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A METHOD TO A PROBLEM OF R. NEVANLINNA

By MITSURU OzAwWA

§1. Introduction. This paper is concerned with a problem posed by R.
Nevanlinna in his monumental paper [6] and successively in his treatise on
meromorphic functions [7]. He proved the following theorem.

THEOREM A. Let f(z) be a meromorphic function in |z|<oco and let

N(, 0)+N(, =)
T, 1) '

Then there s a constant C(p) such that for a non-integral order p of f

K(f)zC(p)>0.

K(f)=lirf1 sup

Simultaneously he made the following conjecture :

|sinp|

_snmel < p<qt1/2),
. +|sinzp]|
K(p)=inf K(f)= l"sin 'ﬂp i ?
sisunihad wiL N <o
o (g +1/2=p=g+D),

where inf is taken over all meromorphic functions f of order p.
Edrei and Fuchs [2] proved
1 0=p<1/2),
Kp)=y |
sin 7o (1/22p=0).
Goldberg’s lemma played the decisive role in their paper. Hellerstein and
Williamson [5] proved that the conjecture is true for entire functions of order

o with only negative zeros. They made use of Shea’s representation and of a

very precise analysis of the given function.
Through this paper we shall restrict to the following meromorphic function
f(z) defined by a quotient of two canonical products

f(Z):fl(Z)/fz(Z) »
[1@=I1E(z/a., ¢, [fL=I1Ez/by, q).
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Here E(x, g) means the Weierstrass primary factor of genus ¢. Further f(z) is
of order p (g<p<g+1).
We now list up two conditions (A) and (B).

(A) S:T(t)t'l'“dt—»oo as a—p decreasingly. This is equivalent to

rT(t)t’l"’dtzoo.

(B) For any positive ¢ there is a sequence {r,(¢)} such that for any ¢ in
[72(e), Ra(e)] with Ry(e)=r,(e)log1/e

Tt Pk Trale)rale)=° (k£ : bounded),
T(ra(e)rae)-rre=T (Bt 0%
and 7,(e)—c0 as n—oo,

For simplicity’s sake we abbreviate

1 .
5| Jog| F(te"") | dB+NG, o)

as S(t, E), where E is a measurable subset of [—x, #]. Our results are the
following theorems. Let L(p) be the constant defined by

( |sinzp]

Lo m (g<p<g+1/2),
| Isin 7ol -
T (¢+1/2=2p<g+1).

This does not mean inf K(f).
THEOREM 1. Under the condition (A)
L(p) lirtriui’nf S, E)/T@, f)SK(T)
for any measurable subset E of [—r, n].
THEOREM 2. Under the condition (B)
L(p) lirtriinf S@, E)/T@, H=K(f)
for any measurable subset E of [—=x, ].

There were several papers in which the problem was attacked in the most
general setting. However all of them did not succeed to gain the precise
constant L(p) in any form. In our method the constant L(p) appears quite
easily and naturally. So there may be a hope of giving a new light to the
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problem in our method, although our present results are not decisive.

Several extremal problems in value-distribution theory are formulated and
solved by making use of the concept of the lower order. We can obtain the
following result.

THEOREM 3. Suppose the lower order p and the order p satisfy ¢=u<p
<g+1. Let 2 be a number in (p, p). Then

sup L(A)lim inf S@¢, E)/T(¢, f)SK()
#<ip [add

for any measurable subset E in [—r, x].

We shall not discuss this theorem 3 in this paper.

§2. Lemmas. We need several lemmas. The first one was stated in Edrei
and Fuchs [17.

LEmMMA 1. For te@r, R/2)
log]f(te“’)l=T<]cf“_,lgklog|E(te“’/a,,, q>|_r<| > log|E(tet /b, q)| +S,

bplsR

[S|=@/r)20T (ar, f)+@/R)*12T(aR, f)  (g=1),
where
a=exp(l/(g+1)).

LEMMA 2. Let hy(x) and h.(x) be real functions defined on [0, oo) such that
hy(x)=0,

Smlhl(x)lx’l‘“dx<oo, gwhz(x)x’l““dx<oo

for any a>p and
S:*hz(x)x““'dxﬂoo
for any fixed x* as a tends to p decreasingly. Assume that
[ moxrcdr=c@| hiwr-edx
for a>p, where C(a) is a positive constant depending on a continuously around

o. Then
lirarcl_.inf hi(x)/hy(x)=C(p) .

Proof. Suppose this is false. Then there are a constant C and x, such
that
hl(x)/hz(x)§C>C(,0)
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for x=x, Taking a sufficiently near p but a>p, we have
(C—C(a))S:ohz(x)x‘l'“dx§C(a)5:°h2(x)x‘1"“dx—S:ohl(x)x'l'”dx :
Now C—C(a)—»C—C(p)>0 for a—p. Then
S:th(x)x‘l‘“dxqoo
as a—p decreasingly implies clearly a contradiction.

The following was stated in [4].

LEMMA 3. Let g be an arbitrary integer >0, and let a be a constant in

(g, g+1). Then

o ) dt mcos fa
—_1pt0 —_ o
So log| E(—te*", 9)] e asinra

is valid for all [ —mr, n). Further, this integral is absolutely convergent for
each value of 4.

§3. Proof of Theorem 1. By Lemma 3 we have
2 D (0—0¢, = @ (60—,
T { (0—¢n) % @—¢ )}

asinra T lanl T |bn |

o oy dt
[T0g1 o)1 5 =

for a>p, where ¢,, ¢,€[—nr, x] are the arguments of —a,, —b,, respectively
and

cos fa —r<0=r,
D.(0)=4 cos@r—0)a n<6=2r,
cos(—27—8)a —2r<0<—1.

Let E be an arbitrary measurable subset of [—=z, #]. Then

-1 ot dt
|75 Jog 1ty 1d05
1 af 0u0—pnd0 s aSE%(ﬂ-gbn)dﬂ}
a’sin ra |4 2lan|” T 2|bnl '
By the identity
1= 1 (=Nt o)
B et
we have
“SLE ., 1 e U, &V,
S e di= a’sin wa |4 [anl"‘+¥|bn|“}



18 MITSURU OZAWA

with

[44
Un'—"z'SE¢a(0"SDn)d0 B

Va=sin ra— 5| 0.6—)d0.
If sin za>0, then for any n, U,=<A(a), V,=<A(a), where
g+|sinra| (@<a<qg+1/2),
Ala)=
g+1 (g+1/22a<g+1).

If sin 7a<0, then for any n, U,=—A(a), V,=—A(a). Hence

=St B, _ A@ f2 1 = 1
So fira dt=|sinm|11aﬂ[an|«+?a21bn|a}

—Cla )S NG, O)tzl;{\/'(t oo)

By the definition of K(f) there exists a ¢, such that

N, 0)+N(t, o) =(K(f)+e)T(, f)
for t=t,, Thus

2D e ol OT;Z D arvace|* T ar.
Since
[ T6D gy
to 1«
for a—p decreasingly,
[ S(tﬁ;f) dt=Cla)K(f)+e+o)| Tt(fwf ) at

if « is sufficiently near p. By Lemma 2 we have

lim inf S@¢, E)/T(t, /)=K()L(p)™,

which is the desired result.

§4. Proof of Theorem 2. In the first place we should remark that it is
enough to consider the case

S T® — - dt<ceo

t1+p

by Theorem 1. In this case T'(t)/t*—0 for t—co. Let us compute
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(e LTI dt
I—SznlogE( Y1k ’q)_t”!"

Case 1). R/2<|a|=R. In this case

dt

[:(__1)qeu1<0—‘p)§°°

lar x9%1

dx Sﬁ/z ta-e
or tHxe -9

=(—1)%e@+D O-¢) i (_l)sest(ﬂ-(p)gm dx szt”q"’dt
§=0

et x3%9F2 ) gy

1
(g—p+s+(g+s+1)

(87,

1 (i)q—p'f-s{»l
o (g—p+s+Dg+s+1)\ 2
=0((R/2)*).

=(_1)qez(q+1) b-¢) i (_l)sesz(ﬂ—qa)
$=0

Therefore

8

1]

A

/| a lq+8+l

]

8

Case 2). 2r<|a|=R/2. In this case

Ri2 dx (RI2 ta-e
—(—1)2,2(0-¢)
I=(=Dte Slal xat! SZT t+xe 2 0-9 dt
© dx (R/2 ta-e
—1)2,2a(0-¢)
=l sz xa+ Szr t+xe r 09 at

=L,+L,.
As in case 1)
[L|=0(R/2)*).

Let us put D as the domain defined by {2r<|z|<R/2}-the segment (2r, R/2).
By the contour integration along dD we have

R/2 140 zni(_l)q—pxq—p
Szr H—xe"“‘"?’ dt= 1—g27ta-p)
(R[5 PH (2 @09
1—eg?mr@-p SO (R/Z)e””—!-xe"“”‘”

1(2r)1- e+l raz ot@-0¢ g
1—eg27t@-m Jy 9 el¢+xe-t(0-y)) e (/’,

e~t@-p 0-¢)

e¥dg

if x satisfies 2r<x<R/2. Three terms in the right hand side are denoted by
U, U, and U,. Then L,=V,+V,+V, where

R/2

V,f:(—1)‘18“1"5"‘“Sl ’ij"q‘ldx (=1, 2, 3).
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Now we have
7 cos p(0—¢)

RV,= :
psinmp

{la|-°—(R/2)"*}.
By the power series expansion we can prove that
[Vl =0((R/2)~*)+0((log R/2—log|al)/(R/2)?)

+ 2’1 O((la|~*7—(R/2)-%)/(R/2)°~9+7)

and
[V =0(2r)* =2/ a|®).

Case 3). r<|a|<2r. In this case

or Riz2 (o dx (Ri2 ga-r
o 290 -¢)
[=(=1)ere®e [Slal—{—SZr +SR/2:| xI%1 S2r t+xe @9 a

=Y, +Y,+Y,.

It is easy to prove [Y,|=0((R/2)-°). For Y, we have by the power series
expansion

V1| =0(2r)-¢la|~940(2r) *log 2r/|a|)+0(2r)"°) .
In order to estimate Y, we need the contour integration as in case 2) and have
Vol =0(@r) )+ S O(R/2-+=3/2r)i7%)
+O((R/2)~*(log R/2—log 2r))+O((R/2)"*).

What we really need in the sequel is RI for various a, and b,. Now we
make use of Lemma 1. Then

3/21 [ ftet?)] dat RI(a)— X RIGb R/zS im0
SZr 0og .f e ) t1+P _—7'<H§[SR ay) r<iblsR ( ”)+S2r ,
I(x)=Sj/210g E(— | )tc| e 0-B), q)t-l—Pdt ,

where S is the argument of —x. Let us denote n(t)=n(t, 0)+n(t, co) and N(¢)
=N(t, 0)+N(t, o0). Then

[ 081 e,

ti+e
wcos p(0—p,) 1 wcos p(0—¢,) 1
= n . - n ¢ +Sx )
ar<idyisri psinzp la,|? er<ityisriz psinzp [b,1°

where
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$:=0(T(ar, )/@r)*)+O0(T(aR, f)/R)+0(n2r)/(2r)*)

n2r) log R/2 )
(R/2)*

+O(N(2r)/(27')”)+0( +0(n(R/2)/(R/2))

+O(N(R/Z)/(R/Z)p)‘f‘0((}?/2)4—PS:/2N(t)t-q-1dt)
+0(n(R/2)@r)~¢ /(R/27)+O(N(R/2)(2r)"~ ¢ /(R /2)7+)
+0((2f)9+1-pS:ZN(l‘)l“q-zdt)+0(n(R)/(R/2)ﬁ) )

Let £ be a measurable subset of [—m, 7]. Then as in Theorem 1

SR/ N(t, 0)+N(t, o)

f1+0

R/2
S Stt, BE)-2L < L(p)-

t1+p =

dt+S,,

where
S,=S:+O0(T(R, f)/R?).

By our assumption (B) we can choose {27,(¢)}, {2R.(¢)} for any positive ¢
such that for any t<[27,(¢), 2R.(¢e)]

T(@0)/t° = kT (2ra(e))/2ra(e)?,
T@ra(e))/@ra(e))s=T®)/to¢

and R,(e)=r.(e)loge™’. We simply write 2r, 2R and T(r) instead of 2r,(e),
2R ,(¢) and T(r, f).
Next we shall estimate the residual term S, in comparison with

R/2
SZ TWr-odt |

This integral is not less than

e B (o))

Hence we have

o =1L T4,

Further
TRR)/2R)*<kT(2r)/(2r)",

() roreas R (- (F) )=oenenn,

(@2r)+- oS T2t < kT(20)) (20 )0+ “S:/ZZ"I'“Pdt:0(T(2r)/(2r)f’),
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(2r)1*1-eT(R)/ R =0(T (2r)/(2r)?)
and

T(@3r) R/2 T(@2r) logd-'loge™?)
Re 1085, =3 @) (log e e =T}/ @nF).

Therefore

Sz S(t, E)-'-rdt=L(p)- 1(K(f>+o(1))g T@-edt.

As in the proof of Lemma 2 we have the desired result.

§5. An application. Let E(t) be the set of intervals I,(?), ---, I,(¢) of @ on
which | f(te!?)|=1. We assume that (B) holds. So for any ¢>0 there are
intervals X,(e)=[2r.(¢), 2R,(e)]. We now introduce another assumption (C) in
the following manner: Let a,(f), 8;({) be two ends of I, and let a;(1)<p;(®).
Then for all ; there exist

hm a;t)=a,, ltiffl Bi)=p,.

tEXn(e) tEX p (o)

Let I, be [a,, 8,1 and let E be I, --- UI,.
The following lemma was proved by Edrei and Fuchs [3].

LEMMA 4. Let g(z) be meromorphic. Let p(r) be the measure of I(r). Then
for 1<r<R’
11R’

1 : 1
2 08 e 1405 TR, | 14+og*— <.

We now consider
1 ) 1 0
;ZESEloglf(te )do ZﬂSmloglﬂte )Id0|

for t€X,(¢). This is equal to
1

27 SE(t)—EnE(t)

0 + 1
log™|s(te )'denSE srew 8 TFe )] 4

By making use of Lemma 4 this is not greater than

22R’
Rl

where p(f) is the sum of measures of E(t)—ENE(t) and E—ENE(!). Let g,
be max p(t) for t€X,(e). Then u, tends to zero as n tends to co. Let us put
R’=yt and y=1++/p,. Then the last expression is not greater than

220+ p) T(A 4~/ p)t, )V pall+log*pz'].

TR, )] 1-+10g* (t)]

Hence
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1 + 60
S, E@iﬂm“g | f(tei%)| d+N(t, o)

=224/ ) T+ pta)t, )V pa(l+10g*1/ pn)

=T(t, /)—220+/p) T+ ta)t, f)o/ pa(l-+log*l/p,) .
Hence

R/2 Rz
Szr T edi=L(p) {K(f)+e+o(L)} S T(@)t-*-rdt

. 1 R/2 o
+22(14++/ #n)x/#n(lJrlog*—p-)Szr T(A+V gt -0 dt .

Since the last integral is not greater than

A+app) RI2 }

é(l—h/”‘")p{S:/ZT(S)S—I'WS-FS T(s)s™1-*ds

R/2

=(v/e{[) T()spdstk log(L+ /AT 20/ 2r)7}

=LV o) T edt,

we have
R/2 Rz
Sz, T“)f"“’dtéL(p)'l{K<f>+e+o<1)}Szr T@)t-1-edt.

Thus we have
K(f)=zL(p).
This gives
inf K(f)=L(p),
that is,
L(p)=x(p).

§6. Remarks. (1). If either T(t)/t*—0 decreasingly or T(t)/t? ¢—oo in-
creasingly for any positive ¢, then (B) holds. Hence there are lots of such
functions.

(2). We do not know when or under what condition on 7(f) or so the
condition (C) is satisfied. This seems to be a very important problem in future.

(3). Still there is another open problem, for which our method is applicable,
that is, the following conjecture

. N(t, 0) [sinzp|
>
limn SupJoo MG, 1) = o
for entire functions of order p. As in our theorems our final result on this
conjecture is not definite either. So we shall not discuss this problem.
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