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A NOTE ON THE RECURRENT RELATIONS FOR

THE BIVARIATE POISSON DISTRIBUTION

BY KAZUTOMO KAWAMURA

1. Introduction.

It is a well known fact that the Poisson density: p(k λ)=(λk/kl)e~λ (k =
0, 1, •••), satisfies the relation kp(k λ)=λp(k—1 λ) (k^l). And also, we know
recurrence relations for the bivariate Poisson density. The relations have been
expressed as in Kotz [3]

( 1 ) kp(k, l)=λlop(k-l, D + λnPik-l, / - I ) ,

(2) ίp(k, l)=λolp(k, l—l)+λnp(k—l, / - I )

where p(k, I) (k, 1=0, 1, 2, •••) is a density of the bivariate Poisson distribution,
and λ10, λ01, λn are its nonnegative three parameters.

In this paper, we will refine the recurrence relations and investigate the
role of the relations. It will be shown that the bivariate Poisson density satisfies
the recurrence relations and conversely, if we assume the relations, we will get
the density p(k, I). But it will be recognized that the recurrence relations (for
the bivariate Poisson distribution) are self duplicated and they may be rearranged
as minimum conditions as to get the density.

2. Notations and definitions.

p(k λ) {k—0, 1, 2, •••): a density of the univariate Poisson distribution, where λ
is its nonnegative parameter.

p(k, I) {k, 1=0, 1, 2, •••): a density of the bivariate Poisson distribution.
Λo, ΛOi, Λπ three parameters for the bivariate Poisson distribution.

The bivariate density for k, 1=0, 1, 2, •••, will be represented by

kΛl

P(k, l)=ΣiP(k-δ;λlo)p(l-δ;λol)p(δ;λn)
δ=0

δtΌ (k-δ)\ (l-δ)\δ\

see, Kawamura [2].
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LEMMA 1. The distribution of bivariate Poisson p(k, I) satisfies the recurrence
relations,

(1 ) kp(k, t)=λlop(k-l, l)+λnp(k-l, /-I) ,

(2) lp(k, l)=λoiP(k, l-l)+λnP(k-l, / - I )

for every integers k,l=l,2,~ .

Proof. This lemma describes the bivariate density p(k, I) (k, /—I, 2, •••) has
the property that the density of a point (k, I) is calculated by the two densities
of the neighbouring points ((& —1, /) or (k, /—I)) and (k — 1, I—I) for every
*, /=1, 2, .. .

In fact, the density p(k, I) has been expressed as

kΛl

p{k, l)= Σ P(k-δ λlo)p(l-δ λol)p(δ λn).

If we assume k^l, then we have

P(k, D= Σ P(k-δ λlo)p(ί-δ λol)p(δ λu)

=ρ(k;λlo)ρ(l;λu)p(0;λn)

+ •••

kp{k, l)=kp{k λn)p{l λu)p{0 λώ

+(k-ί)p(k-ί λlo)p(ί-l λol)pa Λi)

+(k-2)p(k-2 λlo)p(l-2 λoι)p(2 ΛJ

+2/»(*-2 λu)p{l-2 λ<ίl)p{2 λn)

; λί0)p{l-k /!01)

=λlop(k-l λlo)p(l /?01)/)(0 λn)

+λlop(k-2 λlo)p(l-l λn)p(l ;.„)
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+λloρ(0 λlo)ρ(l-k λOi)P(k-l λn)

+λnp(k-l λlo)p(l-l

+λuρ(k-2 λlo)p(l-2

λnP(0 λlo)p(l-k λOi)P(k-l ^n)

*"if δ; λol)p(δ; λn)

=λlop(k-l,l)+λnp{k-l,l-l).

And similarly, if we assume k>l, then by the definition of the density:

Σ
δ=0

=P(k;λlo)p(l',λn)p(β;λ11)

_i- ...
I

l λlo)p(Q λol)p(ί λn),

we have

+(k-l)p(k-ί λlo)p(ί-l λn)p{l λn)

+(k-2)p(k-2; λM)p(l-2; λol)p{2; λu)

+ •••

+(k-ί)p(k~ί;λla)p(O;λol)p(l;λn)

+lp(k-l λlo)p(l-l λβl)pa λu)

+2p(k-2 λu)p{l-2 201)p(2 λu)

-l; λlt)p(Q; λn)p(l: λn)

=λlop(k-l λlo)p(l λol)p(0; ̂ n)

+λnp(k-2 λn)p{l-l λn)p(l λn)

+ •••

λltp(k-l-l) Λo)/>(O; λn)p{l; λn)
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+λ11p(k-l λlo)p(l-l λoί)p(O λn)

+λnp(k-2 λί0)p(ί-2 λol)p(l λn)

k-lΛl

=Λ» Σ pik-l-δ λ^pd-δ λoMδ tn)
δ=0

k-iAl-i

+^ii Σ p(k-—l—δ λlo)p(l—1—δ >
.5=0

Therefore, we have finished the proof of the relation (1). Let us proceed to
finish the proof of the lemma. But we can easily obtain the other relation:

( 2 ) lp(k, l)=λiop{k-l, l)+λ11p(k-lf / - I )

for every k, /—0, 1, 2, •••, by a similar consideration just proved. Then, the
proof of our lemma may be finished.

3. Main results.

LEMMA 2. The density of bivanate Poisson distribution p(k, I) satisfies the
recurrence relations:

( 3 ) kp(k, O)=^oί( fe-1 , 0) (* = 1, 2, •••),

( 4 ) lp(0, l)=λoίp(O, / - I ) (/=1,2, •••)

and for the original point (k=0, 1=0) consists with a density

( 5 ) p(0, O) = β-2io-ϊoi-^ii.

Proof. If we assume k^l, then we have

kp(k, 0)=

And, in the same way, if we assume /^ l , then we have

lp(0, l)=λolp{O, / - I ) .

For the original point (^—0, /—0), the value of the bivariate Poisson density
p(0, 0) is given directly by the definition.
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p(0, 0)=p(0 λlt)pφ λol)p(O 211)

— £-^10-^01-^11 #

Summarize the lemma 1 and lemma 2, we can express the next theorem.

THEOREM 1. // p{k, I) (k, 1=0, 1, 2, •••) is assumed to be a density of a
bivariate Poisson distribution with parameters λ10, λ01 and λn then the density func-
tion satisfies the relations (1), (2), (3), (4) and (5).

In the following lines, we would like to discuss whether the converse asser-
tion of the theorem is satisfied or not. Because, if we wish to calculate the func-
tion p(k, I) for all probability space (k, 1=0, 1, 2, •••), we wonder how many
relations for the function are needed. The answer will be given in the follow-
ing theorem.

THEOREM 2. // a function p(k, I) satisfies the next relations)

(1) kp(kf l)=λlop(k-l, i)+χllP(k-l, / - I ) for k, /=1, 2, •••,

(3) kp(k, O)=^oί(fe-1, 0) for k = l, 2, - ,

(4) lp(0, l)=λolp(O, l-l) for / = 1 , 2, •••,

and

(5) />(0, O)^e~^o-hi-hi

then the function consists with the density of bivariate Poisson distribution

P(k, /)= Σ P(k-d λlo)p(l-δ λol)p(δ λn)
δ=0

for every k, 1=0, 1, 2,

Proof. From the relation (3) kp(k, O)=λlop(k-1, 0) (^^1) and (5); p(0, 0)
—e-*io-*oi-*uf w e have

(6) p(k, 0)=-^e-
λ"-λ°i-λ"

=P(k λlo)p(O λol)p(O λn) for all ̂ ^0 ,

the right side of the equality is consistent with the density of bivariate Poisson
distribution P(λ).

From the relation (4); lp{0, l)=λolp(O, l-l) (/^l) and (5), we have

1 ι

(7) p(0, l)=l-^-eλ">-*°i-λ"

λn) for all /^O,
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the right side of the equality is consistent with the density of P{2).
We have already derived in (6) the function on the X axis (on the line

3^=0); p(k, 0) (&^0) to be consistent with the bivariate density. In the follow-
ing lines, we will derive the value of the function on the line F = / ; p(k, I)
(&:>0), and the function is consistent with the bivariate density, by the induction
for / ^ l .

Let's prove the function to be consistent with the density on the line Y=n,
assuming the function to be consistent with the density on the line Y=n—1,
that is;

kAn-i

(8) p(k, n-l)= Σ p(k-δ;λlo)p(n-l-δ;λol)p(δ;λn) for all k^O.

We have already shown p(0, n —1) and p(0f n) to be consistent with the
density by the equality (7).

We would like to use the second induction for m>l and prove that the
function p(m, n) for m ^ l is consistent with the density.

Let's assume the value of the function pirn—I, n) to be consistent with the
density:

(9) -l, n)= ρ(m—l—δ λu>)ρ(n—δ λol)ρ(β λn).

(a) We assume that the function
p(k, n—1) (k^l) on the line
Y—n — 1 is consistent with the
density by the assumption (8).

(b) Now we assume the value
p(m—l, n) to be consistent
with the density by (9).

(c) From the relation (1), we
can calculate the value of the
function p(m, n) by (8) and (9).

Figure

Putting k—m—\ in the assumption (8), we have

m-lAn-l

(10) p(m-ί, M-1)= Σ p(.m-l-δ;λlo)p{n-l-δ;λn)p(δ;λu)
δ=o

From the recurrence relation (1),

(11) mp(m, n)=λlop(m—l, n)+λolp(m — l, n — 1)
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We can derive that the function p(m, n) is consistent with the density:

m/\n

(12) p(m, n)= Σ p(m-δ λlo)p(n-δ λol)p(δ λn),
δ=-0

and we will finish the second induction for m>l.
Let's prove (12) by (11).

m~i/\n

(9) mp{m, n)=λ10 Σ p(m—l—δ;λlo)p(n—δ;λol)p(δ;λn)

m-lΛn-l

+Λi Σ ρ(m-l-δ Λ10)/>(n--l-3 ^oi)ί(δ λn)

m-iΛn

= Σ λiop{m-l-δ]λlo)p(n-δ;λol)p{δ;λn)

δ=0

m-lAn-1

+ Σ ρ(m-l-δ Λ o ) ί ( n - l - ί λol)λnp(δ λn)
m-lΛn

- Σ (m-δ)p(m-δ;λlo)p(n-δ;λ01)p(δ;λu)Σ
δ

-l-δ; λί0)p(n--l-δ; λOi)p(δ+l; λn)

m-lΛn

= Σ (m-δ)p(m-δ;210)p(n-δ;λol)p(δ;λu)
δ=0

( m l Λ n l ) + l

+ Σ 3/»(m-3 λlo)p(n-ό λOi)p(δ
δ=0

If we assume m^n, then we have

TO-l

mp(m, n)= Σ (m—δ)p(m—δ λlo)p{n—δ λol)p{δ λn)

- a λ1Q)p(n-δ λQ1)p(δ λn)

=m Σ p(m—δ λί0)p(n—δ
δ=0

And, we have

m/\n

p(m, n)= Σ ί(m—δ λlo)p(n-δ
δ=0

if we assume on the contrary m>n, then we have

n

mp(m, n)= Σ (m—δ)p(m—δ λ1Q)p{n—δ λQί)p(δ ^ n )
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+ Σ δp(m-δ λlo)p(n-δ λol)p(δ λn)
δ=0

n

—m Σ p{m—δ λlo)p(n~δ λol)p(δ λn).

And also, we have the same result

p(mf n)= Σ p(τn—δ λί0)p(n—δ λol)p(δ λu) (m^O).
3=0

From the assertion just finished, by the second induction for ?7z=0, 1, 2, •••
that is, the function pirn, n) for m—0, 1, 2, ••• is consistent with the density
for fixed n in the first induction we will finish the first induction for n =
0, 1, 2, •••.

COROLLARY 2-1. // we assume the recurrence relations (1), (3), (4) and

Σ p{k, 0—1 hold for a function p{k, I), then we can derive that the function is

consistent with the density.

Proof. Put the function's value as p000 at the origin (k=0, 1=0). Then, by
the relations (3) and (4), we can derive all the value on X and Y axes.

By the same argument with the induction for Y-=-n in the preceding theo-
rem, we may derive

δ=0 (m—δ)\ (n—δ)\ δ\

for every m, n^O. Finally, using the property of a bivariate density

we can easily derive p(0, O)=pooo=e~λlo~λol~λn.
The assertion of theorem 2 may hold, replacing the relation (1) by the rela-

tion (2), and the assertion of corollary 2-1 also hold. To summarize these
results, we can express a theorem and a corollary as follows.

THEOREM 3. // a function p(k, I) satisfies the relations (1) or (2) plus (3), (4)
and (5), then we can derive

k/\l

P(k, /)= Σ P(k-δ λ1Q)p{l~δ λol)p(δ λn) for every k, / ^ 0 .

COROLLARY 3-1. // we assume the recurrence relations (1) or (2) plus (3), (4)
' Σ p{k. 0—1 holds on a function p(k, I

k,l

consistent with the density as in theorem 3.

and Σ ί(&, 0—1 ΛoWs on α function p(k, I), then we can derive the function is
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4. Conclusion.

Finally, if we combine our theorem 1 and theorem 3, then we have a theo-
rem which is the main result of this paper.

THEOREM 4. To derive the density of the bivariate Poisson distribution, the
necessary and sufficient conditions are expressed as (1) or (2) plus (3), (4) and (5).

The author has considered the result of this paper would be generalized in
the multivariate case. The relations for the density of the multivariate Poisson
distribution will be announced later in the journal.
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