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THE GAUSS IMAGE OF FLAT SURFACES IN R!
By Kazuyukl ENOMOTO

Let M be a surface of zero Gaussian curvature in R* which has flat normal
connection. Let G, , denote the Grassmann manifold consisting of oriented 2-
dimensional linear subspaces of R* The Gauss map G : M—G,, , is defined by
assigning each point of M to the tangent plane of M at the point.

In this paper we study the structure of the image of M by the Gauss map.
In [4], C. Thas showed that the Gauss image of a surface of zero Gaussian
curvature in R* which has flat normal connection is flat. Theorem 1 gives a
further information on the structure of the Gauss image. Namely, under the
identification Gz,4=SZ(\—/%)><SZ<%), the Gauss image of M is the Riemannian
product of two curves, one in the first factor of S*xS? and one in the second
factor. We compute the geodesic curvatures of those curves and show that if
those curves are totally geodesic, then M is the Riemannian product of two
plane curves.

In §2, we give some local formulas for principal curvatures and show that
if certain functions defined from principal curvatures vanish everywhere, then
the surface is the Riemannian product of two plane curves. In §3, we look at
G,,, and give some basic formulas. In §4, we prove our theorems for the
geometry of the Gauss image of M.

The author wishes to express his hearty thanks to Professor Hung-Hsi Wu

for many valuable suggestions.

1. Preliminaries.

Let M be a connected n-dimensional C* Riemannian manifold and let ¢p : M—RY
be an isometric immersion of M into an N-dimensional Euclidean space RY.
Let D and D denote the covariant differentiations of M and RY respectively.
Let X, Y be tangent vector fields on M. Then

(L.1) DyY=DyY+B(X,Y)

where B(X, Y) is the normal component of DY.
Let & be a normal vector field on M. We write

(1.2) Dyé=—A:X+Dyé
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where A.X and D3 are the tangential and normal components of Dx&.  Then
we have

where ¢, denotes the inner product of R¥. The linear transformation A; on
the tangent bundle TM is called the shape operator of M with respect to &.
Since A, is symmetric, i.e.

(1.4 CAeX, YVo=<X, AY>,

all eigenvalues of A, are real. An eigenvalue of A; is called a principal curvature
with respect to £&. An eigenvector of Ag is called a principal vector with re-

spect to &.
Let R and R* be the curvature tensors associated with D and D* respec-
tively, i.e.

(1.5) R(X, Y)Z:DxDYz—“DyDXz—D[X}Y]Z
(1.6) RY(X, Y)6=D5D¢§— D¢ Dx§—Dix r:f

where X, Y, Z are tangent to M and & is normal to M.
Then for any tangent vector fields X, Y, Z, W and normal vector fields &, 7,
we have the following equations:

1.7 (RX, VZ, W>=—(B(X, Z), BY, W)+<B(Y, Z), B(X, W),
(Gauss equation)

(1.8) (RYX, Y&, po=X(A:A,—A,A)X, Y (Ricci equation)

(1.9) (DxB)Y, Z)—(DyB)(X, Z)=0 (Codazzi equation)

In the last formula, the covariant derivative of B is defined by

(1.10) (DxB)Y, Z)=DxB(Y, Z)—B(DyY, Z)—B(Y, DxZ).

The normal connection D* is said to be fat if R*=0. (1.8) implies that D' is
flat at pe M if and only if

(1.11) A:A,=A, A

for any two normal vectors & and % at p. Thus if D* is flat at peM, there
exists an orthonormal base e;, ---, ¢, of T,M such that eache, (=1, -+, n)isa
principal vector with respect to any normal vector at p.

2. Local Formulas for Flat Surfaces in R

Let M be a surface in R* which has zero Gaussian curvature and flat normal
connection,
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In this section we derive some local formulas for M.

Since the normal connection of M is flat, there exists an orthonormal local
frame (e, @) of TM such that e, and e, are common principal vectors for all
normal vectors at each point. For each normal vector & we set £,;(§)=<{4¢e,, ¢,>
(Z, 7=1, 2). Since ¢, and e, are principal vectors for any &, we have h,(§)=

ha1(§)=0.

LEMMA 2.1. For each pont p of M there exists an orthonormal basis (e, e,)
of TyM, the normal space of M at p, which satisfies

(2.1) hoo(es)=0, hii(e)=0.

Proof. Let (&, €,) be any orthonormal basis of 7;M. Since the Gaussian
curvature is zero, it follows from (1.7) that

(2.2) det Az, +det Az, =0,

or equivalently,

(2.3) h11(@5)hos(85)+hii(81) hss(8,)=0.

Set

(2.4) e;=cos 02;+sin 62,
e,=—sinfé&,+sin fé,.

Then

(2.5) Nas(e3)=c08 O h;5(85)+-sin 6 hsy(8y)

(2.6) hii(e,)=—sin G hy,(835)+cos G hq(8,).

(2.3) implies that the system of equations (2.1) has a non-trivial solution for 4.
Q.E.D.

Let A=h(e;) and p=hss(e,). Let Mi={peM: A:+0 for all e TsM}. Then
peM, if and only if 2 and p satisfy Au¢+#0 at p. In [3], Reckziegel proved that
the principal curvatures and principal vector fields with respect to a continuous
normal vector field & are C* on UCM if no point in U is umbilical with respect
to Ae. By this theorem, we see that ¢, and e, define C* vector fields on M,,
and 2 and g define C= functions on M;. We continue to denote these vector
fields and functions by e, ¢, and 2, p. We define a 1-form w,p (4, B=1, -+, 4)
on M, by

2.7 wAB(X):<D_XgA: ep>
for XeTM. Setting X=e¢, and Y=Z=¢, in (1.9), we obtain
(2.8) Ee,(ﬂ%)+#w12(92)e4+1(021(92)ea=0

and this gives
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(2.9 e pt— pwsi(e;)=0
and
(2.10) Awz1(es)— prwgy(e)=0.
Similarly, if we set X=e¢, and Y=Z=e¢, in (1.9), we obtain
(2.11) 24— Awyy(e)=0
and
(2.12) PO 1(e)+Awge)=0.
Since [ey, e:]=De,e:— D0, =wsi(e))es+w15(es)es, We have
(2.13) CR(ey, e5)es, erp=e1(wsi(es))+es(@15(e1)) —(@13(€1))* —(@s1(es))*
Combining (2.9) and (2.11) with (2.13), we have on M,
(2.14) (R(es, edes, e1>=e1(f;ﬁ)+e2(eli) —(%1—)2—(917”)2
_aen_ 2ew? | el el
g 2w

=— ee—l——,leel
= ﬂ11# 2627

A
Since the Gaussian curvatur2 is zero, (2.14) gives
1 11 1

1 1 1 1
=—2y(—e1e, ;‘l‘ ;l—82(227>-

(2.15) 78181;4——;92827:0
on M,. The normal curvature on M, is given by
(2.16) (R*(ey, ezes, ey

=e,(®s4(e2)) —ex(Ws4(er)) +w1a(e1)Ws4(e1) — Wai(e2) wss(er)
(e (Aep A AN AV 22
== 5) (L) )-GO %)
_pesesd +32p(e12)(e22) _ Aeseyp X 2Aesp)(expr)

22 23 #2 #3

1 1
=pee,—+Aee;—
11122 21#

1 1 1 1
:l/,t (781827 + —[;ézelz) .
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Since the normal connection is flat, (2.16) gives
1 1 1 1

2.17) 7e1e27+;e2e1;=0.
LEMMA 2.2. On M, we have
(2.18) (e %ez].—_o.
Proof. [%el, %ez]=D(1/1>e1%ez—0mp)ez%el
=— %—fﬁ—eﬁ iwzl(el)—k %el— iwla(ez)ez

1
= “2%; (e2h—Awys(er))e;— '@2—(91#_“#(021(92))92
=0 (by (2.9) and (2.11)). Q.E.D.

By Lemma 2.2, there exists a local coordinate system (u,, u,) on M, such that

o _1, 9 1,
ou, A ou, p =

Now we define functions f and g by

(2.19)

1 1

(2.20) f=e1;, g=e27.
Then (2.15) and (2.17) can be rewritten as

of | dg _
(2.21) m—k o, =0
and

af | og _
(2.22) o, + TR =0,
respectively.

If we set v,=u,—u, and v,=u,+u,, (2.21) and (2.22) imply that there exist
functions ¢,(v;) and ¢,(ve) such that

(2.23) f(vy, Vz):¢1(v1)+¢z(vz)
(2.24) gy, Uz):Sbl(Ul)_sz(Uz) .

In §4 we will give a geometric interpretation of ¢, and ¢, in terms of the
Gauss map of M.

Note that f=C, and g=C, (C, and C, are constant) are trivial solutions for
the system of differential equations (2.21) and (2.22). We now show that these
solutions characterize the “standard” torus in R*.
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PROPOSITION 2.1. Let M be a closed surface in R* which has zero Gaussian
curvature and flat normal connection. Suppose My=M. Then f is constant if and
only if M is the product of two closed plane curves.

Proof. If M is a product space, it is easy to see that f=0 and g=0.

Suppose that f=C; on M. Then (2.21) and (2.22) imply that g is also con-
stant on M. We set g=C,. Since M,=M, 2 and p are globally defined C~
functions. Since M is compact, 2 and g must have critical points p, and p,
respectively. Then f(p,)=0 and g(p,)=0, which implies that f=0 and g=0 on
M. Thus we have e;x=0 and ¢,A=0. By (2.9), (2.10), (2.11) and (2.12), we obtain

(2.25) 012(e)=0, @01(2)=0, y,(e))=0, @34(e)=0,
Hence
(2.26) D.e,=0, D.,e;=0, D.e.=0, D.e,=0.

Take p,=M and let I'y(s,) ({=1,2) be the maximal integral curve of e, with

initial point p,, i.e. (fif‘ (s)=e;(I's(s,)) and I';(0)=p,. We choose a Cartesian
i

coordinate system (x,, x,, X3, Xx,) on R* such that

@.27) £i(p0=0 and 0 (pg=eu(py) for A=1,2,3,4.
A

Then (2.26) implies that e, and e, are constant along [, that is,

ez(rl(sl)):ez(po):(oy 1,0,0)
(2.28) for any s;.
24(111(31)):94(1)0):(0: 0: 0) 1)

Hence I'y(s;) is orthogonal to (0, 1, 0, 0) and (0, 0, 0, 1) at each s;. Thus I, lies
in the x,-x; plane. Similarly, we see that I, lies in the x,-x, plane. We write
I'yand I, as

I'(s)=WU (), 0, I'y(sy), 0)
(2.29)
Iy(55)=(0, I55(s2), 0, I'34(s5)).
Let a,(?) be the integral curve of e, with initial point /7:(s), i.e.

ay(t)=es(as(t))
(2.30)
as(0)=1"y(s).
We write a,(t) as
(2031) a3<t):a(sy t)z(al(sy t); aZ(S} t); a3<s; t)’ ad(sy t))-

Then it follows from (2.30) that
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aaA 3
(2-32) 92(as(t)) AL E at axA
We claim that
(2.33) el<as<t))=a— = i g
4=1 0S aYA
To prove this, we write
(2.34) e(as(t)=a(s, t)%:i +b(s, t)%—‘:.

This is possible since 3—‘: and %?— span the tangent plane of M at each point.

Since D.,e;=D.,e;=0 by (2.26), at each point of M we have

(2.35) [91, eg]=D— D el—
It follows from (2.32), (2.34) and (2.35) that
da da  0b Oa
(2.36) Lei(as®)), es(as®))]= T es ot ot =0.
Thus we have
da ob
(2.37) ~a?—0, a5 =0 for all s and ¢.

Hence a(s, t)=a(s, 0) and b(s, t)=b(s, 0), but since a;(0)=1"y(s), a(s, 0)=1 and
b(s, 0)=0. Therefore a(s, t)=1 and b(s, t)=0 for all s and t. This completes
the proof for (2.33).

Since D.,e,=0, we have

a
(2.38) aear =
or
aZaA o o
(2.39) Fyen =0 (A=1, 2, 3, 4).
(2.39) implies that a,(s, t) can be written as
(2.40) a(s, H=au(s)+a(t).

Since a(s, 0)=1"y(s) and a0, t)=1"y(t), it follows from (2.29) and (2.40) that
(2.41) a(s, t)z(rn(s), Ios@t), I'a(s), Iay(0)).

I'y(s) and I'y(t) are smooth curves on M=M, which are defined for —co<s
<400 and —co<t< 400, (Note that s and ¢ are the arc length parameters of
I', and I, respectively.) By (2.41) we have

(2.42) ' xXTy={a(s, t): —c0<s, t<+oo}.
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From the definition of a(s, t), (2.42) implies that ', <[, is an open subset of M.

Since I'yx I, is closed and M is connected, M=I",xI,. Since M is compact,

I''=MNR? is a closed plane curve. (Similarly I, is a closed plane curve.)
Q.E.D.

3. Geometry of G,,.

Let G,,, denote the Grassmann manifold consisting of oriented 2-dimensional
linear subspaces of R*. We now recall some basic facts for G,, (See [2] for
more details.)

Let P,eG, , and let {é,, ---, é,} be a fixed orthonormal basis of R* such that

(3.1) Po'::eol/\éz.

Let P be an element of G, , in a neighborhood of P,. Let {e,, ---, ¢,} be an
orthonormal frame of R* such that

3.2) P=e, Ne,.

4 4
We write e;= X} a,484 and e,= 3] a,484, where a,, and a,, satisfy
A=1 4=1

3.3 Sa=1
(3.4) 2 (a.0%=1
P
(3.5) 2 Q14a24=0.
4

We assign to P an element z=(z,, z,, 2., z4) of C*, where
(3.6) Z4=a14 0G50 (A=1, ---, 4).

Since Az corresponds to the same plane P for all 2zeC—{0}, the correspondence
¢ : P—z can be regarded as a map from G, , into P,C. Moreover, (3.3)-(3.5)
imply that

3.7 ;2350.

Thus ¢ defines a map from G,,, into Q, where @ is the quadric in P;C which
is defined by the equation (3.7). ¢ is a bijection, and moreover, ¢ becomes an
isometry when we equip G.,, with the standard invariant metric and @ with

the metric induced from the Fubini-Study metric on P;C. Let F be a map from
Q into C X C which is defined by

(3-8) F(Zl’ 23y 23, 24):(1’017 wz)’

where
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(3.9) wlzﬁ&, WZZ_ﬂ.
Z1—12, 2112,

If we regard F as a map from Q into P,C X P,C, then Fis a bijection. Moreover

when we equip P,C X P,C with the metric

2]dw,|? 2| dw, ¥

2:
(3.10) = T T, 9 T (W Twa [

F becomes an isometry. Since P,C X P,C is isometric to Sz( V) 2>>< 52< Ve 2) under

the metric (3.10), Fe¢ defines an isometry between G, , and Sz( \/1A _>><SZ( \/12)

Let P(t) be a curve in G,,, with P(0)=P,. Let el(t)zé) a4()é,4 and e,(t)=
; as4(t)é4 be orthonormal vectors in R* which span P(t). Set z,(t)=a4(t)+ias42).
We identify P(¢) with a curve (z,(¢), z,(t), z5(t), z.()) on Q. Since z,#0 in a

29 23

neighborhood of P, (zy, z,, s, z,) and (1, X %) represent the same element
1

2y 2
of G, . Hence

o1 Po=(0.(2).(2).(2)).
It follows from (3.11) that

(3.12) P’(0)=(0, 721(0)—2:(0), 23(0), 2i(0)).
Since Z)ZA(t)2 0, we have 7z;(0)—z,(0)=0. Hence

(3.13) P’(0)=(0, 0, z3(0), 25(0)).

Asin 2.7), we set wz=<{Dey, e5> (A, B=1, -+, 4). Since da,.=w;, (=1,2, a=3, 4),
(3.13) implies that {w;.:7=1,2, =3,4} form a co-frame of TpG,, We define
another co-frame {6} by

(3.14) 0 (15 =0;s, =0, O@y=—0n, Oen=—0y

and let {é,Aé,} denote the dual frame of {60.}. In a similar way, if an
orthonormal frame {e,} is given at PG, {e,Ae,} is defined as a frame for
TsG,... We note that, under these definitions, the following formal expression
makes real sense now :

(3.15) d(e;Ney)=de; Ney+e,Nde,
=—wse: Nes— w8 Neytwsse Nest e N\ ey
Using (3.10), we see that the metric on G, , is given by X (®;,)% This implies
1, a

that {e,Ae,} forms an orthonormal frame at each point of G, ..
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Let {0 ayip} be the connection forms associated with {6 }. Then the
structure equation is written as

(3.16) d0<ia>=LEﬁ 0isr N0 i) -
Let 7/ and a’ denote the complements of ; and « in {1,2} and {3, 4} respectively.
LEMMA 3.1. O ayiay =0y,
0 oty (i) =War a

0 aryiay=0.

Proof. We write (3.14) as

3.17) 0oy =€:Wir o .

where ¢;=(—1)"*'. Since w;, satisfies the structure equation
(3.18) dwia=§wi,4/\w,4a )

we have

(3.19) d0 Gay=¢€:dw;r 4

:51‘(;(0@'%/\‘9“)
:si(wi’t/\wia_‘_wi‘ a’ /\a)a’ a)
=0 ay N0y i+ 0 10y NOar -

The lemma follows from (3.16) and (3.19). Q.E.D.

As we see above, G, , can be identified with SZ< vli)xsz(:/}?). For brevity,
we write S, and S, for those two factors. Let V, and V, be the 2-dimensional
linear subspaces of T»G, s which are tangent to S, and S, respectively.

LEMMA 3.2. V; s spanned by e, Nes—e,Ney and es;ANey+e.Nes, and V, is
spanned by e;Nes+e,Ney and e;ANes—ezNes.

Proof. 1t suffices to prove the lemma for P, Let Xe Tp,Gs, 4 Xe vV, if
and only if

(3.20) dwy(X)=0.
Using (3.9), we see that (3.20) is equivalent to
(3.21) dzy(X)=idz,(X).

Since dz,=wi,+iwy,, (3.21) implies that
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(3.22) 0uX)=—0uX), ouX)=0uX).
Thus
(3.23) )?Z —0)13()?)92/\93_(014()?)92/\94’%‘023()?)91 AN 93+(024()?)91 Ney

:0)24()?)(92/\es+91/\34)'*‘(023()?)(91/\93_92/\94) .

Similarly, any vector ¥ in V, can be written as a linear combination of e,/ e;
+e,Ne, and e,Ae;—e Ne,. Q.E.D.

4. Gauss Image of Flat Surfaces in R*.

Let M be a surface in R* and let {e,, -, e,} be an orthonormal frame field
defined in an open set UC M such that e, and e, are tangent to M at each point
of U. We define the Gauss map G : M—G,,, by

4.1 G(p)=e(p) Nes(p)

for each peM. Let dG:TM—TG, , denote the differential of G. Then it follows
from (3.15) that

4.2) dG(X)=—ws(X)es Nes— o (X)ea N et wa(X)e, N ey +wa(X)e Ney
for each XeTrM.

LemMA 4.1. The Gauss map G is singular at p if and only if det A;=0 for
any normal vector & at p.

Proof. Suppose G is singular at p and dG(ae,-+be,)=0. Then, by (4.2),
we have
ah;i(es)-+bhys(es)=0

ahyy(ey)+bhys(e,)=0
ah,s(es)+bhyy(es)=0
ahyz(eq)+bhyy(e)=0.

4.3)

(4.3) implies that det A,,=det A,,=0. Since e; (or e,) can be chosen arbitrarily
in T3M, it follows that det A;=0 for any §=T;M. Conversely, if det A,,=
det A,,=0, (4.3) has a non-trivial solution for a and b, which implies that G is
singular at p. Q.E.D.

Now we prove the main theorem of this paper.

THEOREM 1. Let M be a surface in R* which has zero Gaussian curvature
and flat normal connection. Let pEM. Suppose that the Gauss map G: M—G, ,
=S1XS; is non-degenerate at p. Then there exists a neighborhood U of p and
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curves 1,CS; and y,CS, such that G(U) is the Riemannian product of y, and ..
Proof. We write the shape operators in the following matrix forms:
hi(es) hises) hiled) his(es)
1463: , A 4: .
hoi(es)  has(es) hoi(ey)  hases)

By Lemma 2.1, we can find an orthonormal frame {e,. -+, e,} such that the shape
operators are written as

A0 0 0
4.5 Aes=( ) AQ:( )
0 0 0 g

Since G is non-degenerate at p, it follows from Lemma 4.1 that Ax¢+0 in a
neighborhood U’ of p. Then, by Reckziegel’s theorem ([3]), each e, (A=1, -+, 4)
isa C> vector field and 2 and g are C* functions on U’. Using (4.2), we have

4.4)

(4.6) dG(e)=—2Re;Ney

4.7) dGley)=pe,Ne,.

Let Xlz%el—éez and ng%el—kiez. Then it follows from (4.6) and (4.7)
that

4.8) dG(X,)=—e,Nes—e Ney

4.9) dG(Xy)=—e,Nes+e Ney.

From Lemma 3.2, we see that dG(X,) and dG(X,) are tangent to S, and S, re-

spectively.
Let (v, v,) be the coordinate system on M which is introduced in §2. Then

we have

«a :%91—l92:X1
(4.10) o “
' o 1

1 .
avz —7€1+Z62—A2.

G(M) is parameterized by (v,,v,) through G and locally G(M) can be expressed
as {(f1(vy, va), fo(vy,v5))}, where f, and f, are differentiable maps from an open

set of R? into S, and S, respectively. Since dG( 8?} >=dG(X1) is tangent to
1

S,, we have
0
(4.11) dfz(—aTl)EO.

Thus there exists a differentiable map 7,(v,) from an open set of R into S,
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such that

(4.12) Falv, v2)=72(vs).

Similarly, dG( 9

o ) is tangent to S, and we have
2

(4.13) dfl(a%)zo,

and hence there exists a differentiable map 7,(v;) from an open set of R into S,
such that

(4.14) [1(vs, va)=7:(v1).
This completes the proof of the theorem. Q.E.D.

Now we compute the curvatures of 7, and y,. Let G*(7TG,, denote the
vector bundle on M induced from TG, , the tangent bundle of G, , by G.
Let D be the Riemannian connection on G*(TG, ,) associated with the metric
§r=12w$a. It follows from Lemma 3.1 that

(4.15) ﬁ(et/\ea):mwei, Neg+Waqre,Neyr,
where ¢/ and a’ are the complements of z and « in {1,2} and {3, 4}, respectively.

X’l=71.2-4dG(X,) is a unit tangent vector of 7, and we have

(416) DX1X1 Xl(—eg/\eg“—el/\e4)

= (—ws(Xy)es Ney—ws(Xy)ea N ey—w1(X)ea N es—ws(Xi)e  Aes)

NI*-‘ l\l'-* l\DI

( —wy(e)+— (021(92) w43(e1)+ w4a(92))91/\93
1

1 1
T —2—<— 7 wy(e)+— 0)34(32) 2 S p(e)F— P wlz(ez))ez/\e4

.

where ﬁlz-\%(ez/\e4—el/\e3). P, is a unit vector which is normal to G(M)
and tangent to S;. The last equality in (4.16) follows from the Codazzi equa-
tions (2.9)-(2.12). If we set )?Z—V_dG(XZ) and yz—vl—f—(ez/\ep{-el/\eg), we

obtain the following formula by a similar computation:
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4.17) p jz)?g:Z(el(%)——@(%))ﬁg.

Using (4.16) and (4.17), we can give a geometric interpretation of a formula
obtained in §2.

PROPOSITION 4.1. Let ¢,(vy) and ¢5(ve) be the functions gien wn (2.23) and
(2.24). Then the curvatures k,(vy) of 7,(vs) and k.(vs) of 71.(ve) are given by

”1(”1):2\/_2h¢1(1/1)

(4.18) __
£5(Vs) =242 ¢2(V2) .

In the following theorems, we give characterizations of surfaces which are
product spaces in R! Theorem 2 also follows from the work of Chen-Yama-

guchi [1].

THEOREM 2. Let M be a surface in R* which has zero curvature and flat
normal connection. If G(M) is totally geodesic in G,,, M is locally the Rieman-
nian product of two plane curves.

Proof. 1f G(M) is totally geodesic, the curvatures of 7, and 7, are identic-

A
in the proof for Proposition 2.1, M is locally the Riemannian product of two
plane curves. Q.E.D.

ally zero. This implies that e,(—j;)z() and e2<l>20 on M. Then, as we see

THEOREM 3. Let M be as in Theorem 2. In addition, suppose that M 1s
compact. Then if the length of the mean curvature vector of G(M)C G, , 1S con-
stant, M is globally the Riemanman product of two closed plane curves.

Proof. The mean curvature vector H of G(M) in G, , is given by H=k,J,

+k.0,. Hence, if |H|?*=k,(v1)*+£(v,)* is constant, both &,(v;) and &,(v,) must be
1 1

constant en e,(#) ND)

from Proposition 2.1. Q.E.D.

(£,(v1)+£5(vy)) is constant and the theorem follows
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