, the following assertions (l)-(3) are equivalent:

(1) X is of type 2.
(2) For any set K of mean-zero Gaussian random elements in X, K is uni-

formly tight if (and only if) the set {Rξ; ξ<^K\ is relatively compact in U7(X*, X).
(3) For any sequence (£n)n*o of mean-zero Gaussian random elements in X,

μξn converges weakly to μξo if (and only if) \imn^oov(Rξn—RξQ)=0.

For the case of convergence in probability we have the following:

THEOREM 2. For a real separable Banach space X which has the approxi-
mation property, the following assertions (l)-(3) are equivalent:

(1) X is of type 2.
(2) For any set K of mean-zero Gaussian random elements in X, K is

relatively compact in M(Ω X) if (and only if) the following two conditions are
satisfied:

(a) For each / G I * , the set {(ξ, />; ξ^K} is relatively compact in M(Ω),
(b) The set {Rξ; ξ^K) is relatively compact in m(X*, X).

(3) For any sequence (ξn)nzi of mean-zero Gaussian random elements in Xy

ξn converges in probability if (and only if) the following two conditions are
satisfied:

(c) For each / ε Z * , <£n, /> converges in probability.
(d) The set {RξJ is relatively compact in m(X*, X).

Proof. The implication (1)=Φ(2) follows from Theorem C and Corollary 1.
(2)=H3): We proceed in a way similar to the proof of the implication (2)=φ(3) of
Theorem 1. (3)=H1): We have already shown this in the proof of the implication

of Theorem 1.
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