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A METHOD TO A PROBLEM OF R. NEVANLINNA

BY MITSURU OZAWA

§ 1. Introduction. This paper is concerned with a problem posed by R.
Nevanlinna in his monumental paper [6] and successively in his treatise on
meromorphic functions [7]. He proved the following theorem.

THEOREM A. Let f{z) be a meromorphic function in \z\<oo and let

,. „ N(t, 0)+iV(ί, co)

Then there zs a constant C(p) such that for a non-integral order p of f

Simultaneously he made the following conjecture:

\ ,
q+\smπρ\

where inf is taken over all meromorphic functions / of order p.
Edrei and Fuchs [2] proved

1

sinπp

Goldberg's lemma played the decisive role in their paper. Hellerstein and
Williamson [5] proved that the conjecture is true for entire functions of order
p with only negative zeros. They made use of Shea's representation and of a
very precise analysis of the given function.

Through this paper we shall restrict to the following meromorphic function
f(z) defined by a quotient of two canonical products

/i(z)=Π E(z/an, q), /,(z)=Π E{z/bn, q).
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Here E(x, q) means the Weierstrass primary factor of genus q. Further f(z) is
of order p (q<p<q+l).

We now list up two conditions (A) and (B).

(A) \ T(t)t~1'adt->oo as a->p decreasingly. This is equivalent to
Ja

(B) For any positive ε there is a sequence {rn(ε)} such that for any t in
[rn(e), /?n(e)] with /?n(e)=rn(e)logl/β

^k T{rn{e))rn{ε)-p (k : bounded),

and rn(ε)->oo as n->oo.

For simplicity's sake we abbreviate

~\ \og\f{teiθ)\dθ+N{t,<*)lπ JE

as S(t, E), where £ is a measurable subset of [—π, π] . Our results are the
following theorems. Let L(ρ) be the constant defined by

q+\sinπp\
Up) — -

This does not mean inf K(f).

THEOREM 1. Under the condition (A)

Up) lim inf S(ί, E)/T(t, f)<*K(fj
t-*oo

for any measurable subset E of [_—π, π].

THEOREM 2. Under the condition (B)

Up) lim inf S(ί, E)/T(t, f)^K(f)
t-*oo

for any measurable subset E of [—π, π].

There were several papers in which the problem was attacked in the most
general setting. However all of them did not succeed to gain the precise
constant Up) in any form. In our method the constant Up) appears quite
easily and naturally. So there may be a hope of giving a new light to the
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problem in our method, although our present results are not decisive.
Several extremal problems in value-distribution theory are formulated and

solved by making use of the concept of the lower order. We can obtain the
following result.

THEOREM 3. Suppose the lower order μ and the order p satisfy g^μ<p
<<7+l. Let λ be a number in (μ, p). Then

sup Ltf) lim inf S(f, E)/T(t, f)^K(f)
μ<λ<p ε-oo

for any measurable subset E in [_—π, TΓ].

We shall not discuss this theorem 3 in this paper.

§ 2. Lemmas. We need several lemmas. The first one was stated in Edrei
and Fuchs [1],

LEMMA 1. For fe(2r, R/2)

log\f(teiθ)\= Σ log\E(teiθ/an,q)\- Σ log\E(teiθ/bn, q)\+S,

, f)
where

LEMMA 2. Let hx(x) and h2(x) be real functions defined on [0, oo) such that

for any a>p and

Γ h2(x)χ-1-adx->oo
Jx*

for any fixed x* as a tends to p decreasingly. Assume that

Γ 'h^x-i-odx^Ciaύ"\lx)χ-λ~adx
Jo Jo

for a>p, where C(a) is a positive constant depending on a continuously around
p. Then

lim inf

Proof. Suppose this is false. Then there are a constant C and x0 such
that
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for x^x0. Taking a sufficiently near p but a>p, we have

(C-C(α))Γ h2(x)χ-1-adx^C(a)\X°h2(x)χ-1-adx-\Xoh1(x)χ-1-adx .
Jx0 JO JO

Now C-C(ά)-+C-C(p)>0 for a~>p. Then

Γ h2(x)χ-1-adx->co

as a-*p decreasingly implies clearly a contradiction.

The following was stated in [4].

LEMMA 3. Let q be an arbitrary integer >0, and let a be a constant in
(q, q+1). Then

, ^ M dt π cos θa

is valid for all θ^\_—π, π]. Further, this integral is absolutely convergent for
each value of θ.

§3. Proof of Theorem 1. By Lemma 3 we have

) o i 0 g { n ΐ e )lt^«- a s m π a i ? \an\« ? \bn\« J

for α>/?, where ^)n, ^>nG[—π, π] are the arguments of — an, —bn, respectively
and

cos θa

cos(2τr-#)α

Let E be an arbitrary measurable subset of [—TΓ, TΓ]. Then

1 αί ΦΛΘ-ψn)dθ „ a\φa{θ-ψn)dθ
j; I -yi J E y Λ JE

n π α l i 2\an\
a V 2\bn\

a

By the identity

" ^ T w * Jo t^ dt>
we have

^\h ^) r._ -L j v U w ι y r "
o ί 1 +* α α 2 s i n τ r α l i | α n | β i | 6 » l β i "
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with

If sinπαX), then for any n, Unt^A(a), Vn^A(a), where

{ #+|sin πa\

q+l

If sin7rα:<0, then for any n, Un^—A(a), Vn7>—A(a). Hence

J o t1+a = I s i n 7 r α r 1 1 1 a 2 \ a n \ a 1 a 2 \ b n \ a

By the definition of /f(/) there exists a ί0 such that

N(t, O)+N(t, oo)£(K(J)+e)T(t, f)

for t^t0. Thus

Since

for α—>̂o decreasingly,

if « is sufficiently near p. By Lemma 2 we have

liminf S(t, E)/T(t, f)^
t-»oo

which is the desired result

§4. Proof of Theorem 2. In the first place we should remark that it is
enough to consider the case

by Theorem 1. In this case T(t)/tp^O for ί-»oo. Let us compute
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Case 1). R/2< \a\^R. In this case

dxC°° dx CR/2 tq"p

*Σ(-ϊ)8e'ιlθ-vA -j~ττ\ ts+q~pdt
s=0 J i α i X s + 5 + 2 j 2 r

Therefore
oo I / /? \q-P + s+1

I /1 < v = f — ) /1 fl I ? + s

Case 2). 2r< | a \ <R/2. In this case

2 dx
dt

d x •-- * -dt
J2r ' '

As in case 1)

Let us put D as the domain defined by {2r<\z\<R/2}-the segment (2r, Λ/2).
By the contour integration along 3D we have

* / g * ' p

df*/

J2Γ

i(R/2)q-p+1 γ* eP^ χψ

i(2r)q~p+1 Γ27Γ g*(β-/°)^

if x satisfies 2r<x<R/2. Three terms in the right hand side are denoted by
ί/i, ί72 and ί/8. Then L^Fα+Fg+Fs, where

ί
Λ/2

UjX-t-'dx (/=1, 2, 3).
I α i
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Now we have

By the power series expansion we can prove that

\V2\=O((R/2)-η+O((\ogR/2-log\a\)/(R/2y)

+ Σ3 O((\a\-«+J-

a n d

Case 3). r<\a\<2r. In this case

r/e/2 roo η //r rR/2 n-p
+ Jΰ

2r r/e/
4-1

=Y1+Yi+YB.

It is easy to prove \YS\=O((R/2)'P). For Y1 we have by the power series
expansion

\Y1\=O((2rγ-P\a\-η+O((2r)-p\og(2r/\a\))+O((2r)-p).

In order to estimate Y2 we need the contour integration as in case 2) and have

IY21 =O((2r)->)+ Σ 0((/?/2)«->-7(2r)«->)

+ O((Λ/2)^(log jR/2-log 2r))+O((/?/2)"0.

What we really need in the sequel is 311 for various av and &„. Now we
make use of Lemma 1. Then

Γ2log \f(teiθ)\^-= Σ <kl(av)- Σ
J2r Γ + ̂  r<\av\£R r<\bv\

where β is the argument of —x. Let us denote n(t) — n(t, 0)+n(t, oo) and N(t)
i, oo). Then

— v 7ΓCQS p(θ—φv) ^ 1 πcos ρ{θ—φv) 1 ς

2r<\av\SR/2 pSlΠπp \dv\P 2r<\bv\ύRl2 p Sill πp \OV\
P

where
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+ O(n(2r)/{2ry)

+ O(N(R/2)/(R/2y)+O((R/2)*-p\*/2N(t)t-*-1dt)

« + 1 - V ( # / 2 ) β ^

fl+1-'J^ N(t)rq~2dή+O(n(R)/(R/2y).

Let E be a measurable subset of [—TΓ, π]. Then as in Theorem 1

[Rl\(f π\ d t <cτf ^iϊR/* Wt, O)+N(t,

where
St=S1+O{T(R9 f)/RP).

By our assumption (B) we can choose {2rri(ε)}, {2i?n(ε)} for any positive ε
such that for any *e[2rn(ε), 2Λ»(e)]

and i?π(ε)=rn(ε)log ε"1. We simply write 2r, 2R and T(r) instead of 2rn(ε),
2Rn(ε) and T(r, / ) .

Next we shall estimate the residual term 5 2 in comparison with

ΓR/2

Tίήr'-Pdt.
J2r

This integral is not less than

Hence we have

T(2r) /f*/»

Further

T(2R)/(2Ry^kT(2r)/Qry,
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and

{2rY (log ε-1)'

Therefore

J J2/2 ΓR/2

As in the proof of Lemma 2 we have the desired result.

§5. An application. Let E(t) be the set of intervals Iλ{t), •••, It{t) of θ on
which | / ( ί e ^ ) | ^ l . We assume that (B) holds. So for any ε>0 there are
intervals -X"n(ε) = [2rΛ(e), 2/?n(e)]. We now introduce another assumption (C) in
the following manner: Let aft), βj(t) be two ends of I3 and let aft
Then for all / there exist

lim aj(t)=aj, lim βj(t)=βj.

Let /j be [aJf βo~] and let E be Λ u ••• U/ {.
The following lemma was proved by Edrei and Fuchs [3].

LEMMA 4. Let g(z) be meromorphic. Let μ{r) be the measure of I(r). Then
for Kr<R'

We now consider

J^\E^\f(teίΘ)\dθ-^EJog\f(teiθ)\dθ

for t^Xn(s). This is equal to

y~L(ί) E EJ°g+][f(ίei0)][dΘJr'h\E E EJ
Og

By making use of Lemma 4 this is not greater than

where μ{t) is the sum of measures of E(i)—Er\E(t) and E—EΓ\E(t). Let μre

be maxμ(0 for t^Xn(ε). Then μn tends to zero as n tends to oo. Let us put
Rr—γi and f = l + v 7 ^ Then the last expression is not greater than

22(1 + Vμ^)T(a + Vμ~n)t, fWμ~n[l+\θg+μ~n^ .
Hence
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S(t, E)^4-\ l0S+1/(ίe*9)Idθ+N(t, oo)
Zπ JEW

Qt, f)Vμ-n

=T(t, f)-
Hence

Since the last integral is not greater than

T(s)s-1-Pds+\ T(s)s-1-"ds\
2r JR/2 J

L(ρ)—tc{ρ).

we have

Jβ/2

Thus we have

This gives

that is,

§6. Remarks. (1). If either T(ί)/^->0 decreasingly or T(t)/tP-ε-^oo in-
creasingly for any positive ε, then (B) holds. Hence there are lots of such
functions.

(2). We do not know when or under what condition on T(t) or so the
condition (C) is satisfied. This seems to be a very important problem in future.

(3). Still there is another open problem, for which our method is applicable,
that is, the following conjecture

N(t,0) Isin Γol
hm sup-^ ' ' > J

p lo M(ί /) -log M(ί, /) - πp

for entire functions of order p. As in our theorems our final result on this
conjecture is not definite either. So we shall not discuss this problem.
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