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Introduction.

Let H*(X; Z,) be the ordinary mod p cohomology for odd prime and let
BP*(X) be the Brown-Peterson cohomology theory with BP*=Z ,,[vy, vs, ---1.
The spectrum V(n) is defined by H*(V(n); Z,)=A[Q,, -+, @,1[8] where Q, is
the Milnor operation and V(n) is also defined by BP*(V(n))=BP*/(p, vy, -+, Un)
[6]. To consider the equivalence of the above two definitions was the begining
of this paper.

We note a relation between the Q;-action and wv;-torsion, which is an im-
mediate consequence from the Sullivan’s bordism theory of manifolds with
singularities.

LEMMA 2.1. Let x;,€BP*X) and Xv,x,=0 modI3} where l.=(p, vy, ).
Then there is ye H¥(X; Z,) such that Q,(y)=i(x;) where 1 1s the wnclusion map
(Thom map) 1: BP—HZ,,.

The Brown-Peterson cohomology is studied by many authors, especially the
Adams spectral sequence for BP*(S¥) is well researched. However, known exam-
ples of non free BP*-module BP*(X) are not so many. Using above lemma,
we consider the way to calculate BP*(X) when the Steenrod algebra structure
of H¥(X; Z,) is known, and we give examples of the BP*-module BP*(X).

In section 1 using Sullivan’s original definition of the bordism theory with
(cone type) singularities, we treat the Quillen’s geometric approach to the cobor-
dism theory. In §2 main lemmas are shown. We recall some important facts
about the Atiyah-Hirzebruch spectral sequence and we define an invariant
which is convenient to use. Some examples are discussed in §3. The spectrum
V(n) and Lens spaces are first treated. We next study about finite H-spaces
and Eilenberg-Maclane space K(Z, 3), in particular, BP*-module structures of
even dimensional indecomposed elements are discussed.

The author thanks to W.S. Wilson who suggested the proof of Theorem 3.4.2.
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§1. Cobordism theory with singularities.

We first recall the definition of manifolds with singularities due to Baas [1].

Let S,=(P, -+, P,) be a sequence of closed manifolds. We say Z is an S,-
manifold if its boundary is decomposed as products of P,, namely, there are
manifolds 0,7, au,,.‘,,wz, Z(,, -+, 1), for (i, -, i) (1, -+, n), and natural
isomorphisms

1 0Z=\U0.Z

0, ZN M0y Z=001,19 L ZZ (13, =+, 15) X Py X oo X Py

We next define an §n-manifold (S,.-manifold with cones) by the quotient
space of Z collapsing the P;-factors, i.e.,

@) Z=Z[(w, a)~w, b) where (w, a), (w, b)Edy,....pZ
and weZ(, -, 1), a, bEP, XX P,

Sullivan originally defined an S,-manifold as the manifold such that each point
of its boundaries has a neighbourhood factored cone(P, *---*P,). We show
these two definition are equivalent.

Consider the tubular neighbourhoods of 4, .. s Z,

(Nei. in 0Z)=Z(1, -+, )X Py X - XPsXAsq,
(Nei. in Z)=Z(1, -, s)X Py X X Py XA

where we identify 0. Z=Z(1, ---, s)XP;X--XPy;X(center of A;-;) and A;.,
incluses the s+1-th face of A,. Take the boundary of Nei. in Z (the link complex)

LE=Z(1, -, §)XPyX X PyX (Ay—Ay_y).
Since (Ay—A,.;)=A,,, if we take the quotient (2), then

'L/’\kEZ(l’ Ty S)XPIX”'XPSXAS—]/<wy '”piy Tty U)N(wx .“z];) ) 0)) UE'AS-I
=Z(1, -, $)XPyx- %Py,

Since boundary d...,»Z collapses to Z(1, ---, s),. (Nei. in Z) collapses to
&) (Nei. Z)=Z(1, -, s)x(cone P, - #Py).

Hence the definition (2) is the Sullivan one. Moreover we note Z is also defined by
4) Z:ZAUZJ(Z.)XZ@.)UZ]'({’ NXZG, 1)U Ja, -, n)XZ(1, -, n)

where J(1, ---, s)=cone (P, *--- % Py)
=cone(J2, -, )XP\J-\UJ(-o, £, )X P\ I UJ1, =+, s—1)XP,)
and cone P=PxI/Px{l} and 0,...sZ=1{0} X Z(1, ---, s).
Hereafter let denote 0, ... w2=2(1, -, s).



B.P. AND ORDINARY MOD p COHOMOLOGY 275

DEFINITION 1.2. Let X be an (open or closed) manifold and Z be an S.-
manifold. A map f: Z— X is a complex oriented of dimension ¢ if f is factored
such that

) P
f:Z—>XXR¥ —X
(1) 7 is an embedding with n9rma1 bundles v;,..., having compatible stable
complex structure on each (9s,...,)Z—0(0 ...y Z)),
(2) p is a projection,

3) if 2€0@ .19 2—000,....pZ), then
(dimZ at z)—(dim X at f(z))=¢—(dim P,,-+ -« +dim P, _+s).

DEFINITION 1.3. Let f:Z— X be a complex oriented map and g:Y—Xbe
a map. Define the modified pull back Y X%Z—Y as follows,

For ease of arguments, assume n=1, i.e., the S;-case. Let Z=Z\U cone
P, xZ(1). Take g’x f’(1) transversal to the diagonal ACX X X. Then (g’ X f'(1))*A
=Y X xZ(1) is a manifold and (g’ X f/(1)-porj)~*A=Y X y Z(1) X cone P, where proj:
Z(l)Xcone P;— Z(l) is the projection. Let f”: Z\U0Z(1)XI— X be a map so
that f”=f on Z and f” is the homotopy between f and f’ on Z(1)xI. Taking
g’ X f" for g’X f” transversal to A, we can define

(g'X(f"Uf'Q)-proj)) =Y X% Z.

When n>>1, we can also define the modified pull back by descending induc-
tion on sequences (iy, -+, #5) in (3).

DEeFINITION 1.4. Let f,:Z,— X, 1=1, 0 be complex oriented maps. Then
they are cobordant if there is a proper complex oriented map b: W — XX R such
that e,: X— XXR, &;(x)=(x, 7) is transversal to b, and the pull back of ¢, is
isomorphic to f,.

THEOREM 1.5. For a manifold X, the set of cobordism classes of proper
complex oviented map of dimension —q is MU(S,)YX), Here MU(S,)¥X) is the
cobordism theory with singularities and without cone due to Baas [1], [9].

DEFINITION 1.6. (Gysin homomorphism) A proper complex oriented map
g: X—Y of dimension d induces a map

gx : MU(S)X(X) —> MU(S,)*«Y)
which sends f: Z— X into gf: Z—Y.

DEFINITION 1.7. (Contravariant map) Let g:Y — X be a map of manifolds,
and let f: Z— X be a proper complex oriented map. Then g induces a map

g*: MU(S X)) —> MU(S)*Y)
which sends f: Z— X into the modified pull back ¥ X%Z —7Y.
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THEOREM 1.8. (Sullivan’s exact sequence) There is an MU*-module exact
sequence

P,
MU(S)¥(X) ———> MU(S)*(X)

\ /
MU(S,, Ppi)¥(X)

where 1 15 the natural inclusion map and 0(A, )=, A4, f).

COROLLARY 1.9. If S, is a regular sequence in MU*, then MU(S,)*(S°
= MU*/(S,).

In particular MU (x,|i# p’—1)*(X)py = BP*(X) and MU(p, x,, )M X)=H*
(X; Zp). ldentifyning xp.-,=v;, we denote MU(S,x,, - |i#p*—1)*(X) by
BP(S,)*(X). Recall the notations BP(p, vy, -+, vn-1)=P(n), BP(p, -+, vp-y,
Uns1, )=k(n) and vz;*k(n)=K(n).

Define an operation Qp, by Qp,([4, f1)=[8;4, f10,A1=[AG), fG)]. Then
it is easily seen Qp,Qp,=—Qp,Qp, Hereafter we fix the generators v, such
that the Chern number cApn-,(v,)=p mod p?, namely, the Milnor manifolds.

THEOREM 1.10. In HX(X; Z,)=BP(p, vy, -+ )¥(X), the operation Q. is the
Milnor operation Q., (Qu=the Bockstein operation and Q,=P?* " 'Q,_,—Q,_,@?* " H[9].

The cohomology operations in MU*(—) are MU *-generated by the Landweber-
Novikov operation s,. The operation s, is defined also in MUU,)*(—), I,=
(p, v1, =+, vo-1)[9]. We here define it from geometric viewpoints, as follows.

Given [4, fleMUUI,)*X), we will define s,[4, f]. First suppose 0A=
9;A4, i.e., 0A=A@G)Xv;. Let ty,:0A— BU be the map which represents the
tangent bundle of 0A. Since

i = (ta X70,)*  and T%"A(Ca):a:a,M,ijca'fiﬁﬁ'w;
the definition of s, in MU*(—) theory follows
Sal:aAy af]: 2 sa’A(i)'Sa’(Ut)-
a=a’+a”
Here sq.-(v,)el,=(p, -, v;-1) and we can write

5,004, 0f1= 3 sw AW 3 bor 0, (.

Let [M, gleMU*(A) be a manifold which represents <#%(c,). Then there
is a manifold W so that

oW =0M\V (right hand side of (1)).
Therefore we can define s,[ A4, f] by
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gf: M}}JWU > (Sar(A@) X bgr, ;) X conev, —> A\UA(@) X conev, —> X.
a',y

The fact that if b,.; is also in [,-, then b,-,=0 in MU([,)* implies that s, [A, f]
is welldefined.
The case 0A=\U0;A is also proved by descending induction on sequences

(l.lr Tty is) in (3)-
The cohomology operations in MU([,)-theory is known

MUI)«MUUI ) =MU*/ 1, Q MU MU)Q ALQp, -, Qu,-,]-

Therefore we can minic the arguments in Quillen’s paper [5]. In particular we
can prove

THEOREM 1.11. Let X be a finite complex. Then MU ,)*(X) (resp. P(n)*(X))
is generated as a MU(I,)*-module (resp. P(n)*-module) by elements of non negative
degree.

§2. Main lemmas.

In the previous section we noted the geometric mean of the Milnor opera-
tion Q..

LEMMA 2.1. Let x;€BP*X) and 2v,x,=0 modI3 where [.=(p, vy, --).
Then there is ye H¥X ; Z,) such that Q,y=i(x;) where i is the natural inclusion
map i: BP—HZ,,.

Proof. Think of x, as an singular manifold. Since Xv,x,=0 mod /2, there
is a manifold y” whose boundary is

0y'=Vvix,Vw, where w,=0 mod /.
Let y=9’ be the I.-manifold constructed from y’ attaching cones
ﬁ’zy’ak@j,(conevj)x(xJVw]) and 0,9 =(x,Vw,).
Think of H¥X; Z,) as BP(I.)*(X) and we have
19,5'=Q, 5 =i(x,V w,)=i(x,),
where ¢/ : BP(-++, 9, - )*(X)=k(n)*(X)—> H*X; Z,). q.e.d.

We next recall the Atiyah-Hirzebruch spectral sequence. Given multiplicative
spectrum A, let denote by E¥*(X) the Atiyah-Hirzebruch spectral sequence
which converges to A*(X),

AEF*=H*X,; A*) > AXX).

The following lemma is well known [9],



278 NOBUAKI1 YAGITA

LEMMA 2.2. The first non zero differential of the spectral sequence pc,yE¥*
((l?’ld lz(n)E:"*) N dzp"-l_':vnQn-

COROLLARY 2.3. In the spectral sequence po,E¥*=pp- nE¥*, if d,x=0
Jor r<2p™—1 then dipn-1(x)=0,Q(x) mod(p, -+, Vg-1).

Proof. The natural inclusion map z: P(1)— P(n) and Lemma 2.2 follow the
corollary. q.e.d.

Recall that an ideal I in BP* is invariant if #(/)CI for all operations f&
BP*(BP).

LEMMA 2.4. Let xy, -, xs€EpyEL°. Then the mod annihilator AM(x,)=
{aeP(1)*|ax;=0 mod(x,, -, x5) in EL*} 15 tnvariant.

Proof. This AM(x,) is indeed the mod (x,, ---, x,) annihilator ideal in P(1)*
(Xt*1/X*t-m-?), Hence this is an invariant ideal. q.e.d.

We now consider relations between the Atiyah-Hirzebruch spectral sequence
and the Sullivan exact sequence.

LEMMA 2.5. Let wx=0 mn P(L)X) for 0=weP()* and let i(x)=x"#0 n
H*X; Z,). From the Sullivan exact sequence, there is y in BP(p, w)*(X) such
that 0y=x. Then d,y’=2wx’ in po, E¥ * where 02 Z,, i(y)=y" and r=|w|+1.

Proof. Since P(L)Y(X)=BP*X; Z,)=BP*XAS°Upe'), we consider this
lemma in gpE (X A S®U,e'). Take the normal cells decomposition of XAS°U' e,
i.e.,

*=Y O CY = XAS'Upe,
Y,.=Y,1Uscone(VS™U,e), k=dimy; (H,(Yw; Z)).
k D

Put Y(n—x")=Y,_1/Y -r_s-cone(S**Upze® '), where n=|x"| and cone
(S""2Upe™ 1Y), is the cone of the Moore space which represents x’ in H*(Y.; Z).
Since 0y=x'=0 in BP*Y (n—x’)) where yeBP(w)*(Y(n—x’)), y is also in
BP*(Y(n—x’)) and y’ is a permanent cycle in gpE**(Y(n—x")), i.e., d,y’=0.

On the other hand put

Y(n—l—!—x'):Yn-z/Yn-r-zUCODe (Sn—zupen-l)x,.

Then dy=x+0 and y’ is not a permanent cycle in zpE**(Y(n—1+4x')). Hence
d.y'=Awx’.
Therefore d,y’=Awx’ in gpE**(Y ,-1/Y ,-r-,). By the construction of the
spectral sequence we have the lemma. q.e.d.
The following corollary is an analogous result of Lemma 2.1.

COROLLARY 2.6. Let (wy, -+, ws)=J]s |w.| <|w.:1| be a regular sequence in
P(1)*. Let b;e P(1)*(X) and 0+i(b,) in H¥(X; Z,). Suppose there 1s a relation
in P()*(X) such that
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wib,Fwebs+ - +wib,=0.

Then there is yEpmES™* such that d.(y)=2wi(b,) in spip.s_pEr, 0FLEZ,
for 1=st<s.

Proof. Using the argument similar to the proof of Lemma 2.1, we can
construct a J;-manifold § such that

9,9=wpb,  ie, 8,9=b,.

Since w,b,=0 and 0J,y=b, in BP(p, Ji— {w;})*(X), it follows from Lemma 2.5
that

dr(y)=Aw;b, in BP(p, [i—{wh)EE*.
That BP(J)*=BP(p, Jy—{wj})* for *x<|w,,| implies the lemma. g.e.d.

For the preceding of this paper, we define an index which is convenient to
use. If xeH*X; Z,) is in the image of ;: P(n)XX)—H*(X; Z,), then x can
be represented by a manifold with singularities of type (p, vy, -+, V1)

Define #(x)=n if x is in Image 7: P(n)*(X)— H*(X; Z,) and is not in Image
1:Pn—1)%X)>HXX; Zp).

From the facts that Q,=:0,, ir,=c(P*), and P(n)*(P(n))=P(n ®BP* (BP)
R ALQ,, -+, Q,-1], we can easy see the following;

(2.1) Hx)=n implies Qnx=0 for all m=n.
(2.2) Qn.x#0  implies #x)=n+1.

(2.3) Hx)=n implies #Q,-x)=n—1.

2.4) HQnx)=tH(x).

(2.5) HPrx)=t(x).

(2.6) H(xy)=max (t(x), K(y)).

2.7 Given f:X-—-Y, t(f*x)=t(x).

Question 2.7. Assume #(b,)<1(, t(b;)=1) and there is a unique z in H*(X; Z,)
such that Q,z=b,(, respectively v;b;=0 in p,, E* *for all k<i1and Q,z=b;). Then
are there b} in BP*(X; Z,) such that

Q;z=i(b;) and 2vb)=

§3. Examples

3.1. The spectrum V(n).
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THEOREM 3.1.1. (Larry Smith) Given a fimte complex X, then H¥(X; Z,)
g/II:QOy Ty Qn] Z.f and only Zf BP*(X>;BP*/(7>; vl: Tty vn)-

Proof. Assume H*(X; Z,)=A[Q,, -, @,]. Using Corollary 2.3, it is in-
ductively proved that

P(I)Egci?z(g(A[QO; Q8+11 R Qn]@BP*/(p, vl: Tty U.?))Ql o QS'

Hence we have P(1)¥(X)=BP*/(p, - ,v.)Q A[Q.] and BP*X)=BP*/(p, -+, V).

Conversely let BP*(X)=BP*/(p, ---, v,). From Lemma 2.1, there are y.<
H*X; Z,) with Q,y,=v,x where x is the BP*-module generator of BP*(X).
From Lemma 2.5, d;y,=v,x in py,E¥* The BP*-module generated by y, mn
Espn-y is @ BP*/(p, -+, v,-,)-free module, indeed, if dspn-; iS not monic then
the BP*-module generator of kerd;,»-; is of the second degree>—2p"-+1 and
this contradicts to that the generator is not a permanent cycle. Hence we can
take ¥, n-1 in H*(X; Z,) such that Q,-1Y4,n-1=Yn-

Continuing this argument, there is z such that Q, - Q,z=x. Let H¥X; Z,)

= A[Q,, -+, Q,]z-+B. Each element in B is not a permanent cycle in p,E**,
Let w be a highest dimensional non zero element in B. Then dw=v,Q., - Q.2
and this follows the contradiction. Therefore B=0. q.e.d.

Remark. Theorem 3.11 is also proved more easily by using the Sullivan
exact sequence.

We show that all regular invariant ideals containing p appear as annihilator
ideals of some elements in BP*(X).

ExampLE 3.1.2. Let J,=(p, a4, ---, a,) be a regular invariant ideal of BP*,
Let BP(J,) be the spectrum of the bordism theory with the coefficient BP*/J,.
The spectrum is inductively defined by the cofibering

Qo1
BP(],) ——> BP(J.) —> BP(].+1).

Using the fact a¥,;=a.;; modJ,, we can see (reference [9]) such as the case
]n:]n-u:(p, Un)
BP*(BP(]J,))=BP*/], )@‘BP*(BP) and

P(M)(BP(J.))=P(M)* J@‘BP*(BP)®A[@O, o, @)

for sufficient large M, e.g., M>|a,].

Let BP(J,)¥ be an N-dimensional skeleton of BP(J,)(, note that BP(J,)"
is equivalent to a finite complex, because p<],). The highest degree of the
nonzero differential of the spectral sequence p, E**(BP(],))is |a,|+1. Hence
we have

BP*(BP(],,)N)zBP*/]nl@PBP*(BPN"“""Z)GBA

where A is the BP*-module generated by generators>N-—|a,|—2.



B.P. AND ORDINARY MOD p COHOMOLOGY 281

3.2. Lens space.
Let X be a finite complex with H°%(X; Z)=0. Then the spectral sequence
spE**(X) collapses.

THEOREM 3.2.1. Let L be a 2m-+1-dimensional generalized Lens space L(p,
g1, 5 qm)- Then there 1s a BP*-algebra 1somorphism

BP*(L)=BP*[x]/(x™", f(x))
where f(x)=px-+a,x*+ -, and apr-1=v, mod(p, -+, Vp-1).
Proof. The cohomology ring is well known
HXL; Zp)=Z,[x]/(x") @ Ala),  Qua=x.
Since H°(L ; Z)=0, there is a BP*-module isomorphism
ppEL*=BP*[x]/(p, x™*).
From Lemma 2.1 and Q,a=x?", we have

px+ax*+ - =f(x)=0 in BP*(L) and ayn-;=v,mod(p, -+, vy-1).
q.e.d.

Remark. From the Gysin exact sequence, it is well known when L=1L
(p, 1, ---, 1), the polynomial f(x) is the p-th product [p] of the formal group law.

3.3. Finite H-spaces

Suppose that W is a l-connected (mod p) finite H-space. Let ) be the Z,-
module of indecomposed elements in H*(W; Z,). The Kane’s binary theorem
[4] is stated as follows.

(1) Q1 =9PF* QP I=Q,Q* P for s=0
2) if Q"0 then n=(p**'—1)/(p—1)—p* for 1=I<Fk.
Moreover for a<Q?*"
3) a?=0 if [=p* in (1),
a”*=0 otherwise.

Let denote by (y,, -+, v;) the system of generators such that
4) [y =" =D/(p—1)—p'
®) @ Vyi=yi.
Question 3.3.1. Is it true that #(y,)=0 for all 2 and
vayi+.wyr=0 mod p in BP*W)

where (y))=y1, {(yr)=yr?
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Remark 3.3.2. (1) Harper constructed [3] an H-space for each odd prime
p such as

H*W ; Z )= N\ (X3, X2p+1) O Zp[Xoprol/(X2Ds2).
Then by the arguments similar to [107,
BP*W)=BP*{l, ys, ya} @ BP*{ys, y}/(pys=0v1c)
D BP*/(p, vi)[Xep+2]/(X2psa)®,
where a=2p*+2p+2, b=a—3, c=2p*+1.
(2) The cohomology ring of the exceptional Lid group E; for p=3 is
HX(Es; Z3)=Z,[ x5, x20]/(x}, 23) @ 4

where A is the external product of odd dimensional generators. The BP*-
module structure of BP*(E;) is known [11]. It holds that #(xs)=0 and hence
V1Xg=VaXgp.

It is unknown whether there exists an H-space such that £=3 in the binary
theorem (2).

3.4. Eilenberg-MacLane space K(Z, 3).

The mod p cohomology of K(Z, 3) is known
HXK(Z, 3); Z))=Z ,[0%Pz, 6PF Pz, --]Q ALz, Pz, ---].

For simplicity of notations, let denote @?" ‘... @r=c,, dc,=b,. Then |c,|=
2(p"—=1)+3, |ba|=2(p"—1)+4.

LEmMmA 3.4.1. In H¥K(Z, 3); Zp), the Milnor operations act
(1) Qut=bn (2} Qubn
3) Qucr=Q.cn=>(b,- 7,L)Y’"' for n>m>0 and Qmcn=0.

Proof. The cohomology ring H*(K; Z,) is a Hopf algebra and, c,, b, are
primitive elements. By the definition, we have (1) and Q.c,=b,. We show
Qn(PP" o) =(Qm-14-1)?, indeed,

Qm(gpn-lcn—l):gjpn-l+l>m-IQm-lcn—l_Qm—l-CPPn_L‘-Pm-lcn—l
=(Qm-1tm-17( since [Qm-1cm-1| =2(p" "+ p" ).

Hence inductively we have Qnc,=(bE"H2.
Since Q. is a derivation, Q,(b,) is also primitive. Hence Qn(b,) is an
indecomposed element or its p-th power. By dimensional reason, we have (2).
q.e.d.

THEOREM 3.4.2. There exist b= BP*(K(Z, 3)) such that i(b))=b, and v,b{+
vbi+ --- =0.
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To prove this theorem we recall the Wilson’s theorem. Let BP<{n)= BP
(Un+]) ): namCIYy BP<">*:Z(I))[U1; ) vn]-

THEOREM 3.4.3. (Wilson [13]) For k=2(p™+ - +p-+1),
i: BPYX)—> BP<n)*X) is epic.
Proof of Theorem 3.4.2. Since b,;=Q,¢;=Qr,
b,elmage (BP<1>¥(K(Z, 3)) —> HXK(Z, 3), Z)).
Moreover if i(b{)=b, then v,b7=0. By Wilson’s theorem, |b7|=2(p+1) implies
by lmage (BP*(K(Z, 3)) —> BPI>XK(Z, 3)).

Therefore #(b,)=0 and let 7(b})=b,.
From Sullivan’s exact sequence, there is b% such that

viby=—0v,bY in BP2)%X).

Moreover from Lemma 2.1, i(b%)=b,. By also Wilson’s theorem, |b%| <2(p>*+ p+1)
implies

by clmage(BP*(K(Z, 3)) —> BP2>*(X)).

Take b; such as 7(b;)=b%. Continuing this argument. We have the theorem.
g.e.d.

THEOREM 3.4.4. Let the filtration Fs=Ker (P(1)*(X)—P1)*(X5)). Then there
1s @ P(1)*-module isomorphism

PXK(Z, 3))/ Fepssa=P(1)*[by, by, b 1/(R, D)

where D 1s the 1deal of elements of degree=2p*+2 in Z,[b, by, by] and R is the
ideal generated by the following five relations

1) V114050, +v,b;=0 mod I3

2) vPby+ 0,07 +v565=0 mod I3— {v,}*
3) Vb2 +;b2b,=0 mod I3

4) b8y +v5(bB —bE~1by)=0 mod I}
(5) vE**1h,=0 mod I3— {v%} .

Proof. We compute the Atiyah-Hirzebruch spectral sequence
E,=H¥K(Z, 3), P(1)*) > P(DXK(Z, 3)).

The first non zero differential is d,,-;=v, @ Q, and @, acts such as
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T—>b;, ¢,—>0, c,—>b%, ¢;—>b%, -
Hence we have
EsF=P*Tbs, 1@ Alcy, c,=b770)/ b, v:b3, ).

Each element x of |c,|<|x|<|bs| or |ci|+]cz] <|x|<|bB| is v;-torsion in
E,,. Since K(1)*(K(Z, ))=0, vib,=Imd, and we have

dop-1p+1€1=0%b,.
Since dy(c,—b%7'7)=0 for s=2(p—1)p+1, we also have
dop-1p+1€1(ca—b8 1 T)=0v8by(c,—bE™1).
Hence if s<2p°+2, then
EsGeny = P()[by, by, bs1@ A(ciby, cobE™1)/(v1c:by, v:16%, v8by).

It is easily seen v5x=0 for |c¢i|+|cs| <|x|<|vs|l+]|cs|. The next non zero
differential is dsp2+1=0,@ @,. The operation @, acts

(1) ¢iby—v,b%*; both sides are P(1)*/v,-free,

(ii) ¢y—b8c —> —v,b%7 b, ; the left side is P(1)*-free and the other is v,-
torsion,

(i) cy(ce—b21t) > vy(bB(cy—bE )+, b871b,) ; both sides are P(1)/v,-free.

Therefore if s=2p*+2,

E*32=P(1)*[b, by, b1 {1, v1 @ (c2—b8'7), bR(c;—bE ')+ .04 705}/
(Ulbl) vz;bZ: U2b€+l, Ugbq_lbg, (vly v2)(bzi(c2'—bq_lf>+Clbz;.—lb2))

We will see odd dimensional elements are not permanent. Since K (1)*
(K(Z, 3))=0, vib;=lmd,. The P(l)*-free generator of dimension<|b;| is only
one and

dr (v, c;—bB=1r)=p2%*1p,,
Since dyps1=vsQ Qs mod (vy, v,), we have
dapsa(bB(ca—bE71T) €108 7 by) =v,(bE T P* —biP~tby+bEHbEH)
Hence for s=2p*+2
Esy%o= P(1)*[by, by, by]/(v1b1, v8bs, v5b8*, vsbE71by, vE**1by).

By Lemma 2.1 and Lemma 2.2, we have the relation, for example, the
derivations d,c,=v%b,, Q,c;=b0%, Qs;c,=>b% imply relation (2). q.e.d.
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