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NON-INTEGRABILITY OF HENON-HEILES SYSTEM
AND A THEOREM OF ZIGLIN

BY HIDEKAZU ITO

1. Introduction.

This paper concerns the integrability of Hamiltonian systems with two
degrees of freedom

(1.1) Qk=HPk, pk = -HQk (£ = 1 , 2 ) ,

where the dot indicates the differentiation with respect to time variable t. We

assume that the Hamiltonian H is of the form

where V(q) is a polynomial of q± and q2. We consider this system in the com-
plex domain. A single-valued function F(q, p) is called an integral of (1.1) if it
is constant along any solution curve (q(t), p{i)) of (1.1). This implies that
(d/dt)F(q(t), p(t))=O, which leads to the identity

In particular, the Hamiltonian H is an integral. In this paper, the system (1.1)
is said to be integrable if there exists an entire integral F which is functionally
independent of H.

From the viewpoint of dynamical systems, our interest is in the behavior of
real solutions for real analytic Hamiltonian systems. However, in the majority
of integrable problems of Hamiltonian mechanics, the known integrals can be
extended to the complex domain. Therefore, it is natural to discuss the inte-
grability of complex Hamiltonian systems in the above sense, that is, the
existence of additional entire integrals other than the Hamiltonian. Moreover, a
new aspect appears from considering solutions in complex time plane. It is the
branching of solutions as functions of time variable t. In general, the solutions
branch in finite or infinite manner by analytic continuation. In this paper, we
discuss the integrability of (1.1) in connection with the branching of solutions.
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As for other various aspects of integrable systems, we refer to Kozlov [12].
In recent years, a direct method for testing the integrability has been

•developed [1, 3, 4, β-8]. This method consists of requiring that the general
solutions have the Painleve property, i. e. have no movable singularities other
than poles. It was first adopted by Kowalevski [10, 11] in the famous study of
t h e motion of heavy solid body about a fixed point. Among recent researches,
there have been many works dealing with the integrability of Henon-Heiles
Hamiltonian

•(1.4) H=j\p\2+V() V()

where a, b, c, d are real constants. The original Henon-Heiles Hamiltonian [9]
corresponds to a=b=c = l and d— — l. This direct method has been used to find
parameter values a, b, c, d for which the system with (1.4) is integrable (see
[1, 3, 7]). However, this method is practical rather than rigorous. On the other
hand, Ziglin [16] has established rigorously a necessary condition for the inte-
grability of Hamiltonian systems. Moreover, using his method Ziglin [17] has
proved the non-integrability of the original Henon-Heiles system. His method is
based on considering a particular solution of (1.1) and its monodromy group
whose definition will be given in Section 2.

The aim of this paper is to give a criterion for claiming rigorously the
non-integrability of (1.1) with (1.2), especially with (1.4). Our arguments are
based on a theorem of Ziglin [16, 17], and in the next section we review
Ziglin's theorem. For the sake of completeness, we shall give its elementary
proof in our setting. The main theorem (Theorem 2) is stated in Section 3.
For using Ziglin's approach, it is needed to have a particular solution given in
terms of elliptic functions of complex time. We consider a family of such
periodic orbits. The main theorem gives a necessary condition for the inte-
grability in connection with the behavior of their characteristic multipliers. It
presents a typical situation where the integrability implies non-branching of
solutions of variational equations. For the connection between integrability and
non-branching of solutions, see [1, 3, 7, 16].

Our result can be applicable for Hamiltonians with non-homogeneous potentials
rather than homogeneous ones. In Section 4, our result is applied to Henon-Heiles
Hamiltonians (1.4). In particular, for the case a—b we prove that the system is
integrable only if c/rf=0, 1/6, 1/2 or 1 (Theorem 3). The cases c/d=0, 1/6 and
1 are well known integrable cases [3, 7]. In the case c/d=l/2, the system is
seemed to be non-integrable [3], but we cannot have proved this rigorously.

Acknowledgement. I would like to express my sincere gratitude to Professor
Y. Hirasawa for his valuable comments and suggestions, and to Dr. H Yoshida
for stimulating discussions and useful suggestions during the preparation of this
paper.
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2. The reduced equation in normal variations and Ziglin's theorem.

The aim of this section is to give preliminary discussions for stating our
main theorem, and to review Ziglin's theorem [16].

Let us consider a particular solution z(t)=(q(t), p(t)) of (1.1) which is not an
equilibrium point. We consider z(f) to be a complete analytic function of t,
namely to be maximally analytically continued with respect to t. Then the phase
curve Γ— {z{t)\ is a Riemann surface with local coordinate t. The variational
equation of (1.1) along Γ is given by

(2.1) ζ=JH2Z

Here ζ=t(ξ1, ξ2, ηu ηs), J is the symplectic matrix

\-i or

where / is the identity matrix of degree two, and Hzz is the Hessian matrix of
H{q, p) given by

Let us now denote M—C\ The variational equation (2.1) is defined on the
tangent subbundle TΓM, which is obtained by restricting the base space of TM
to Γ and whose coordinate system is given by (ζ, t). Our aim is to give an
elementary proof of Ziglin's theorem in our setting. In the following, for any
function F(q, p) on M, Fz denotes the gradient vector of F, i.e., Fz=

ι(Fq, Fp),
and <,> denotes (w, w'}=yΣ4

J=1WjWj for vectors w, w'^C4 with entries wJf w'3
(j=l, •••, 4) respectively.

At first, we note that a 1-form dH is a time-dependent integral of (2.1).
Indeed we have

)~<H,, 0 = <H,JH

where the argument of H2 and Hzz is z(t). Therefore, dH is a non-constant
time-dependent integral of (2.1). Next, according to Ziglin [16], we prove that
more generally any integral of (1.1) induces a time-dependent integral of the
variational equation (2.1). To this end, we consider the general system (1.1)
without assuming (1.2).

Let F(q, p) be an analytic function in a neighborhood of Γ. Suppose that at
some point z{t)^Γ all the derivatives of F up to and including (n —l)-th order
vanish, while at least one of its derivatives of n-th order is different from zero.
This implies that the integer n is the smallest positive integer such that

(2.2) DrF(z(t))Φ0, \r\=n
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for some multi-index r=(ru r2, r[, rf

2), where

Generally this integer n depends on the point z{t)^Γ. However, we have the
following lemma, whose assertion is used in [16] without proof.

LEMMA 1. // F(q, p) is an integral of (1.1) which is analytic in a neighbor-
hood of Γ, then the smallest positive integer n in (2.2) is independent of

Proof. Let us consider the identity (1.3), which is written as

Without loss of generality, we assume that F(z(f))=0. By differentiating this
identity with respect to z, we obtain

<FZZ, JHZ>+<JHZ2, Fz}=0.

This leads to a linear equation for Fz

The uniqueness of this equation implies that, if Fz(z(t0))=0 for some tQ^C, we
have Fz(z(t))~0 for any ί e C . Therefore the assertion is proved when n = l.
Furthermore we can prove this inductively when n is an arbitrary integer.
Indeed, let us assume that DrF(z)=Q along Γ for any \r\^n. Then, similarly
as above, we have a linear homogeneous equation for a vector with entries
DrF(z) satisfying | r | = n + l . Hence we have proved that for any Z(ΞΓ, either
DrF(z)=0 for any r with | r | = n + l, or DrF(z)Φθ for some r with | r | = n + l.
This completes the proof. Q. E. D.

For any ζ= c(fi, ξ2, v)ι, f]2)^C\—TzU)M), let us introduce a differential
operator

where d/dz—^d/dqu d/dq2, d/dplf d/dp2). From the above lemma, we can define
a single-valued function Φ(ζ, t) on TrM by

(2.3) Φ(ζ, f)=0?F(z(f)),

where n is the smallest positive integer satisfying (2.2). This is a homogeneous
polynomial of degree n in ζ. For this function Φ(ζ, t), we have

LEMMA 2. Let F{q, p) be an integral of (1.1) which is analytic in a neigh-
borhood of Γ. Then Φ(ζ, t) is a time-dependent integral of the variational equation
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(2.1) such that

(2.4) Φ(ζ, ί)=Φ(ζ+ζΛ, 0 , ζh

for any scalar ξh^C.

Remark. The Hamiltonian vector field JHZ along Z7, i.e., JHz(z(t)), satisfies
the linear equation (2.1). Therefore, if ζ(0 is a solution of (2.1), then ζ(ί)+
ξhJHz(z(t)) is also a solution of (2.1) for any scalar ξh. This implies that the
variational equation (2.1) is to be considered on the normal bundle TΓM/TΓ=
(TΓ)L. The identity (2.4) implies that Φ(ζ, t) can be considered as a function
on TΓM/TΓ.

Proof. To see that Φ(ζ, ί) is a time-dependent integral of (2.1), we prove
that

^ , 0=0

for any solution ζ=ζ(O of (2.1). If we introduce a differential operator

this reads as

(2.5) DtΦ(ζ(t), t)=DtDξF(z(t))=0,

where ζ=ζ(O Here we obtain the identity

DζDt-DtDζ=((J^UHzzζ), ~lζ), ζ).

Since this does not contain the differentiation d/dz,

is a polynomial of ζ all of whose coefficients contain the derivatives DrF(z) with
\r\—k but do not contain those with \r\^k + l, where Z G M is arbitrary.
Therefore we can see inductively that

(2.6) DtDζF(z)-D?DtF(z)

contains the derivatives of F up to (n —l)-th order but do not contain those of
n-th order. Since the positive integer n is the smallest one satisfying (2.2),
this implies that (2.6) vanishes on the solution curve Γ. Here, if F is an integral
of (1.1), then we have the identity DtF{z) — (JHz, F2>=0. Hence we have
proved (2.5).

Next, to prove (2.4) we introduce a differential operator
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We note that

Here we obtain the identity

•j d

in'Tzll'

which defines the first order differential operator. Hence it follows that for
any

where the remainder terms contain the derivatives of F(z) up to (n-l)-th order
only. Similarly as above, this implies that the remainder terms vanish on the
solution curve Γ. Then, noting that DHF(z) vanishes identically, we have

(Dζ+ξhDπ)
nF(z(f))=DζF(z(t)),

which leads to (2.4). This completes the proof. Q. E. D.

Now we consider the Hamiltonian system (1.1) together with (1.2). The
system is written as

(2.7) 4k=Pk, Pk = -Vqk (* = 1, 2 ) .

In this paper, the particular solution z{t) is essentially restricted to a special
class such as q1(t)=p1(t)=O. Then we have

PROPOSITION 1. Let Γ—{z{t)—{q{t), pit))) be a particular solution o/(l.l) with
(1.2) which is not an equilibrium point and satisfies Qi(t)=p1(t)=O. Then the
variational equation (2.1) is written as

(2.8a)

(2.8b) q22

with 771=^1, η2=
zξ2. Moreover, equation (2.8b) admits a time-dependent integral

dH{ζ, t)=dH(ξtf η2, t).

Proof. From the form (1.2) of H, it follows that HPP=I and Hqp--=Hpq=^0.
Moreover, since q1=p1=O along Γ, it follows from (2.7) that

This implies that Hqiq2(z(t))—0. To see this, it suffices to consider the system
(2.7) locally and we can assume that the solution z{t) is analytic in a domain of
ί-plane. Indeed, if q2—ΰ in the domain, then p2=0 and Γ is an equilibrium
point, which contradicts the assumption. Therefore there exists a neighborhood
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of t in which q2φQ. Hence we have

in the neighborhood of t. Since Fg i ρ 2(0, q2) is a polynomial of q2 alone, it follows
that Fβ l ί 2(0, q2)=0 identically. Thus we have proved that HqiQ2(0, q2)=0. There-
fore we obtain (2.8a) and (2.8b) easily. It follows from qλ—pι —0 that dH(ζ, t)

τ]2, t). Q.E.D.

Remark. In our main theorem (Theorem 2), we consider a family of partic-
ular solutions of (1.1) with (1.2) such that they are projected into a fixed complex
line in #-space under the mapping {q, p)^q (see [A.2] in Section 3). Here a
complex line in #-space is defined by μ ^ i + ^ ^ ^ O for some (μlf μ2)eC2\{0}.
Then

„_ 1 x 1

(2.9)

defines a canonical transformation which takes the complex line into x1=0 in
x-space. Therefore, Proposition 1 can be applied to this situation.

The ξh in (2.4) can be considered as the tangential coordinate with respect
to Γ. Let Γ be the particular solution given in Proposition 1, and we will use
ζ2 in place of ζh. Then the corresponding normal coordinates are given by
(fi, ?]i, ήz) which are determined by

(2.10) ζ = ξ i e 1 + V l f 1 + ή

where ^ = '(1, 0, 0, 0), Λ = ί (0, 0, 1, 0). Then we have

PROPOSITION 2. Let Γ={z(t)} be a particular solution of (1.1) with (1.2)
satisfying the same assumption as in Proposition 1. Assume that there exists an
analytic integral F(q, p) of (1.1) with (1.2) which induces the time-dependent
integral Φ(ζ, t) of (2.1) defined by (2.3). Then Φ(ζ, t) is independent of | 2 , namely
it is a polynomial of ξlf ηx and ή2. In particular, the integral dH(ζ, t) is given by

(2.11) dH(ζ, 0 = [ {#«,(*(*))} 2 + {Hφ{t))} 2]τ?2.

Proof. In (2.4), put ζ—ζie1

Jr'η1f1

Jrfj2Hz{z{t)) and ξh—ξ2, then we can see
that Φ(ζ, t) is independent of ξ2. Hence Φ(ζ, t) is a homogeneous polynomial of
ξly ηx and η2. Moreover, (2.11) is obtained easily. Q.E.D.

Since dH(ζ, t) is an integral of (2.8b), we can solve (2.8b) for r)2 explicitly
and then also for the tangential coordinate ξ2.

Equation (2.8a) is called the reduced equation in normal variations (or simply
reduced equation). In Ziglin [16, 17], it is essential to consider the monodromy
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group of the reduced equation, which is defined as follows.
Consider loops (closed paths) in Γ having a common base point zQ. Since Γ

is parametrized by the time variable t^C, a loop in /^corresponds to a path in
^-plane. In what follows, the analytic continuation along a loop in Γ is con-
sidered as the analytic continuation along the path in f-plane. Let \φ(t), ψ(t)}
be a fundamental system of solutions of the reduced equation (2.8a). If φ{t) and
ψ(t) denote the analytic continuation of φ(t) and ψ{t) along a loop γczΓ respec-
tively, then \φ(t), ψ(t)} also defines a fundamental system of solutions of (2.8a).
Therefore there exists a 2x2 constant matrix C(γ) such that

(φ(t), $(t)) = (φ(t), ψ(t))C(r).

Here we note that equation (2.8a) is a Hamiltonian system with the Hamiltonian
#(£i, ηι> t)=Q./2)(ηl+Hqiqi(z(t))ξp. Since C(γ) is defined by the analytic continu-
ation of the solution of (2.8a), it is symplectic, namely in this case C(γ)^SL(2, C)
(i.e., detC(τ')=l). If we fix the base point z0 and the fundamental system
{<p(t), ψ(t)}, then this matrix C(γ) depends only on the homotopy class [ j] of γ.
Hence the correspondence p : [y~]-*C(γ) defines a group homomorphism p : π^Γ, zQ)
-»SL(2, C), where πx(Γ, z0) is the fundamental group of Γ. The image G=
piπ^Γ, zQ)) is called the monodromy group of the reduced equation (2.8a), and its
element is called the monodromy matrix. The following example gives the
situation to be considered in Sections 3 and 4.

EXAMPLE. Assume that the function Q(f)=Hqiqi(z(t)) in (2.8a) is a non-
constant (non-trivial) elliptic function of t possessing only one singular point (pole)
in a period parallelogram Ω. Then the phase curve Γ is identified as the real 2-
dimensional punctured torus. Let (ωlf ω2) be a pair of basic periods of Q(t)
which determines the period parallelogram Ω. Then equation (2.8a) is so-called
Hill's equation [13] with respect to each period ωx and ω2. Then there exists
a constant matrix g1 and g2 satisfying

(φ(t+ωk), ψ(t+ωk))=(φ{t), ώ{t))gk (k = l, 2).

The monodromy group is generated by these two matrices (linear transformations)
g! and g2. This matrix gk (k = l, 2) is also called the monodromy matrix with
respect to the period ωk (k = l, 2). It is to be noted that the commutator g*=
gig2gϊ1g21 gives the monodromy matrix corresponding to the loop around the
singular point.

Let us denote the monodromy group by G. The following lemma plays a
fundamental role in Ziglin [16].

LEMMA 3. Let Γ={z(t) = (q(t), p{t))} be a particular solution of (1.1) with
(1.2) which is not an equilibrium point and satisfies qi(t)=p1(t)=O. If the system
(1.1) has an integral which is analytic in a neighborhood of Γ and functionally
independent of H, then there exists a homogeneous polynomial of ξ1 and ηx such
that it is invariant under the action of the monodromy group G.
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Proof. Let F(q, p) be an integral of (1.1) which is functionally independent
of H(q, p), and let Φ(ξlf ηu ή2, t) be an integral of (2.1) induced by F(q, p).
Since dH of the form (2.11) is an integral of (2.8b), we can eliminate ή2 by
using the relation dH(ζ, t)=const. Therefore Φ is reduced to a polynomial of
ξx and r)x. This is an integral of (2.8a). However, this may be a constant
function in general. Therefore, we need to take a suitable polynomial of H and
F in place of F in the above discussions. Then we can obtain an integral of
(2.8a) which is a non-constant polynomial of ξx and ηx. This is possible because
F is functionally independent of H. We omit the details (see [16]). In partic-
ular, this polynomial is invariant under the analytic continuation of the solutions
of (2.8a) along a loop in Γ. Let Ψ(ξχ, ηu t) = Έik+ι<,nψ ki(t)ξ\η[ be the integral of
(2.8a). Here we note that the coefficients ψkι(t) are single-valued functions on
the Riemann surface Γ. If we fix the base point zo^Γ of the loop with its
coordinate t0, then Ψ(ξlf rji, t0) gives a polynomial of ξlf Ύ]x which is invariant
under the action of the monodromy group G. Since any g^G is a linear
transformation, each homogeneous part of Ψ(ξlf rji, t0) is invariant under the
action of the monodromy group G, and therefore gives the desired polynomial.
This completes the proof. Q. E. D.

To state Ziglin's theorem, we need the following definition.

DEFINITION. A transformation go^G is said to be non-resonant if any
eigenvalue ?, of g0 satisfies that λnψl for any nonzero integer n.

Now, Ziglin's theorem is stated in our situation as follows:

THEOREM 1. (Ziglin [16]). Suppose that there exists a particular solution
Γ={z(t)} of (1.1) with (1.2) which is not an equilibrium point and satisfies q$)
~pi{t)—Q. Assume that the system (1.1) has an integral which is analytic in a
neighborhood of Γ and functionally independent of H. Then, if there exists a
non-resonant transformation g0 in the monodromy group G, any transformation in
G commutes or permutes the eigenspaces of g0.

COROLLARY. Let gt and g2 be elements of G. If gx is non-resonant, then
the commutator g*=:gig2gϊ1g21 zs equal either to the identity or to g\. Similarly,
if g2 is non-resonant, then either g% is the identity or g^—gl2-

Remark. Let Ex and E2 denote the eigenspaces of g0. Then, " commute "
means that g transforms Ex into Ex and E2 into E2. On the other hand,
" permute " means that g transforms Ex into E2 and E2 into Ex.

Proof of Theorem 1. Assume that there exists a non-resonant transforma-
tion go^G. Let Ψ(ξy η) be the homogeneous polynomial in Lemma 3, where we
use ξ, η in place of ξlt ηλ. Then there exists a symplectic base of C2 such that

λ 0'

0 μ
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Let Ψ(ξ, η)=l±k+ι=Nψkiξkηι, where ψkι^C Then the invariance of Ψ under G
leads to

Σ ψkιξ
kyι= Σ Φki(λkμι)ξk

v

ι.

Here λμ—l because det^o^l . and λ, μ are not roots of unity because g0 is
non-resonant. Therefore this implies that Ψ(ξ, rf^ψssiξηY for some positive
integer s (2s=N). If we set

la b\

\c d)

for any g^G, we have by the invariance of Ψ under g that

Then it follows that ab—cd=0. Since d e t g = l , we have ad—be—I. Therefore
we obtain the following two cases: (i) b=^c—0 and ad — \, or (ii) a = d=0 and
be——1. These cases satisfy the above equation, where s is an even integer
for the case (ii). The transformation g commutes the eigenspaces of g0 in the
case (i), and on the other hand in the case (ii) g permutes those of g0. This
completes the proof. Q. E. D.

Proof of Corollary. If gx is non-resonant, let go—gi and g=g2 in the above
proof of Theorem 1. Then we can prove that g*—I (identity) in the case (i),
and g*—gl in the case (ii). The proof is similar when g2 is non-resonant. This
completes the proof. Q. E. D.

3. Main Theorem.

We are now in a position to state our main theorem. Let us consider the
complex Hamiltonian system (1.1) with (1.2) under the following assumptions:

[A.I] There exists a family of non-trivial doubly periodic orbits Γh (i. e.,
elliptic functions of complex time) of (1.1), which depend analytically on
a parameter h varying on (h0, h^.

[A.2] For any Λε(/ι0, Ai), Γh is projected into a fixed complex line in <?-space
under the mapping {q, p)—>q.

Here the complex line is defined by μλqιJt-μ2q2—O. Then, since ήk—pk from
(2.7), it follows that μipi+μ2p2:=0. Therefore, carrying out the canonical trans-
formation (2.9), it transforms into χ1=y1=0. Let zh(t) denote the coordinate of
Γh. By Proposition 1, we obtain a family of reduced equations

(3.1) Si+(?Λ(0£i=0; Qh(t)=HXlXl(zh(t))

with ^i=fi . Under the assumptions [A.I] and [A.2], the coefficients Qh{t) are
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elliptic functions of t. Suppose that Qh(t) is non-constant, and let (α>i(Λ), α>2(λ))
be a pair of basic periods which determines a period parallelogram. We assume

[A.3] For any h^(h0, hλ), the coefficient Qh(t) in (3.1) has only one singular
point (pole) in the period parallelogram. The eigenvalues of the mono-
dromy matrix around it are independent of h.

Let gi(Λ), g2(h) denote the monodromy matrices corresponding to the period
Wi(h) and ω2(h) respectively, and let g*{h) be the monodromy matrix around the
singular point. Then our main theorem is stated as follows:

THEOREM 2. Let the Hamiltonian system (1.1) with (1.2) satisfy [A.I], [A.2]
and [A.3]. Assume that the system (1.1) has an integral which is analytic in a
neighborhood of the family {Γh} and functionally independent of H. Then either
g*(h) is the identity for any h<^(h0, &i), or the traces of both gλ{h) and g2(h) are
constant functions in h^(h0, hλ).

Remarks. ( i ) Let λ, μ be eigenvalues of gk {k=l, 2). Then, since λμ=l,
the in variance of the trace of gk is equivalent to that of eigenvalues of gk.
(ii) This theorem shows that integrability implies non-branching of solutions of
the reduced equations when the eigenvalues of both gx{h) and g2(h) are not con-
stant.
(iii) In the above, h is considered as a real parameter. However, the same as-
sertion as in Theorem 2 holds also when h is considered as a complex parameter.

Proof. Assume that the trace of gx{h) varies with h. Then there exists
a dense subset 5 of (Λo, hλ) such that gi(h) is non-resonant for any h^S. By
the corollary to Theorem 1, it follows that g*(h)=I (identity) or g^{h)—g\{h)
for any /zeS. Suppose that g*(h)Φl holds for some Λe(Λ0, hλ). Then, since
the components of g*(h) are analytic functions of h<^{h0, hλ) because of [A.I],
g*{h)Φl holds in a neighborhood of ft. Hence we have g*(h)=gt(h) for any
/ι<=S', where S' is the intersection of the neighborhood of h with S. Since the
trace of gi(h) varies with h, this implies that the trace of g*(ti) also varies with
h. This contradicts the assumption [A.3]. Hence we have g*(h)=I for any
h^(h0, hλ). If we assume that the trace of g2(h) varies with h, we have the
same conclusion by the similar way. This completes the proof. Q. E. D.

Generally speaking, the assumptions [A.I], [A.2] and [A.3] are satisfied if
the potential V(qu q2) is a third- or fourth-degree polynomial. As an example,
we apply Theorem 2 to the Henon-Heiles system in the next section, where the
parameter h corresponds to the energy value of Γh.

4. Application to Henon-Heiles system.

In this section, we apply Theorem 2 to the Henon-Heiles system. Our main
purpose is to prove the following result.

THEOREM 3. Assume that a—b (Φθ) in the Henon-Heiles Hamiltonian (1.4).
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Then the system (1.1) has an entire integral which is functionally independent of
H only if c/d=0, 1/6, 1 or 111.

We prove this theorem in several steps. We begin without assuming a—b
in (1.4). The assumption a—b will be essential only for the final step (v).

(i) Families of doubly periodic orbits.
Let us consider the Henon-Heiles Hamiltonian (1.4) without assuming a—b.

The corresponding Hamiltonian system is given by

(4.1a) qi=Pi> p1 = -aq1-2cqίq2,

(4.1b) ^ 2 ^ 2 , p2= — bq2—cql—dql.

By setting q1=ρ1—Of this system is reduced to (4.1b) with #i=0. Since the
Hamiltonian H is an integral, the phase curve of this system is given by

where h is the energy parameter. This leads to

Let {alf a2, az) — {al} aJt at) be a set of roots of the equation V(0, q2) — h. Then
it follows that

Γ32 dq2

j o v 3

Here, setting q2=aί+(aj—aι)ξ2 we have

2 re dfΓ?2

where

Hence we have

dξp dξ

This implies that ξ is Jacobi's elliptic function sn(τ, k), where k is called the
modulus of sn(τ, k). Since q2—ai

Jr{aj—aτ)ξ2, we have thus families of doubly
periodic orbits Γh(aτ, a3) on H'\h) whose ^-coordinates are given as follows:

(4.2) Γh{aly aj):

£i(f, Λ)=0, q2(t, h)=ai

Jr{aj—aι)sn2τ

τ=βt, β= (Xi—a



132 HIDEKAZU ITO

In the above, the roots alf aJf aL are chosen arbitrary from alf a2, a3 in such a
way as cίiΨau and they are expressed as

θ

(4.3)

where

cos 0 =

Here we note that, as h varies from 0 to b*/6d2

y θ varies from π to 0. These
families {Γh(at, a3)} satisfy [A.I] and [A.2].

The elliptic function sn*τ has a pair of basic periods (2K, 2K-\-2iKf) with
respect to τ=βt, and it has only one pole of order 2 at τ—2K+iKf in the period
parallelogram. Here K—K(k) is the complete elliptic integral of the first kind
and K'—K(k') (k'—Vl—k2) is the complementary complete elliptic integral of
first kind.

In particular when a—b, there exists families of doubly periodic orbits other
than Γh(at, a3). We assume that cΦO, d/cΦ2} 3 in addition to a—b. If we
search for solutions moving on a complex line

then by the compatibility condition for (4.1a) and (4.1b) we must have

(4.4) ± 2

The canonical transformation (2.9) with μjμλ—μ takes (1.4) into

and the corresponding Hamiltonian system is given by

*k—yk, yk——UXk ( f e = l , 2 ) .

Similarly as above, by setting χ1=y1=0 we obtain the desired orbits Λh{alf a3)
on H~\h) such that the *-coordinates are given as follows:

Ci(ί, Λ)=0, x2(t, /ι)=

(4.5) Λh(al} ctj):

6
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Here {alf a2, OLZ) = {al} a3, at} is a set of roots of the equation [7(0, x2) — h, and
they are expressed as (4.3) with replacing b and d by a and e respectively, and
A is assumed to vary from 0 to a3/6e2, where

(4.6) e—
Vl+μ2 L d'

V c

(ii) The reduced equations in normal variations.
We consider the reduced equations in normal variations along the solutions

stated above. In the following, let us use the time variable τ = β ί in place of t.
Then the reduced equations (3.1) are written as

(4.7) ξϊ+Q{τ, h)ξ1=09

where

Then we have

Q(τ, h)=β~

Q(τ, h)-β-

ΪS d2ξjdτ2.

<ι{aJr2cq2(ty A)}

Ί \ n v (f / ^ ^ v
1 ^ /-i—i o ^ 2 \ ί > * l / f

I v l + / r J
For our purpose, we

2tan-^-

V3+tan-

for

for

take i

Γh(al}

Λh(al)

aj),

3) and Λh(a2) a3).

and so we can represent Q(τ, h) as function of τ and K, which will be denoted
by Q{τ, it). Here, as A varies from 0 to bs/6d2 (or α3/6^2)> ^ varies from 1 to
0. Indeed, the reduced equations along Γh(a2, as) and Λh(a2y a5) are expressed
as follows:

(4.9) , _

where

1— — — + 2 - r , r = - τ for Γh(a2, as),
b a a

(4.10)
%= 2, r = - τ f 1) f o r ^ft(α2, α 8 ) .

c 2 V c /
Remark. For families other than /\(α 2, α3) and Λh{a2} a3), we obtain the

corresponding reduced equations of the form (4.9) with changes of (4.10). They
are not needed to prove Theorem 3 and so we omit them.

(iii) Eigenvalues of the commutator g*(h).
In the reduced equations (4.9), the coefficient Q(τ, tc) has a pair of basic



134 HIDEKAZU ITO

periods (2K(κ), 2K(/c)+2tK/(/c)) which determines a period parallelogram. Q{τyκ)
has only one pole of order 2 at τ—2K+iKf in the period parallelogram. Let

gl(κ) and g2(ιc) denote the monodromy matrices corresponding to the period 2K(tc)
and 2K(tc)+2iK'(fc) respectively. Then the monodromy group G(/c) is generated
by gi(fc) and g2(κ). Here, since the correspondence of K to h is one-to-one, we
used the notation such as gλ{κ) in place of gi(h), etc.

It is important that the eigenvalues of the commutator

are given explicitly because τ—2K+iKf is a regular singular point for (4.9) (see
[5]). Indeed, if we consider the Laurent expansion of Q(τ, ic) at τ=2K+iK/,
the coefficient of (τ—2K—ιK'Y2 is — 12γκιCι= —Yλy. Therefore the indicial
equation of (4.9) at 2K+iK' is

σ(o—l)-12r=0.
Hence we have

PROPOSITION 3. The eigenvalues λ of the monodromy matrix g*{κ) for (4.9)
are independent of tt and given by

Thus all the conditions of Theorem 2 have been proved to be satisfied.

(iv) Dependence of tr gl(κ) on tc.
If the potential V(q) is a homogeneous polynomial, the eigenvalues of gι{tc)

and g2(κ) can be expressed explicitly in general (see [14, 15]). On the other
hand, if V(q) is non-homogeneous, we cannot know the explicit representations
of the eigenvalues of gχ(κ) nor g2(κ). However, we have only to know the
variance of the eigenvalues of g^tc) or g2(κ) with tz. Indeed we can give a
sufficient condition for tr gλ{κ) to vary with K. It is (<i2/<iΛ:2)tr Γ̂I(Λ:) | ^^O^O in
the following proposition.

PROPOSITION 4. Let tr gλ(κ) denote the trace of the monodromy matrix gλ(κ)
for (4.9). Then we have

(4.12) tr gl(κ) I ,=0=2 cos(2ττVΎ), ^ tr gl(κ) \ K=Q=0 ,

9f , 15,

(4.13) -^t (χ=0),

9π2

2
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Proof, For the convenience of discussions, let us carry out a change of
time-scale from τ to u by τ—2K{κ)u. Then instead of (4.9), we consider the
linear equation

(4.14) -^-+P(u,tc)ξ1=0; P(U, tc)=4K*(tc)Q(τ, tc),

where Q(τ, tc) is given in (4.9). The coefficient P(u, tc) has a period 1 in u.
The monodromy matrix ^(A;) is given by that of (4.14) corresponding to the
period 1.

Now we note that there exists a fundamental system of solutions {φ(u, tc),
ψ(u, tc)\ of (4.14) such that

φ(0, *) = 1, ψ(0, Λ:)=0,
(4.15)

for any Λ:e[0, 1]. Here and in what follows the dot indicates the differentiation
with respect to u. Then we have

ίφ(l,fc) φ{l,

\φ(l,κ) φ(l,tc)

(4.16) tr gl(<c)=φa, κ)+φa, Λ ) .

Since P(M, /C) is analytic in A: at A;=0, the solutions ^ and ^ are also analytic in
K at A:=0. Let <p(u, tc), φ{u, tc) and P(u, tc) have the following Taylor expansions
at £ = 0 :

<p(u, Λ:) = ^ O

φ(u, tc)=φQ(u)Jrφ1(u)tc+ψ2(u)tc2+

P(u, tc)=P0(u)

Here the expansions of the form

sn(τ, κ) =siΩ(πu) + -r

1 4 ' 64

hold [2], and then we have
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(4.17) )=6τr8r cos(2ττιO,

o-=O, (pn+P0(u)φn+ Σ

Equation (4.14) implies

(4.18)

for n = l , 2,
In the following, our purpose is to solve (4.18) for φn(u) and φn(u) for n

0, 1, 2 under the initial conditions (4.15), namely

p»(0)=pn(0)=^n(0)=^«(0)=0 ( n = l , 2, •••).

At first it follows from (4.18) with rc=0 that

(4.19) V F o

. ίP0(M)=l, ^o(w)=w (P 0 =0).

Here we note that P 0 ~ 4 π % and then we have

(4.20) tr g1(κ)\tmo=φo(X)+φo(D=2 cos(2ττVΎ).

Next, by the method of variation of constants we can solve (4.18) for n
1, 2, ••• inductively as follows:

(4.21) φn(u)=^ψo(v-u) Έ>Pk{v)φn-Mdv,

(4.22) φn(u)=\Uψ0(v-u) Σ
J 0 k—1

Then for w=l we have

Hence because of (4.17) we have

(4.23) ^
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Similarly, for w=2 the formulas (4.21) and (4.22) give

ψ2{u)+ψ2{u)^{P1{v)R,{vy u)+P2(v)R0(v, u)}dv,

where

Rj(v, u)~φj(v)φo(v—u)—φj(v)(po(v—u) (7=0, 1).

Here we have

R0(v, u)=—ψo(u),

RI(V, u)=\ P1(s)φo(s-v){φo(s)φ0(v-u)-φ0(s)φQ(v-u)} ds .
Jo

Then, since {d2/dκ2)Xx gi(tc)\κ=0=^2(φ2(l)+ψ2(.l)), we obtain (4.13) by a direct cal-
culation using (4.17) and (4.19). This calculation is elementary and so we omit
the details. Thus we have proved (4.12) and (4.13). Q. E. D.

(v) Proof of Theorem 3.
If {d2/dιc2)tv g^ic^^Φΰ, then the integrability implies λ~l in Proposition 3.

This gives a criterion for claiming the non-integrability of Henon-Heiles system.
As an example we prove Theorem 3.

Proof. Consider the families of doubly periodic orbits Γh—Γh(a2, az) and
Ah=Ah(a2, a8). It follows from a—b that %=2τ"—1 in (4.10). Then, from Prop-
osition 4 it follows that

r=T)\ (2r-D(2r-5)
(8r-5)

(rτ)
225τr2

128

Assume that the system is integrable. We note that if τ*<l/2, this quantity

does not vanish and then λ—(l/2)(l+Vl+4:8γ) must be an integer. Let us take

the family {Γh}. Then, if c/d < 1/2 it follows that Vl+48c/d is a positive odd

integer. This implies that c/d=l/6orO. Next we take the family {Ah\. Then,

if (l/2)(d/c—1X1/2 it follows that Vl+24(d/c—1)~ is a positive odd integer.

This implies that c / d = l or 3/4 if c/d > 1/2. Here, the case c/d=3/4 is not

integrable one. Indeed, if p=3/4 then we have (d2/d/c2) tr gMl^oΦO and

(l/2)(l+Vl+48r) is not integer. Thus we have proved that c/d=0, 1/6, 1 or

1/2 if the system is integrable. Q. E. D.

Remark. If c/d is 0 or 1, the system is integrable. The case c/d=1/6 is
also known as integrable one. On the other hand, the case c/d=1/2 i seemed
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to be non-integrable [3]. Our method cannot prove the non-integrability of this
case.
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