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THE GAUSS IMAGE OF FLAT SURFACES IN R'

BY KAZUYUKI ENOMOTO

Let M be a surface of zero Gaussian curvature in R4 which has flat normal
connection. Let G2 ) 4 denote the Grassmann manifold consisting of oriented 2-
dimensional linear subspaces of R*. The Gauss map G:M->G2,4 is defined by
assigning each point of M to the tangent plane of M at the point.

In this paper we study the structure of the image of M by the Gauss map.
In [4], C. Thas showed that the Gauss image of a surface of zero Gaussian
curvature in R4 which has flat normal connection is flat. Theorem 1 gives a
further information on the structure of the Gauss image. Namely, under the

identification G2 4=S2(—•pz)χS2(—-=), the Gauss image of M is the Riemannian
W 2 ' W 2 /

product of two curves, one in the first factor of S2xS2 and one in the second
factor. We compute the geodesic curvatures of those curves and show that if
those curves are totally geodesic, then M is the Riemannian product of two
plane curves.

In §2, we give some local formulas for principal curvatures and show that
if certain functions defined from principal curvatures vanish everywhere, then
the surface is the Riemannian product of two plane curves. In § 3, we look at
G2 ) 4 and give some basic formulas. In §4, we prove our theorems for the
geometry of the Gauss image of M.

The author wishes to express his hearty thanks to Professor Hung-Hsi Wu
for many valuable suggestions.

1. Preliminaries.

Let M be a connected n-dimensional C°° Riemannian manifold and let ψ: M-*RN

be an isometric immersion of M into an TV-dimensional Euclidean space RN.
Let D and D denote the covariant differentiations of M and RN respectively.
Let X, Y be tangent vector fields on M. Then

(1.1) DXY=DXY+B(X, Y)

where B(X, Y) is the normal component of DXY.
Let ξ be a normal vector field on M. We write

(1.2) Dxζ=

Received November 13, 1984

19



20 KAZUYUKI ENOMOTO

where ΛξX and Dxξ are the tangential and normal components of Dxζ. Then
we have

(1.3) <AξX, Y>=<B(X, Y), ξ>

where <,> denotes the inner product of RN. The linear transformation Aξ on
the tangent bundle TM is called the shape operator of M with respect to ξ.
Since Aς is symmetric, i. e.

(1.4) <AξX, y> = <X, AξY>,

all eigenvalues of Aξ are real. An eigenvalue of Aς is called a principal curvature
with respect to ξ. An eigenvector of Aξ is called a principal vector with re-
spect to ξ.

Let R and i?-1 be the curvature tensors associated with D and D1 respec-
tively, i. e.

(1.5) R{X, Y)Z=DxDγZ-DγDxZ-Dίx>Y1Z

(1.6) R\X, Y)ξ=DxDϊξ-DϊDxξ-Dtx,YΊξ

where X, Y, Z are tangent to M and ξ is normal to M.
Then for any tangent vector fields X, Y, Z, W and normal vector fields ξ, η,

we have the following equations:

(1.7) <R(X, Y)Z, W>=-<B(X, Z), B(Y, W)> + <B(Y, Z), B(X,

(Gauss equation)

(1.8) <RL{X, Y)ξ, η> = <(AξAη-AηAξ)X, Y> (Ricci equation)

(1.9) (DXB)(Y, Z)-{DYB){X, Z)=0 (Codazzi equation)

In the last formula, the covariant derivative of B is defined by

(1.10) (DXB)(Y, Z)=DXB(Y, Z)-B(DXY, Z)-B(Y, DXZ).

The normal connection DL is said to be flat if Rλ=0. (1.8) implies that DL is
flat at p e M if and only if

(1.11) AξAv = AvAξ

for any two normal vectors ξ and η at p. Thus if D1 is flat at p^M, there
exists an orthonormal base elf •••, ̂  of T P M such that each eτ (i=l, •••, n) is a
principal vector with respect to any normal vector at p.

2. Local Formulas for Flat Surfaces in R\

Let M be a surface in # 4 which has zero Gaussian curvature and flat normal
connection.
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In this section we derive some local formulas for M.
Since the normal connection of M is flat, there exists an orthonormal local

frame (elf e2) of TM such that ex and e2 are common principal vectors for all
normal vectors at each point. For each normal vector ξ we set hιj(ξ)—(Aξeι, e3y
(j9 / — I , 2). Since ex and e2 are principal vectors for any ξ, we have /ii2(ί)=

LEMMA 2.1. For each point p of M there exists an orthonormal basis (g3, £4)
of TpM, the normal space of M at p> which satisfies

Proof. Let (<?3, e4) be any orthonormal basis of TpVI. Since the Gaussian
curvature is zero, it follows from (1.7) that

(2.2) deti4gs+deti4g4=0,

or equivalently,

(2.3) hy

Set

(2.4) e,

£ 4 = —sin #£ 3 +sin θe4.
Then

(2.5) Λ2 2(£3)=cos θh 22(^3)+sin Θh22(e4)

(2.6) h11(e4)=-smθhn(eΆ)+cosθh11{e4).

(2.3) implies that the system of equations (2.1) has a non-trivial solution for θ.

Q. E. D.

Let λ—hn(e3) and μ—h22{e^). Let Mx~{p^M: AξφQ for all ξeT^M}. Then
p^Mx if and only if λ and μ satisfy λμφO at p. In [3], Reckziegel proved that
the principal curvatures and principal vector fields with respect to a continuous
normal vector field ξ are C°° on UcM if no point in U is umbilical with respect
to Aξ. By this theorem, we see that ex and e2 define C°° vector fields on Mly

and λ and μ define C°° functions on Mx. We continue to denote these vector
fields and functions by eu e2 and λ, μ. We define a 1-form ωAB (A, B = l , •••, 4)
on Mi by

(2.7) ω ^ ( * ) = < / W eB>

for XSΞTM. Setting Z=ei and y = : Z = e 2 in (1.9), we obtain

(2.8) De1(μ

and this gives
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(2.9) eίμ—μω21(e2)=0

and

(2.10) λ»81(*2)-/fω,4(ei)=0.

Similarly, if we set Z=<?2 and F = Z = ^ ! in (1.9), we obtain

(2.11) e2λ-λω12(e1)=0

and

(2.12) μω12(eί)+λωu(e2)=0.

Since \_ely e2]=Deie2—De2e1=ω21(e1)e1+ω12(e2)e2) we have

(2.13) <R(elf e2)e2, e1}=e1(ω21(e2))+e2(ωi2(e1))-(ω12(e1))2—(ω21(e2))2

Combining (2.9) and (2.11) with (2.13), we have on Mx

1 , 1
—μe1eι λ£2<?2—

μ λ

I 1 , 1

Since the Gaussian curvature is zero, (2.14) gives

(2.15) \eiei- + -e2eΛ^0
Λ μ μ A.

on Mi. The normal curvature on M1 is given by

(2.16) <R1(elf e2)e3, e4>

2λ(e1μ)(e2μ)

λ2 ' λ3 μ2

1 1

λ β2βl μ

1 1 . 1
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Since the normal connection is flat, (2.16) gives

(2.17) τ ^ 4 + -^i-=0.
Λ Λ μ μ

LEMMA 2.2. On Mλ we have

(2.18)

Proof. | ^ - e 1 , - β 1 | = / 3 < 1 / i ) ί l - 1
I I . . I <• ' 1 μ

=0 (by (2.9) and (2.11)). Q.E.D.

By Lemma 2.2, there exists a local coordinate system (ulf u2) on Mi such that

(2.19) -=— = τ β i , -=— = — e2.
σWi / ou2 μ

Now we define functions / and g by

(2.20) / = * ! - , ^ = e « τ

Then (2.15) and (2.17) can be rewritten as

(2.21) J^ + f^O
OH i OU2

and

(2.22) ¥-+1-=°'
ou2 ou1

respectively.
If we set v1=uί—u2 and v2—uι

J

ru2, (2.21) and (2.22) imply that there exist
functions φι{υύ and φ2{v2) such that

(2.23) f{υu V2)=φi(vί

(2.24)

In §4 we will give a geometric interpretation of φx and φ2 in terms of the
Gauss map of M.

Note that f=C1 and ̂ = C 2 (Cx and C2 are constant) are trivial solutions for
the system of differential equations (2.21) and (2.22). We now show that these
solutions characterize the "standard" torus in R\
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PROPOSITION 2.1. Let M be a closed surface in # 4 which has zero Gaussian
curvature and flat normal connection. Suppose Mλ—M. Then f is constant if and
only if M is the product of two closed plane curves.

Proof. If M is a product space, it is easy to see that / = 0 and g=0.
Suppose that /=CΊ on M. Then (2.21) and (2.22) imply that g is also con-

stant on M. We set g=C2. Since M1=M) λ and μ are globally defined C°°
functions. Since M is compact, λ and μ must have critical points px and p2

respectively. Then f(p2)=0 and g(/>i)=0, which implies that / Ξ O and £ ΞΞO on
M. Thus we have ^ = 0 and g 2 ^ 0 . By (2.9), (2.10), (2.11) and (2.12), we obtain

(2.25) ωi2fe)Ξθ, ω2i(e2)=0, ωu(ei)=0, ω34(22)=O,

Hence

(2.26) Deie2=0, / J ^ Ξ Ξ O , Deie4=0, De2e,=0.

Take PO^ΞM and let /\(s j (ί=l,2) be the maximal integral curve of ^ with
I TΊ

initial point />0, i.e. , % (sι)=ei(Γi(sι)) and Γi(Q)=p0. We choose a Cartesian

coordinate system (xu x2, xs, *4) on β 4 such that

(2.27) xΛ(Po)=O and ^-(po)=^eA(Po) for 4 = 1 , 2, 3, 4.

Then (2.26) implies that £2 and e4 are constant along ΓΊ, that is,

a ( 1 ( 1 ) ) , ( ί o ) = ( O , 1, 0, 0)
(2.28) for any

( Λ ( ) ) ( ) = (O, 0, 0, 1)

Hence Γ^s^ is orthogonal to (0, 1, 0, 0) and (0, 0, 0, 1) at each sλ. Thus Λ lies
in the xx-xz plane. Similarly, we see that Γ2 lies in the x2-x4 plane. We write
Γt and 7̂ 2 as

Λ(5i) = (Γ11(s1), 0, ΓM(5i), 0)
(2.29)

Λ(s,)=(0, Γ22(s2), 0, Γ24(s2)).

Let ars(O be the integral curve of e2 with initial point A(s), i. e.

αί(ί)=^(α*(0)
(2.30)

α,(0)=Λ(s).

We write as(t) as

(2.31) α,(ί)=α(s, ί)=(«i(s, ί), «2(s, ί), «e(s, ί), α4(s, 0).

Then it follows from (2.30) that
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da * daA dx^(2.32) e2(as(t))=-^-= ^ .
dt A=I ot oxA

We claim that

(2.33) eM))=^=~BaΛ d

ds A=I ds dxA

To prove this, we write

Of* '
(2 ^A) pAa (t))—π(<s t) —

This is possible since -̂ — and -^- span the tangent plane of M at each point.

Since De1e2=Deiie1=0 by (2.26), at each point of M we have

(2.35) lel9 e2-]=Deie2-De2e1=0.

It follows from (2.32), (2.34) and (2.35) that

(2.36, [«,(«,«,), * * » » i = 0 .

Thus we have

(2.37) ΐ = 0 , - | τ - = 0 f o r a 1 1 s and ί.

Hence a(s, t)=a{s, 0) and b(s, t)=b(s, 0), but since α,(0)=Λ(s), fl(s, 0)=l and
fc(s, 0)=0. Therefore α(s, ί )=l and b(s, t)=Q for all s and t. This completes
the proof for (2.33).

Since Dei22=0, we have

(2.38) | ^ ^ 0

or

(2.39) Ί&t^0 (^=1»2, 3, 4).

(2.39) implies that α^(s, ί) can be written as

(2.40) aΛ(s,t)=aA1{s)+aAi(t).

Since a(s, 0)=Γ1(s) and α(0, t)=Γ2(t), it follows from (2.29) and (2.40) that

(2.41) α(s, 0=(Γ n (s), Γ22(0, Γ18(s), Γ£4(ί)).

A(s) and Γ2(t) are smooth curves on M—Mx which are defined for — oo<s
< + oo and — oo<ί<+oo. (Note that s and t are the arc length parameters of
Γ1 and Γ 2 respectively.) By (2.41) we have

(2.42) Λx/V={α(s, 0: -
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From the definition of α(s, ί), (2.42) implies that AxΓ 2 is an open subset of M.
Since Λ x Γ 2 is closed and M is connected, M=Γ1xΓ2. Since M is compact,
Γ1=MΓ\R2 is a closed plane curve. (Similarly Γ2 is a closed plane curve.)

Q. E. D.

3. Geometry of G2>4.

Let G2< 4 denote the Grassmann manifold consisting of oriented 2-dimensional
linear subspaces of JR4. We now recall some basic facts for G2>4. (See [2] for
more details.)

Let P0<ΞG2,4 and let {ilf •••, e4} be a fixed orthonormal basis of R4 such that

(3.1) P0=iiΛh.

Let P be an element of G 2 > 4 in a neighborhood of Po. Let {elf •••, £4} be an

orthonormal frame of R* such that

(3.2) p = e l A e 2 .

4 4

We write e 2 = Σ fli^ and <?2= Σ a2AeA, where a1A and α2 A satisfy
Λ=l A=l

(3.3) Σ ί α ^ ^ l
A

(3.4) Σ(α«Λ 2 =l

(3.5) ΣfliAfl£A=O.

We assign to P an element z—{zu z2, zs, zA) of C\ where

(3.6) zA=a1A+ia*A 0 4 = 1 , - , 4 ) .

Since λz corresponds to the same plane P for all ΛeC—{0}, the correspondence
φ:P^z can be regarded as a map from G2)4 into PSC. Moreover, (3.3)-(3.5)
imply that

(3.7) Σ ^ i ^ O .

Thus φ defines a map from G2(4 into Q, where Q is the quadric in PZC which
is defined by the equation (3.7). φ is a bijection, and moreover, φ becomes an
isometry when we equip G2)4 with the standard invariant metric and Q with
the metric induced from the Fubini-Study metric on P3C. Let F be a map from
Q into CxC which is defined by

(3.8) F(zl9 z2, zι, Zt)=(wi, w2),

where
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_
W2~ ZX—IZ2

If we regard F a s a map from Q into PiCxΛC, then Fis a bijection. Moreover
when we equip PβxPβ with the metric

(3.10)
( l + l ^ i l 2 ) 2 d + l ^ l 2 ) 2 '

F becomes an isometry. Since Pi/CxP^C is isometric to S2(-—=) x S2(—=) under
\V 2 ' ^v 2 /

/ 1
the metric (3.10), F°φ defines an isometry between G2 ) 4 and S2[——

2
Let P(f) be a curve in G2tA with P(0)=P 0. Let βi(ί)=Σfliii(ί)^ and e2(ί) =

Σfl2ii(0^ii be orthonormal vectors in β 4 which span P(t). Set ^^(ί) = fli^W+2fl2^(0.

We identify Pit) with a curve (z^t), z2{t), zs(t), z^t)) on Q. Since z x ^0 in a

neighborhood of Po, (zlf z2, zZy zA) and (1, —-, ——, —-) represent the same element
\ Zι Zx Zι /

of G2>4. Hence

It follows from (3.11) that

(3.12) P'(0)=(0, ι*ί(0)

Since Σ ^ ( 0 2 Ξ 0 , we have 2>ί(0)—zί(0)=0. Hence
A

(3.13) iJ/(0)=(0,0,zί(0),zJ(0)).

As in (2.7), we set ωAB—ΦeA)eBy {A, J3=l, •••, 4). Since daιa—ωia (z = l, 2, α=3,4),
(3.13) implies that {ω i β : ί=l ,2 ,α=3,4} form a co-frame of 7V0G2>4. We define
another co-frame {#(*«)} by

(3 .14) ^(13)—U>23, ^(14)=U>24, #(23) = ~&>13, 0(24) — — (*>U

and let {<?tΛ<?α} denote the dual frame of {θ(ia)}. In a similar way, if an
orthonormal frame {eA} is given at P^G2,4, {eι/\ea} is defined as a frame for
TpG2,4. We note that, under these definitions, the following formal expression
makes real sense now:

(3.15) d(e1Λe2)=:de1Λe2+e1Λde2

Using (3.10), we see that the metric on G2>4 is given by Σ (ω iα)2. This implies
I, Ct

that {eιΛea} forms an orthonormal frame at each point of G2 ) 4.
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Let {f luent)} be the connection forms associated with {θiia)}. Then the
structure equation is written as

(3.16) dθ(ia)— Σ θ(jβ)Aθ(jβ)(ιa) .

J.β

Let V and ar denote the complements of i and a in {1,2} and {3,4} respectively.

L E M M A 3.1. θ (i> aπia)—(*)iΊ

"(i'a')(ίa)—v.

Proof. We write (3.14) as

(3.17) 0(i«> = e<(w<'β,

where £*=(—l) ι + 1. Since ωia satisfies the structure equation

(3.18) dωia=Σ<θiΛAωΛa,
A

we have

(3.19) dθua

= θ a a) A(ύi> i+θ (ia ) A(l)a> a -

The lemma follows from (3.16) and (3.19). Q. E. D.

As we see above, G2 4 can be identified with S2(-—==)xS2(~j=~). For brevity,
\ V 2 ' W 2 /

we write Sx and S2 for those two factors. Let Yλ and V2 be the 2-dimensional
linear subspaces of TPG2Λ which are tangent to Sx and S2 respectively.

LEMMA 3.2. VΊ ts spanned by exAez—e2Ae^ and eίAeA-\-e2Aez, and V2 is
spanned by e1Ae3+e2Aei and e1Aei—e2Aes.

Proof. It suffices to prove the lemma for Po. Let X^TPoG2>4. X^\\ if
and only if

(3.20) dw2(X)=0.

Using (3.9), we see that (3.20) is equivalent to

(3.21) dz3(X)=idz4(X).

Since dza=ωla+iω2a, (3.21) implies that
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(3.22) ωu(X)=-ωu(X), ωn{X)=ωu{X).

Thus

(3.23) X——ω13{X)e2AeB~ω14(X)e2Aei+ω2S(X)e1Aes

J

Γω2i(X)e1Aei

Similarly, any vector Y in F 2 can be written as a linear combination of eλAez

-\-e2Ae± and e2Aez—e1Ae4k. Q. E. D.

4. Gauss Image of Flat Surfaces in R*.

Let M be a surface in RA and let {elf ~-,eά} be an orthonormal frame field
defined in an open set UdM such that eλ and e2 are tangent to M at each point
of U. We define the Gauss map G: M-+G2Λ by

(4.1) G(ί)=e1(j0)Λe2(ί)

for each £ e M . Let dG : TM-+TG2Λ denote the differential of G. Then it follows
from (3.15) that

(4.2) dG(X)=— ωn{X)e2Aez—a)u(X)e2Aei+ω2S(X)e1Aes

Jrω24(X)e1Aei

for each X^TFM.

LEMMA 4.1. The Gauss map G is singular at p if and only if detAξ=0 for
any normal vector ξ at p.

Proof. Suppose G is singular at p and dG(aeι~\-be2)
:=0. Then, by (4.2),

we have

ahn(es)+bh12(e8)=0

αΛ11(
(4.3)

h(

(4.3) implies that det^4e3=det,4e4—0. Since es (or e4) can be chosen arbitrarily
in T^M, it follows that d e t ^ = 0 for any ξ^T^M. Conversely, if det,4e3—
detA e 4=0, (4.3) has a non-trivial solution for a and b, which implies that G is
singular at p. Q. E. D.

Now we prove the main theorem of this paper.

THEOREM 1. Let M be a surface in # 4 which has zero Gaussian curvature
and flat normal connection. Let P<ΞM. Suppose that the Gauss map G:M-*G2Λ

—SxxS2 is non-degenerate at p. Then there exists a neighborhood U of p and
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curves fiCS^ and γ2(ZS2 such that G(U) is the Riemannian product of yx and γ2.

Proof. We write the shape operators in the following matrix forms:

(4-4)
\A2ites) h22(e3)J \h21(e4) h22(e4),

By Lemma 2.1, we can find an orthonormal frame {eλ. •••, eA} such that the shape
operators are written as

Iλ 0\ /0 0"
(4.5) AeM , AeM

\0 0/ \0 ^

Since G is non-degenerate at £, it follows from Lemma 4.1 that λμΦO in a
neighborhood ί/' of p. Then, by ReckziegeΓs theorem ([3]), each eA {A—I, -- ,4)
is a C°° vector field and λ and μ are C°° functions on U'. Using (4.2), we have

(4.6)

(4.7)

Let X1=-r-e1 e9 and X9=-re1-{—e2. Then it follows from (4.6) and (4.7)
/ μ " λ μ

that

(4.8)

(4.9)

From Lemma 3.2, we see that dG{Xx) and dG(X2) are tangent to Sλ and S2 re-
spectively.

Let {vlf v2) be the coordinate system on M which is introduced in § 2. Then
we have

3 1 1 . ,

G(M) is parameterized by (vuv2) through G and locally G{M) can be expressed
as {(/i(vi, v2),/2(^i, ^2))}, where fx and / 2 are differentiable maps from an open

set of R2 into Sj and S2 respectively. Since dG(-~—\—dG{Xx) is tangent to

Slf we have

(4.11) d

Thus there exists a differentiable map 2̂(̂ 2) from an open set of R into S2
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such that

(4.12) fi{vi, v2)=γ2{v2).

Similarly, dG\-^—j is tangent to S2 and we have

(4.13) d

and hence there exists a differentiate map γ^Vj) from an open set of R into Sλ

such that

(4.14) fi(vi,v2)=Yi(v1).

This completes the proof of the theorem. Q. E. D.

Now we compute the curvatures of γλ and γ2. Let G*(TG2j4) denote the
vector bundle on M induced from TG2>A, the tangent bundle of G2>4, by G.
Let D be the Riemannian connection on G*(TG2>A) associated with the metric
# = Σ ω ? α . It follows from Lemma 3.1 that

i, a

where i' and af are the complements of i and a in {1,2} and {3,4}, respectively.
1

X1=—p^dG(X1) is a unit tangent vector of rx and we have
V 2

(4.16) DχX=^rDxX

= — (—ω21(X1)e1Λe3—ωSi(X1)e2Λei—ω12(X1)e2ΛeA—ω43(X1)e1Λes)

2
1

ωS4<

1
;) λ

1

λ

1

1

μ

where y1=-y=(e2Λ^4—^iA^3). Vi is a unit vector which is normal to G(M)

and tangent to Slt The last equality in (4.16) follows from the Codazzi equa-
1

tions (2.9M2.12). If we set X^—j^dGiX?) and ^2=V 2
obtain the followmg formula by a similar computation:

1 1
tions (2.9M2.12). If we set X^—j^dGiX?) and ^2=~Ύ=.{e2Ae^+e1Aez), we

V 2 V 2
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(4.17) D i 2 i 2

Using (4.16) and (4.17), we can give a geometric interpretation of a formula
obtained in §2.

PROPOSITION 4.1. Let ψι{vλ) and ψ2{v^ be the functions given in (2.23) and
(2.24). Then the curvatures ic^v^} of γλ{v2) and κ2(v2) of γ2{v2) are given by

(4.18)
/r2(y2)

In the following theorems, we give characterizations of surfaces which are
product spaces in R4. Theorem 2 also follows from the work of Chen-Yama-
guchi [1].

THEOREM 2. Let M be a surface in R4- which has zero curvature and flat
normal connection. If G(M) is totally geodesic in G2Λ, M is locally the Rieman-
nian product of two plane curves.

Proof. If G(M) is totally geodesic, the curvatures of yx and γ2 are identic-

ally zero. This implies that eJ—J=0 and eJ—JΞΞO on M. Then, as we see

in the proof for Proposition 2.1, M is locally the Riemannian product of two
plane curves. Q. E. D.

THEOREM 3. Let M be as in Theorem 2. In addition, suppose that M is
compact. Then if the length of the mean curvature vector of G{M)(ZG2Λ is con-
stant, M is globally the Riemannian product of two closed plane curves.

Proof. The mean curvature vector H of G(M) in G2>4 is given by H=/c1v1

+κ2v2- Hence, if \H\2=K1{V1)
2+K2(V2)

2 is constant, both ic^v^ and κ2(v2) must be

constant. Then eA — ) = —7-̂ (̂ 1(̂ 1)+£2(̂ 2)) is constant and the theorem follows
\μ/ V 2

from Proposition 2.1. Q. E. D.
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