ASYMPTOTIC BEHAVIOR OF CERTAIN SMALL SUBHARMONIC FUNCTIONS IN $\{$ Re $z>0\}$

By Hideharu Ueda

1. Notation.

Let \boldsymbol{C} be the complex plane. If $u(z)$ is subharmonic in a region $\Omega \subset \boldsymbol{C}$, we put

$$
M(r, u)=\sup _{\substack{12=\pi \\ z \in \Omega}} u(z)
$$

Let $\partial \Omega$ be the boundary of Ω. If $\zeta \in \partial \Omega$ and $u(z)$ is subharmonic in Ω, we define

$$
u(\zeta)=\lim _{\substack{z \rightarrow \zeta \\ z \in \mathscr{Q}}} \sup u(z) .
$$

2. Statement of Theorem.

In our previous paper [4], the following result is proved.
Theorem A. Let $u(z)$ be subharmonic in $\{\operatorname{Re} z>0\}$. If $u(z)$ satisfies the conditions

$$
\begin{equation*}
u(0)<\infty \tag{2.1}
\end{equation*}
$$

and
(2.2) $u(i y) \leqq M^{+}(|y|, u)-\pi^{2} \sigma \quad(-\infty<y<+\infty, y \neq 0 ; \sigma: a$ posittve constant $)$, then either $u(z) \leqq-\pi^{2} \sigma$ in $\{\operatorname{Re} z>0\}$ or

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{M(r, u)-4 \sigma(\log r)^{2}}{\log r}=\alpha \quad(-\infty<\alpha \leqq+\infty) . \tag{2.3}
\end{equation*}
$$

It seems to be interesting to investigate the asymptotic behavior of the subharmonic functions in $\{\operatorname{Re} z>0\}$ satisfying the conditions (2.1), (2.2) and (2.3) with a finite number α. In this note we prove

Theorem. Suppose that $u(z)$ is subharmonic in $\{\operatorname{Re} z>0\}$ and satisfies (2.1), (2.2) and (2.3) (where α is finite) with a surtable positive number σ. Suppose further that for any $r>0$ there exists z_{r} such that

$$
\begin{equation*}
\left|z_{r}\right|=r, \quad u^{+}\left(z_{r}\right)=M^{+}(r, u), \quad\left|\arg z_{r}\right| \leqq \delta<\pi / 2, \tag{2.4}
\end{equation*}
$$

where δ is independent of r. Then

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ r e i \theta} E} \frac{u\left(r e^{i \theta}\right)-4 \sigma(\log r)^{2}}{\log r}=\alpha, \tag{2.5}
\end{equation*}
$$

uniformly for $\theta \in(-\pi / 2, \pi / 2)$, where the exceptional set E can be covered by disks $\left\{B_{i}\right\}$ such that if r_{2} is the radius of B_{2} and R_{2} is the distance from the center of B_{2} to the origin, then

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(r_{i} / R_{\imath}\right)<\infty . \tag{2.6}
\end{equation*}
$$

3. Introduction of several functions.

In what follows we assume that $M(e, u) \leqq 0$. But this may be achieved without loss of generality to our result by replacing u by $u-M(e, u)$, if necessary. As we have shown in [4, Lemma 2], the assumptions (2.1) and (2.2) imply that $M^{+}(r, u)$ is nondecreasing for $r>0$. From this and (2.3) with a finite number α we deduce that

$$
\begin{equation*}
\Phi(x)=\frac{M^{+}\left(e^{x}, u\right)-4 \sigma\left(x^{+}\right)^{2}}{x} \in L^{\infty}(-\infty,+\infty) \tag{3.1}
\end{equation*}
$$

Now, set

$$
\begin{equation*}
\Psi(x)=M^{+}\left(e^{x}, u\right)-4 \sigma\left(x^{+}\right)^{2}=x \Phi(x) \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
K_{1}(x)=\frac{1}{\pi} \frac{1}{\cosh x}, \quad K_{2}(x)=x K_{1}(x) \tag{3.3}
\end{equation*}
$$

and

$$
N_{j}(x)=\left\{\begin{array}{rc}
\int_{x}^{\infty} K_{j}(y) d y & (x>0) \tag{3.4}\\
-\int_{-\infty}^{x} K_{j}(y) d y & (x<0)
\end{array}(j=1,2)\right.
$$

Then by (3.3) and (3.4)

$$
\begin{equation*}
N_{j}(x) \in L^{1}(-\infty,+\infty) \quad(j=1,2) \tag{3.5}
\end{equation*}
$$

This together with (3.1) yields

$$
\begin{align*}
\left|\Phi * N_{j}(x)\right| & =\left|\int_{-\infty}^{+\infty} \Phi(x-y) N_{j}(y) d y\right| \tag{3.6}\\
& \leqq \sup _{-\infty<x<+\infty}|\Phi(x)| \cdot \int_{-\infty}^{+\infty}\left|N_{j}(y)\right| d y=C_{j}<\infty \quad(j=1,2)
\end{align*}
$$

4. Two lemmas on convolution inequalities.

First, concerning $\Psi * K_{1}(x)$ we have the following estimate.
Lemma 1. $\Psi * K_{1}(x)>\Psi(x)$ for all large x.
Proof. Set

$$
\begin{equation*}
v(z)=\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{x}{x^{2}+(y-t)^{2}}\left\{M^{+}(|t|, u)-\pi^{2} \sigma\right\} d t \quad(z=x+\imath y), \tag{4.1}
\end{equation*}
$$

where we interpret $M^{+}(|t|, u)$ for $t=0$ as 0 . From Lemma 2 in [4] and (2.3) we see that $M^{+}(|t|, u)-\pi^{2} \sigma$ is continuous for $-\infty<t<+\infty$ and that $\left\{M^{+}(|t|, u)\right.$ $\left.-\pi^{2} \sigma\right\} /\left(1+t^{2}\right)$ is integrable for $-\infty<t<+\infty$. Thus $v(z)$ is the harmonic function in $\{\operatorname{Re} z>0\}$ taking boundary values $v(i y)=M^{+}(|y|, u)-\pi^{2} \sigma(-\infty<y<+\infty)$. From (4.1) $v(z)$ clearly satisfies

$$
\begin{equation*}
M(r,-v) \leqq \pi^{2} \sigma . \tag{4.2}
\end{equation*}
$$

Let $W(z)$ be the harmonic function in $H=\{\operatorname{Re} z>0\} \cap\{|z|<e\}$ whose boundary values are $W\left(e^{1+i \theta}\right)=0(-\pi<\theta<+\pi), W(i y)=-\pi^{2} \sigma(-e<y<+e)$. Then $u(z)$ $-W(z)$ is subharmonic in H and satisfies $\sup _{z \in H}(u(z)-W(z))<+\infty,(u-W)(\zeta) \leqq 0$ $(\zeta \in \partial H, \zeta \neq 0, \zeta \neq \pm i e)$. Hence the Phragmén-Lindelöf maximum principle gives $u(z) \leqq W(z)(z \in H)$, so in particular,

$$
\begin{equation*}
u(0)=\lim _{\substack{z \rightarrow 0 \\ z \in H}}^{\sup } u(z) \leqq \lim _{\substack{z \rightarrow H \\ z \in H}} \sup ^{\prime} W(z)=-\pi^{2} \sigma=v(0) . \tag{4.3}
\end{equation*}
$$

Now, we put $p(z)=v(z)-u(z)$. Clearly $-p(z)$ is subharmonic in $\{\operatorname{Re} z>0\}$. From (2.2) and (4.3) $-p(i y) \leqq 0 \quad(-\infty<y<+\infty)$. Also, from (2.3) and (4.2) $\liminf _{r \rightarrow \infty} M(r,-p) / r=0$. Thus the Phragmén-Lindelöf theorem (cf. [3, p 111$]$) gives

$$
\begin{equation*}
u(z) \leqq v(z) \quad(\operatorname{Re} z>0) \tag{4.4}
\end{equation*}
$$

As in the proof of (1.9) in [4, p 150], we note from Lemma 2 in [4] that

$$
\begin{equation*}
M(r, v)=v(r) \quad(r>0) . \tag{4.5}
\end{equation*}
$$

In view of (4.1), (4.4) and (4.5)

$$
\begin{equation*}
M(r, u) \leqq v(r)=\frac{2}{\pi} \int_{0}^{\infty} \frac{r}{r^{2}+t^{2}}\left\{M^{+}(t, u)-\pi^{2} \sigma\right\} d t . \tag{4.6}
\end{equation*}
$$

Moreover a residue calculation yields

$$
\begin{equation*}
\int_{0}^{\infty} \frac{r}{r^{2}+t^{2}}(\log t)^{2} d t=\frac{\pi}{2}(\log r)^{2}+\frac{\pi^{3}}{8}, \tag{4.7}
\end{equation*}
$$

and combining (4.6) and (4.7), we obtain

$$
\begin{align*}
M(r, u)-4 \boldsymbol{\sigma}(\log r)^{2} & \leqq v(r)-4 \boldsymbol{\sigma}(\log r)^{2} \tag{4.8}\\
& <\frac{2}{\pi} \int_{0}^{\infty} \frac{r}{r^{2}+t^{2}}\left\{M^{+}(t, u)-4 \boldsymbol{\sigma}\left(\log ^{+} t\right)^{2}\right\} d t
\end{align*}
$$

Hence by (2.3) for all large r
(4.9) $\quad M^{+}(r, u)-4 \sigma\left(\log ^{+} r\right)^{2}<\int_{0}^{\infty} \frac{2}{\pi} \frac{1}{(r / t)+(t / r)}\left\{M^{+}(t, u)-4 \sigma\left(\log ^{+} t\right)^{2}\right\} d t / t$.

By the change of variables $r=e^{x}, t=e^{y}$, we deduce from (3.2), (3.3), (4.8) and (4.9) that for all large x

$$
\begin{equation*}
\Psi(x)=M^{+}\left(e^{x}, u\right)-4 \sigma\left(x^{+}\right)^{2} \leqq v\left(e^{x}\right)-4 \sigma\left(x^{+}\right)^{2}<K_{1}^{*} \Psi(x)=\Psi * K_{1}(x) . \tag{4.10}
\end{equation*}
$$

Our second lemma is
Lemma 2. $\left|\int_{x}^{y}\left\{\Phi * K_{1}(t)-\Phi(t)\right\} d t\right|<2 C_{1},\left|\int_{x}^{y} \Phi * K_{2}(t) d t\right|<2 C_{2}$, where C_{1} and C_{2} are constants which appear in (3.6).

Proof. We compute $\int_{x}^{y} \Phi * K_{j}(t) d t(j=1,2)$. Set $F(x)=\int_{0}^{x} \Phi(t) d t$. Then, using the Fubini's theorem, we have

$$
\begin{align*}
\int_{x}^{y} \Phi * K_{j}(t) d t= & \int_{-\infty}^{+\infty} K_{j}(u)\left(\int_{x}^{y} \Phi(t-u) d t\right) d u \tag{4.11}\\
= & \int_{-\infty}^{+\infty} K_{j}(u)\{(F(y-u)-F(y))-(F(x-u) \quad F(x))\} d u \\
& +\int_{x}^{y} \Phi(t) d t \cdot \int_{-\infty}^{+\infty} K_{j}(u) d u
\end{align*}
$$

From (3.3) we see at once that

$$
\begin{equation*}
\int_{-\infty}^{+\infty} K_{1}(t) d t=1, \quad \int_{-\infty}^{+\infty} K_{2}(t) d t=0 \tag{4.12}
\end{equation*}
$$

The first term of the right hand side of (4.11)-which we denote by $I_{j}(x, y)$ requires further attention. Using the Fubini's theorem again, we deduce from (3.4) that

$$
\begin{align*}
I_{j}(x, y)= & \int_{-\infty}^{0} K_{\jmath}(u)\left(\int_{u}^{0} \Phi(y-t) d t\right) d u-\int_{0}^{+\infty} K_{j}(u)\left(\int_{0}^{u} \Phi(y-t) d t\right) d u \tag{4.13}\\
& -\int_{-\infty}^{0} K_{j}(u)\left(\int_{u}^{0} \Phi(x-t) d t\right) d u+\int_{0}^{+\infty} K_{j}(u)\left(\int_{0}^{u} \Phi(x-t) d t\right) d u \\
= & -\int_{-\infty}^{0} \Phi(y-t)\left(-\int_{-\infty}^{t} K_{j}(u) d u\right) d t-\int_{0}^{+\infty} \Phi(y-t)\left(\int_{t}^{+\infty} K_{j}(u) d u\right) d t \\
& +\int_{-\infty}^{0} \Phi(x-t)\left(-\int_{-\infty}^{t} K_{j}(u) d u\right) d t+\int_{0}^{+\infty} \Phi(x-t)\left(\int_{t}^{+\infty} K_{j}(u) d u\right) d t \\
= & \Phi * N_{j}(x)-\Phi * N_{j}(y)
\end{align*}
$$

Combining (4.11)-(4.13), we obtain

$$
\begin{aligned}
& \int_{x}^{y}\left\{\Phi * K_{1}(t)-\Phi(t)\right\} d t=\Phi * N_{1}(x)-\Phi * N_{1}(y), \\
& \int_{x}^{y} \Phi * K_{2}(t) d t=\Phi * N_{2}(x)-\Phi * N_{2}(y)
\end{aligned}
$$

and so (3.6) yields

$$
\left\{\begin{array}{l}
\left|\int_{x}^{y}\left\{\Phi * K_{1}(t)-\Phi(t)\right\} d t\right|<2 C_{1} \tag{4.14}\\
\left|\int_{x}^{y} \Phi * K_{2}(t) d t\right|<2 C_{2}
\end{array}\right.
$$

5. Preliminary study on the behavior of $p(z)$ at infinity.

The following lemma is the key to the proof of the Theorem.
Lemma 3. Let $p(z)$ be the function defined in the proof of Lemma 1, and let $\delta \in(0, \pi / 2)$ be the number which appears in (2.4). Then, if $w(r)=\inf _{|\theta| \Sigma \delta} p\left(r e^{i \theta}\right)$,

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} \frac{w(t)}{t \log t} d t<\infty, \tag{5.1}
\end{equation*}
$$

where t_{0} is a positive constant such that $M\left(t_{0}, u\right)>0$.
Proof. Set $h(x)=\Psi * K_{1}(x)-\Psi(x)$. From (2.4), (4.5) and (4.10) it follows that

$$
w(t) \leqq p\left(z_{t}\right)=v\left(z_{t}\right)-u\left(z_{t}\right) \leqq v(t)-M^{+}(t, u)<\Psi * K_{1}(y)-\Psi(y)=h(y) \quad\left(e^{y}=t\right)
$$

for $t \geqq t_{0} \quad\left(y \geqq y_{0}=\log t_{0}>1\right)$. Thus, in order to show (5.1) it is enough to show that

$$
\begin{equation*}
\int_{y_{0}}^{+\infty} \frac{h(y)}{y} d y<\infty . \tag{5.2}
\end{equation*}
$$

In view of (3.2) and (3.3)

$$
\begin{aligned}
h(y) & =\int_{-\infty}^{+\infty}(y-t) \Phi(y-t) K_{1}(t) d t-y \Phi(y) \\
& =y\left\{\Phi^{*} K_{1}(y)-\Phi(y)\right\}-\Phi * K_{2}(y) .
\end{aligned}
$$

Hence for $x>y_{0}$

$$
\begin{equation*}
\int_{y_{0}}^{x} \frac{h(y)}{y} d y=\int_{y_{0}}^{x}\left\{\Phi * K_{1}(y)-\Phi(y)\right\} d y-\int_{y_{0}}^{x} \frac{\Phi * K_{2}(y)}{y} d y . \tag{5.3}
\end{equation*}
$$

By the mean value theorem there is a number $z \in\left[y_{0}, x\right]$ such that

$$
\begin{equation*}
\int_{y_{0}}^{x} \frac{\Phi * K_{2}(y)}{y} d y=\frac{1}{y_{0}} \int_{y_{0}}^{z} \Phi * K_{2}(y) d y . \tag{5.4}
\end{equation*}
$$

Combining (4.14), (5.3) and (5.4), we obtain

$$
\int_{y_{0}}^{x} \frac{h(y)}{y} d y<2 C_{1}+2 C_{2} \quad\left(x>y_{0}\right) .
$$

This together with (4.10) implies (5.2). This completes the proof of Lemma 2.
Next, we give the following two estimates.
Lemma 4.

$$
\begin{gather*}
\int_{\rho}^{+\infty} \frac{d r}{r^{2} \log r}>\frac{1}{\rho \log \rho}-\frac{1}{\rho(\log \rho)^{2}} \quad \text { for } \quad \rho>1 . \tag{5.5}\\
\int_{t_{0}}^{+\infty} \frac{d r}{\left(r^{2}+t^{2}\right) \log r}>\frac{\pi}{4 t \log t}-\frac{1}{t \log t_{0}} \tan ^{-1}\left(\frac{t_{0}}{t}\right) \quad \text { for } t \geqq t_{0} .
\end{gather*}
$$

where $t_{0}(>e)$ is the constant which appears in Lemma 3.
Proof. A change of variable in the integral yields

$$
\int_{\rho}^{+\infty} \frac{d r}{r^{2} \log r}=\int_{\log \rho}^{+\infty} u^{-1} e^{-u} d u
$$

Integrating by parts twice, we have

$$
\begin{aligned}
\int_{\rho}^{+\infty} \frac{d r}{r^{2} \log r} & =\frac{1}{\rho \log \rho}-\frac{1}{\rho(\log \rho)^{2}}+2 \int_{\log \rho}^{+\infty} u^{-3} e^{-u} d u \\
& >\frac{1}{\rho \log \rho}-\frac{1}{\rho(\log \rho)^{2}}
\end{aligned}
$$

since $\rho>1$. This shows (5.5).
Next, we integrate by parts to get
(5.7) $\quad \int_{t_{0}}^{+\infty} \frac{d r}{\left(r^{2}+t^{2}\right) \log r}=-\frac{1}{t \log t_{0}} \tan ^{-1}\left(\frac{t_{0}}{t}\right)+\frac{1}{t} \int_{t_{0}}^{+\infty} \frac{1}{r(\log r)^{2}} \tan ^{-1}\left(\frac{r}{t}\right) d r$.

For $r>t, \tan ^{-1}(r / t)>\pi / 4$, and since $t \geqq t_{0}$,

$$
\begin{equation*}
\int_{\tau_{0}}^{+\infty} \frac{1}{r(\log r)^{2}} \tan ^{-1}\left(\frac{r}{t}\right) d r>\frac{\pi}{4} \int_{t}^{+\infty} \frac{d r}{r(\log r)^{2}}=\frac{\pi}{4 \log t} . \tag{5.8}
\end{equation*}
$$

Combining (5.7) and (5.8), we deduce (5.6).
Now, from (4.4) the subharmonic function $u(z)-v(z)$ is nonpositive in $\{\operatorname{Re} z>0\}$. Using two representation theorems, one of F. Riesz and one of Herglotz (cf. Heins [3, Theorem 4.2]), we obtain

$$
\begin{equation*}
p(z)=v(z)-u(z)=\int_{-\infty}^{+\infty} \frac{x}{x^{2}+(y-t)^{2}} d \gamma(t)+\int_{\operatorname{Re} \zeta>0} g(z, \zeta) d \mu(\zeta) \quad(z=x+i y), \tag{5.9}
\end{equation*}
$$

where $\gamma(t)$ is an increasing function, μ is the Riesz measure of $-p(z)$ in $\{\operatorname{Re} z>0\}$ and $g(z, \zeta)$ is the Green's function for $\{\operatorname{Re} z>0\}$ with pole at ζ, namely

$$
g(z, \zeta)=\log \left|\frac{z+\bar{\zeta}}{z-\zeta}\right|
$$

The following notation will be preserved throughout the rest of this note: $z=x+i y=r e^{i \theta}(x>0), \zeta=\xi+i \eta=\rho e^{\imath \varphi}(\xi \geqq 0)$. Then it is easy to check that
(5.10) $g(z, \zeta)=\frac{1}{2} \log \left\{1+\frac{4 x \xi}{|z-\zeta|^{2}}\right\} \geqq \frac{2}{9} \frac{x \xi}{|z-\zeta|^{2}} \geqq \frac{2}{9} \frac{x \xi}{(\rho+r)^{2}} \geqq \frac{8}{81} \frac{x \xi}{r^{2}} \quad(\rho<r / 2)$
and

$$
g(z, \zeta) \leqq \frac{2 x \xi}{|z-\zeta|^{2}} \leqq \frac{2 x \xi}{(\rho-r)^{2}} \leqq \begin{cases}\frac{8 x \xi}{r^{2}} & (\rho<r / 2) \tag{5.11}\\ \frac{8 x \xi}{\rho^{2}} & (\rho>2 r)\end{cases}
$$

Here we claim the following

Lemma 5.

$$
\begin{align*}
& \int_{\left\{\rho<t_{0} \cap \cap(\xi>0\}\right.} \xi d \mu(\zeta)+\int_{\left\{\rho \geqq t_{0} \cap \backslash\{\gg 0\}\right.} \frac{\xi}{\rho \log \rho} d \mu(\zeta)<\infty \tag{5.12}\\
& \int_{|t|<t_{0}} d \gamma(t)+\int_{\mid t i \geq t_{0}} \frac{1}{|t| \log |t|} d \gamma(t)<\infty \tag{5.13}
\end{align*}
$$

Proof. From (5.1) and (5.9) we have

$$
\begin{equation*}
\int_{\tau_{0}}^{+\infty} \frac{1}{r \log r}\left\{\inf _{|\theta| \leqq \delta} \int_{\{\rho<r / 2\} \cap \mid 今<0\}} g(z, \zeta) d \mu(\zeta)\right\} d r<\infty \tag{5.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{t_{0}}^{+\infty} \frac{1}{r \log r}\left\{\inf _{|\theta| \leqq \delta} \int_{-\infty}^{+\infty} \frac{x}{x^{2}+(y-t)^{2}} d \gamma(t)\right\} d r<\infty \tag{5.15}
\end{equation*}
$$

After (5.5) and (5.10) are taken into account, (5.14) implies

$$
\begin{aligned}
\infty & >\int_{t_{0}}^{+\infty} \frac{1}{r \log r}\left\{\int_{\{\rho<r / 2\} \cap|\xi>0|} \frac{\xi}{r} d \mu(\zeta)\right\} d r \\
& =\int_{\left\{\rho<t_{0} / 2 \cap \cap \mid \xi>0\right\}} \xi\left\{\int_{t_{0}}^{+\infty} \frac{d r}{r^{2} \log r}\right\} d \mu(\zeta)+\int_{\left\{\rho \geqq t_{0} / 2 \cap \cap \mid \xi>0\right\}} \xi\left\{\int_{2 \rho}^{+\infty} \frac{d r}{r^{2} \log r}\right\} d \mu(\zeta) \\
& >\text { Const. }\left\{\int_{\left\{\rho<t_{0} / 2 \cap \cap\{\xi>0\}\right.} \xi d \mu(\zeta)+\int_{\left\{\rho \geqq t_{0} / 2 \cap \cap\{\xi>0\}\right.} \frac{\xi}{\rho \log \rho} d \mu(\zeta)\right\}
\end{aligned}
$$

which gives (5.12). For $|\theta| \leqq \delta \quad(<\pi / 2), \quad x /\left(x^{2}+(y-t)^{2}\right) \geqq((\cos \delta) / 2)\left(r /\left(r^{2}+t^{2}\right)\right)$ holds, and as $t \rightarrow \infty\left(\tan ^{-1}\left(t_{0} / t\right)\right) \log t \rightarrow 0$. Hence from (5.6) and (5.15) we deduce that

$$
\begin{aligned}
\infty & >\int_{t_{0}}^{+\infty} \frac{1}{r \log r}\left\{\int_{-\infty}^{+\infty} \frac{r}{r^{2}+t^{2}} d \gamma(t)\right\} d r \\
& =\int_{-\infty}^{+\infty}\left\{\int_{t_{0}}^{+\infty} \frac{d r}{\left(r^{2}+t^{2}\right) \log r}\right\} d \gamma(t) \\
& >\text { Const. } \int_{|t|<t_{0}} d \gamma(t)+\text { Const. } \int_{|t| \geq t_{0}} \frac{1}{|t| \log |t|} d \gamma(t)
\end{aligned}
$$

which gives (5.13).
6. Study on the behavior of $p(z)$ at infinity.

Let

$$
\begin{aligned}
& d \nu(\zeta)= \begin{cases}\frac{\xi}{1+\rho \log ^{+} \rho} d \mu(\zeta) & (\xi>0), \\
\frac{1}{1+|\eta|\left(\log ^{+}|\eta|\right)} d \gamma(\eta) & (\xi=0),\end{cases} \\
& K(z, \zeta)= \begin{cases}\left(1+\rho \log ^{+} \rho\right) g(z, \zeta) \xi^{-1} & (\xi>0), \\
\frac{x\left(1+|\eta| \log ^{+}|\eta|\right)}{|z-i \eta|^{2}} & (\xi=0),\end{cases}
\end{aligned}
$$

and set $\bar{D}=\{\operatorname{Re} z \geqq 0\}=\bar{D}_{1}(z) \cup \bar{D}_{2}(z) \cup \bar{D}_{3}(z)$ for $|z|=r>e$, where

$$
\begin{aligned}
& \bar{D}_{1}(z)=\bar{D} \cap\{\zeta ; \rho \leqq \log r\}, \\
& \bar{D}_{2}(z)=\bar{D} \cap\{\zeta ; \log r<\rho<2 r\}, \\
& \bar{D}_{3}(z)=\bar{D} \cap\{\zeta ; \rho \geqq 2 r\} .
\end{aligned}
$$

Further, define for $|z|>e$

$$
p_{j}(z)=\int_{\bar{D}_{j}(z)} K(z, \zeta) d \nu(\zeta) \quad(j=1,2,3)
$$

Then it is easily verified that

$$
\begin{equation*}
p(z)=p_{1}(z)+p_{2}(z)+p_{3}(z) \quad(|z|>e) \tag{6.1}
\end{equation*}
$$

and we deduce from Lemma 5 that

$$
\begin{equation*}
\int_{\bar{D}} d \nu(\zeta)<\infty . \tag{6.2}
\end{equation*}
$$

We first show
Lemma 6.

$$
\begin{equation*}
\lim _{r \rightarrow \infty} p_{1}(z) /(\log r)=0 \tag{6.3}
\end{equation*}
$$

uniformly for $\theta \in(-\pi / 2, \pi / 2)$.
Proof. Assume first that $r=|z|>e, \zeta \in \bar{D}_{1}(z)$ and $\xi>0$. Since $\rho \leqq \log r<$ $r / 2$ in this case, we have from (5.11) $g(z, \zeta) \leqq 8 x \xi / r^{2}$, and so $K(z, \zeta) \leqq 8(1+$ $\log r \log \log r) x / r^{2} \leqq 8(1+\log r \log \log r) / r$. Assume next that $r=|z|>e, \zeta \in \bar{D}_{1}(z)$ and $\xi=0$. Since $|\eta| \leqq \log r, \quad K(z, \zeta)<x(1+\log r \log \log r) /(r-\log r)^{2}<4(1+$ $\log r \log \log r) / r$. Hence

$$
(0 \leqq) p_{1}(z) \leqq \frac{8}{r}(1+\log r \log \log r) \int_{\bar{D}_{1}(z)} d \nu(\zeta),
$$

and thus from (6.2) we deduce that

$$
0 \leqq \frac{p_{1}(z)}{\log r} \leqq \text { Const. } \frac{\log \log r}{r} \longrightarrow 0 \quad(\text { as } r \rightarrow \infty)
$$

Similarly we have for $p_{3}(z)$
Lemma 7.

$$
\begin{equation*}
\lim _{r \rightarrow \infty} p_{3}(z) /(\log r)=0 \tag{6.4}
\end{equation*}
$$

uniformly for $\theta \in(-\pi / 2, \pi / 2)$.
Proof. Assume first that $r>e, \zeta \in \bar{D}_{3}(z)$ and $\xi>0$. From (5.11) it follows that $g(z, \zeta) \leqq 8 x \xi / \rho^{2}$, and so $K(z, \zeta) \leqq 8 x(1+\rho \log \rho) / \rho^{2}<12 x(\log \rho) / \rho<12 x(\log r) /$ $r \leqq 12 \log r$. Assume next that $r>e, \zeta \in \bar{D}_{3}(z)$ and $\xi=0$. Since $|\eta| \geqq 2 r, K(z, \zeta)$ $\leqq 4 x(1+|\eta| \log |\eta|) /|\eta|^{2}<6 \log r$. Hence we deduce from (6.2) that

$$
0 \leqq \frac{p_{3}(z)}{\log r} \leqq 12 \int_{\bar{D}_{3}(z)} d \nu(\zeta) \longrightarrow 0 \quad(\text { as } \quad r \rightarrow \infty)
$$

It remains to consider $p_{2}(z)$. Following Hayman [2], if $\varepsilon>0$ and $z \in\{\operatorname{Re} z>0\}$ are given, we say that the z is ε-normal (with respect to ν) provided that

$$
\begin{equation*}
\int_{\bar{D} \cap|\zeta,|\zeta-z|<h|} d \nu(\zeta)<\varepsilon h / r \tag{6.5}
\end{equation*}
$$

for $0<h \leqq r / 2$.
Lemma 8. If $z \in\{\operatorname{Re} z>0, r=|z|>e\}$ is ε-normal (with respect to ν), then

$$
\begin{equation*}
p_{2}(z)<\text { Const. }\left\{\varepsilon+\int_{\bar{D}_{2}(z)} d \nu(\zeta)\right\} \log r \text {. } \tag{6.6}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
\Omega_{n}=\left\{\zeta \in \bar{D}_{2}(z) ; 2^{n-1} x \leqq|z-\zeta|<2^{n} x\right\} \quad(n=0, \pm 1, \pm 2, \cdots) . \tag{6.7}
\end{equation*}
$$

Since z is ε-normal, $\nu(z)=0$, and thus

$$
\begin{equation*}
p_{2}(z)=\sum_{n=-\infty}^{+\infty} \int_{\Omega_{n}} K(z, \zeta) d \nu(\zeta)=\sum_{n=-\infty}^{+\infty} q_{n}(z) . \tag{6.8}
\end{equation*}
$$

Suppose first that $n \leqq-1$ and $\zeta \in \Omega_{n}$. From (6.7) we have $|x-\xi| \leqq|z-\zeta|<x / 2$ and $|z+\bar{\zeta}| \leqq|z-\zeta|+|\zeta+\bar{\zeta}|<x / 2+2 \xi<7 x / 2$ in turn. Using these estimates, we have $g(z, \zeta)<\log \left(7 / 2^{n}\right)$ and $\xi>x / 2$. Hence $K(z, \zeta)<(1+\rho \log \rho)(2 / x) \log \left(7 / 2^{n}\right)<$ $(6 r / x)(\log 2 r) \log \left(7 / 2^{n}\right)$. Also by (6.5), $\int_{\Omega_{n}} d \nu(\zeta)<\varepsilon 2^{n} x / r$. Thus

$$
\begin{equation*}
q_{n}(z)<6 \varepsilon(\log 2 r) 2^{n} \log \left(7 / 2^{n}\right) \quad(n \leqq-1) . \tag{6.9}
\end{equation*}
$$

Suppose next that $n \geqq 0$ and $\zeta \in \Omega_{n}$. If $\xi>0$, using (5.11) and (6.7), we have $K(z, \zeta) \leqq(1+\rho \log \rho) 2 x /|z-\zeta|^{2} \leqq 6 r(\log 2 r) /\left(2^{2 n-2} x\right)$. If $\xi=0, K(z, \zeta) \leqq x(1+2 r \log 2 r)$ $/\left(2^{2 n-2} x^{2}\right) \leqq 3 r(\log 2 r) /\left(2^{2 n-2} x\right)$. Then, if $2^{n} x \leqq r / 2$. we deduce from (6.5) that

$$
\begin{equation*}
q_{n}(z) \leqq 6 r(\log 2 r) /\left(2^{2 n-2} x\right) \cdot\left(\varepsilon 2^{n} x / r\right)=24 \varepsilon(\log 2 r) / 2^{n} \tag{6.10}
\end{equation*}
$$

On the other hand, if $2^{n} x>r / 2$, then

$$
\begin{equation*}
q_{n}(z) \leqq 6 r \log 2 r \frac{1}{2^{2 n-2} x} \int_{\Omega_{n}} d \nu(\zeta)<\frac{48}{2^{n}}(\log 2 r) \int_{\bar{D}_{2}(z)} d \nu(\zeta) . \tag{6.11}
\end{equation*}
$$

Combining (6.8)-(6.11), we obtain (6.6).
Now, from (6.2) and a result of Azarin [1] it follows that the set $\Delta(\varepsilon)$ of points not ε-normal (with respect to ν) may be covered by a system $F(\varepsilon)$ of disks $\left\{B_{k}\right\}$ whose radii $\left\{r_{k}\right\}$ and distances $\left\{R_{k}\right\}$ from their centers to the origin satisfy $\sum_{k=1}^{\infty}\left(r_{k} / R_{k}\right)<\infty$. Choose an increasing unbounded sequence $\left\{t_{n}\right\}$ of positive numbers such that $\int_{\bar{D}_{2}(2)} d \nu(\zeta)<1 / n$ for $|z|=r>t_{n}$ and $\sum_{R_{k}>t_{n}}\left(r_{k} / R_{k}\right)<1 / 2^{n}$ for a system $F(1 / n)$ of disks $\left\{B_{k}\right\}$. If $F\left(1 / n, t_{n}\right)$ is the set of disks whose radii appear in this sum, we put $F_{0}=\bigcup_{n=1}^{\infty} F\left(1 / n, t_{n}\right)$. Clearly the system F_{0} of disks satisfies (2.6). From (6.6) we deduce that

$$
\begin{equation*}
p_{2}(z) \leqq \text { Const. }(\log r / n) \quad\left(|z|>t_{n}, z \in\{\operatorname{Re} z>0\} \backslash F_{0}\right) . \tag{6.12}
\end{equation*}
$$

Thus (4.4), (5.9), (6.1), (6.3), (6.4) and (6.12) yield

$$
\begin{equation*}
\lim _{\substack{r \rightarrow \infty \\ z \notin E}} p(z) /(\log r)=0 \tag{6.13}
\end{equation*}
$$

uniformly for $\theta \in(-\pi / 2, \pi / 2)$, where the exceptional set E can be covered by F_{0}

7. Completion of the proof of the Theorem.

Given $\varepsilon>0$, define $U_{\varepsilon}(z)=v(z)-4 \sigma\left\{(\log r)^{2}-\theta^{2}\right\}-(\alpha+\varepsilon) \log r-K_{1}$, where K_{1} is a large positive constant. Clearly $U_{\varepsilon}(z)$ is harmonic in $\{\operatorname{Re} z>0\}$. In view of (2.3) and (4.1) $U_{\varepsilon}(i y) \leqq 0(-\infty<y<+\infty)$. Also $\liminf _{r \rightarrow \infty} M\left(r, U_{\varepsilon}\right) / r=0$. Hence from the Phragmén-Lindelöf theorem, we have

$$
\begin{equation*}
U_{\varepsilon}(z) \leqq 0 \quad(\operatorname{Re} z>0) . \tag{7.1}
\end{equation*}
$$

Similarly, if $\varepsilon>0$ is given and if we define $V_{\varepsilon}(z)=-v(z)+\max \left\{4 \sigma(\log r)^{2}-\right.$ $\left.4 \sigma \theta^{2}, 0\right\}+(\alpha-\varepsilon) \log ^{+} r-K_{2}$ with a large positive number K_{2}, then

$$
\begin{equation*}
V_{\varepsilon}(z) \leqq 0 \quad(\operatorname{Re} z>0) . \tag{7.2}
\end{equation*}
$$

Combining (7.1) and (7.2), we have

$$
\begin{equation*}
\lim _{r \rightarrow \infty} \frac{v\left(r e^{i \theta}\right)-4(\log r)^{2}}{\log r}=\alpha \tag{7.3}
\end{equation*}
$$

uniformly for $\theta \in(-\pi / 2, \pi / 2)$. Thus (2.5) follows from (5.9), (6.13) and (7.3). This completes the proof of the Theorem.

References

[1] Azarin, V., Generalization of a theorem of Hayman on subharmonic functions in an n-dimentional cone, Amer. Math. Soc. Transl. (2) 80 (1969) 119-138.
[2] Hayman, W.K., Questions of regularity connected with the Phragmén-Lindelöf principle, J. Math. Pures Appl. (9) 35 (1956) 115-126.
[3] Heins, M., Selected topics in the classical theory of functions of a complex variable, Holt, Rinehart and Winston, New York (1962).
[4] Ueda, H., On the growth of subharmonic functions in $\{\operatorname{Re} z>0\}$, Kodai Math. J. (2) 6 (1983) 147-156.

Department of Mathematics
Daido Institute of Technology
Daido-cho, Minami-ku, Nagoya, Japan

